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Above 54.4 eV, two-photon double ionization of helium is dominated by a sequential absorption process,
producing characteristic behavior in the single and triple differential cross sections. We show that the signature
of this process is visible in the nuclear recoil cross section, integrated over all energy sharings of the ejected
electrons, even below the threshold for the sequential process. Since nuclear recoil momentum imaging does
not require coincident photoelectron measurement, the predicted images present a viable target for future
experiments with new short-pulse vacuum ultraviolet �vuv� and soft x-ray sources.
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Kinematically complete experiments on one-photon
double ionization of the simplest atomic �1� and molecular
�2� targets, coupled with state-of-the-art nonperturbative the-
oretical studies, have yielded fundamental information and
insight into the nature of electron-electron correlation. With
the advent of new classes of short-pulse, high intensity free-
electron laser �3� and high-harmonic generation �4� light
sources that operate in the vacuum ultraviolet �vuv� and soft
x-ray regimes, one looks forward to similar experiments in-
volving the nonlinear process of few-photon multiple ioniza-
tion �5,6�. With plans for such experiments currently under-
way, it is important to understand what kinds of phenomena
can be studied and the measurements that are most likely to
be successful in revealing new effects �7�.

Helium offers an interesting case in point. The energy
required to doubly ionize helium is 79.0 eV, the sum of the
first �24.6 eV� and second �54.4 eV� ionization energies.
Double ionization of helium by two-photon absorption there-
fore requires a minimum photon energy of 39.5 eV. For pho-
ton energies between 39.5 and 54.4 eV the process is neces-
sarily direct or nonsequential �NSI�, i.e., it requires
simultaneous absorption of two photons to strip two elec-
trons from the atom and the process is expected to be sensi-
tive to electron-electron correlation. For photon energies
above 54.4 eV, sequential ionization �SI� is possible: He+ is
produced by absorption of one photon, followed by absorp-
tion of a second photon to produce He++. Although NSI can
compete with SI at these higher energies, SI, which is an
essentially uncorrelated process, will dominate. In NSI, the
excess energy �2��−79 eV� can be shared continuously be-
tween the photoejected electrons, whereas with SI, we expect
to see photoelectron energies sharply peaked around ��
−24.6 eV and ��−54.4 eV. Experimental studies �8,9�, and
indeed most theoretical treatments, of this process have to
date focused on energy and angle-integrated quantities. In
contrast to the one-photon, double ionization case, kinemati-
cally complete experiments that could distinguish between
NSI and SI have yet to appear. Our purpose here is to dem-
onstrate, using the results of precise quantum mechanical
calculations, that since the angular distributions produced in
two-photon NSI and SI are very different, they leave a clear

signature in the differential nuclear recoil distributions, even
when integrated over all possible energy sharings of the
ejected electrons. We will show that the signature of SI can
be seen in the photoelectron-energy-integrated nuclear recoil
cross sections at energies several eV below the 54.4 eV
threshold where sequential ionization is still a virtual pro-
cess. Since these distributions do not require direct detection
of the photoemitted electrons, they present an attractive tar-
get for an experiment that could demonstrate a clear signa-
ture of sequential versus nonsequential double ionization.

The triple differential cross section �TDCS� for two-
photon double ionization is defined as

d�

dE1d�1d�2
=

2�

�

�2���2

m2�2 k1k2�f�k1,k2,���2, �1�

where k1 and k2 are the momenta of the photoelectrons, � is
the photon frequency, m is the electron mass, � is the fine-
structure constant, and E1=k1

2 /2 is the energy of one of the
electrons and thus defines the energy sharing. The ionization
amplitude f�k1 ,k2 ,�� is in turn given by

f�k1,k2,�� = ��k1,k2

− �	�E0 + �� − H + i
�−1	��0� , �2�

where H is the atomic Hamiltonian, �0 is the initial state of
the atom with corresponding energy E0, and �k1,k2

− is the full
momentum-normalized scattering wave function, with in-
coming boundary conditions corresponding to two free elec-
trons. For polarization �, the dipole operator in the velocity
form, 	, is defined in terms of the momentum operators, pi,
for the two electrons by 	=� ·p1+� ·p2.

The accompanying momentum recoil, Q, of the nucleus
due to the ejection of two electrons of momenta k1 and k2 is

Q = − �k1 + k2� . �3�

At a given photon energy, we can therefore define a nuclear
recoil cross section, differential in energy sharing and the
angular dependence of Q, by
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d�

d3QdE1
=� d�1� d�2

d�

d�1d�2dE1
�3�Q + k1 + k2� .

�4�

The integral of this quantity over energy sharing, d� /d3Q
=	dE1d� /d3QdE1, carries a signature of the sequential ion-
ization process even below its threshold, as we will see
shortly.

We have recently shown �10� that the task of calculating
the two-photon double ionization amplitude, which requires
in principle the exact wave function for three-body Coulomb
breakup, can be simplified by using the method of exterior
complex scaling �ECS� which avoids the explicit imposition
of asymptotic three-body boundary conditions �11�. We be-
gin with the coupled driven equations in the Dalgarno-Lewis
form of second-order perturbation theory �12� that describe
the absorption of two photons by a system initially in state
�0,

�E0 + �� − H��1
sc�r1,r2� = 	�0, �5�

�E0 + 2�� − H��2
sc�r1,r2� = 	�1

sc, �6�

which must be solved with pure outgoing wave boundary
conditions for the wave functions �1

sc and �2
sc. With ECS,

Eqs. �5� and �6� are solved numerically on a discretized grid
in a large but finite region of coordinate space extending to
some R0, where the outer boundary conditions are obviated
by rotating the radial coordinates beyond that point into the
complex plane. Having solved the driven equations, the ion-
ization amplitude can then be extracted using a surface inte-
gral that involves a pair of testing functions k

−�r� which are
momentum-normalized one-electron Coulomb functions
with nuclear charge Z=2, in the case of helium �13�,

f�k1,k2,�� =
1

2
� �k1

−*�r1�k2

−*�r2� � �2
sc�r1,r2�

− �2
sc�r1,r2� � k1

−*�r1�k2

−*�r2�� · dS . �7�

The integral is evaluated over a finite hypersphere whose
radius is less than R0. No approximation concerning the final
state has been made in this formalism because the testing
functions, k

−�r�, merely extract the double ionization ampli-
tude from the final outgoing wave function �2

sc, and electron
correlation is treated completely in �2

sc as well as in the
initial state �0 in this approach.

But there is a technical difficulty which must be ad-
dressed. For photon energies greater than the first ionization
potential of the atom, �1

sc, the solution of Eq. �5�, will have
undamped outgoing wave behavior on the real portion of the
grid. Since �1

sc serves as the source term in Eq. �6�, �2
sc will

not converge with increasing R0. As explained in Ref. �10�,
we can solve this problem by adding a small positive imagi-
nary part to � in Eq. �5� only, rendering �1

sc square inte-
grable, and then numerically extrapolating the results to real
�.

�1
sc and �2

sc were expanded in a product basis of spherical
harmonics, giving a set of coupled two-dimensional radial
equations that were discretized using a finite element, dis-

crete variable representation �DVR� �14� and solved on par-
allel computers using sparse matrix methods. For the results
reported here, we used partial waves up to l=9 and radial
grids with real parts extending to 160 bohrs on a side, with
finite element boundaries starting at 5 bohrs and then spaced
10 bohrs apart, discretized with 18th order DVR. Calcula-
tions were performed for a range of complex � values be-
tween Im���=0.500 and Im���=0.05 hartrees and the indi-
vidual partial wave amplitudes were then extrapolated to real
�.

Figure 1 shows the single differential cross section
�SDCS�, which is obtained by integrating the TDCS defined
in Eq. �1� over the angles �1 and �2, at three different pho-
ton energies. The SDCS is seen to be a relatively flat func-
tion of energy sharing below 50 eV. The signature of SI
becomes evident above 50 eV where the SDCS begins to rise
at the extremes of energy sharing until the sequential limit is
reached at 54.4 eV. Above that energy, it has well-defined
peaks at E1=��−54.4 eV and E1=��−24.6 eV. Our calcu-
lated SDCS at 58 eV has finite peak heights because it was
extrapolated from calculations carried out on a finite grid.
These peaks would become singularities in the limit of an
infinite grid, and are a fundamental feature of the cross sec-
tions derived in lowest-order perturbation theory. The appar-
ent widths of the peaks, however, are not a consequence of
the finite grid, as explained below.

One also sees a striking change in the TDCS as we move
from regions dominated by NSI processes to those where SI
dominates. Figure 2 shows contour plots of the TDCS, as a
function of energy sharing and scattering angle for one of the
ejected electrons, at photon energies of 44, 52, and 58 eV.
The scattering angle of the second electron is fixed at 30°. At
44 eV, the TDCS has its maximum value when the two elec-
tron are ejected back to back, independent of the energy
sharing, which is expected for a correlated NSI process. At
52 eV, the angular dependence is more complicated, but one
still sees a propensity for back-to-back ejection, as well as a
peak near 180° for extreme unequal energy sharing. At
58 eV, the TDCS is strongly peaked near 0 and 180° at the
energy sharings corresponding to SI and is uniformly small
elsewhere.
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FIG. 1. Single differential cross sections at 44 �solid�, 52 �dot-
ted�, and 58 �dashed� eV.
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As we showed earlier �10�, we can obtain a qualitatively
correct description of sequential ionization with a simple
analytic model that ignores correlation in the initial, interme-
diate, and final states. That model, whose details are derived
elsewhere �15�, gives the following expression for the TDCS,

d�seq

dE1d�1d�2



�

4�
� 3

4�
�2

cos2��1�cos2��2�

� ��He+
�E2��He�E1�

E0 + �� − 
1s − E1

+
��He+

�E1��He�E2�
E0 + �� − 
1s − E2

�2

, �8�

where �He and �He+
are the photoionization cross sections of

helium and He+, respectively, and 
1s is the energy of He+.
When integrated over �1 and �2, Eq. �8� gives an SDCS
proportional to the square of the term in square brackets.
Thus the model shows that when the photon energy exceeds
54.4 eV �
1s� the TDCS and SDCS diverge at the ejected
electron energies corresponding to SI, the singularities sepa-
rated by the difference between the ionization energies of He

and He+. The model also explains the rapid rise of the SDCS
just below the SI threshold at extreme unequal sharing, since
an apparent width �determined by the size of the numerators
in Eq. �8�� is associated with the singularities above the SI
threshold which causes the SDCS to rise above the NSI
background. As mentioned above, these singularities are con-
sequences of treating sequential ionization in lowest-order
perturbation theory, and not of the simplifying assumptions
used in deriving the model.

The simple model also predicts that the angular depen-
dence of the TDCS is the product of two uncorrelated dipole
distributions for each ejected electron. A slightly modified
form of this behavior is clearly seen in the calculated TDCS
at 58 eV which shows peaks at �2=0 and 180°. However it is

(a) (b)

FIG. 2. �Color online� TDCS with the direction of one electron
fixed at 30° to the polarization direction. Left, 52 eV for 90% en-
ergy sharing. Right, top to bottom, TDCS as a function of energy
sharing and variation of second angle �for which 0 and 180° are
along polarization�, at 44, 52, and 58 eV, showing the signatures of
nonsequential and sequential ionization �see text�.

FIG. 3. �Color online� Nuclear recoil cross sections, integrated
over all photoelectron energy sharings and Qy, at 44, 52, and 58 eV
�top to bottom�. The polarization vector is chosen to lie along the z
axis.
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important to observe that even at 52 eV, just below the se-
quential threshold, this model fails radically to predict the
angular distribution, as demonstrated by the top panel of Fig.
2 which differs dramatically from a cos2 �2 dipole pattern.
Although the sequential model suggests the origin of the
virtual sequential effect, for the purposes of calculating
nuclear recoil in that energy region it fails in significant
ways.

Figure 3 shows the calculated nuclear recoil cross sec-
tions, integrated over all energy sharings, at the three photon
energies previously considered. The integration in Eq. �4�
requires some effort because, for example, there are ranges
directions of k1, for which no k2 exists that satisfies Eq. �3�.
Details about the numerical evaluation of d� /d3QdE1 will be
given elsewhere �15�. The general shapes of these cross sec-
tions can be understood on the basis of the previously de-
scribed TDCS. For NSI, the two electrons are preferentially
ejected back to back, which means comparatively little mo-
mentum is imparted to the nucleus. But the imparted mo-
mentum for back-to-back ejection is exactly zero only for
equal energy sharing and we are integrating over all energy
sharings, so we would expect a roughly isotropic distribution
peaked about Q=0 for a pure NSI process. For SI, however,
the electrons are uncorrelated and, because of their cos2���
angular dependence, are preferentially ejected along the po-
larization axis, i.e., at 0 or 180°. We therefore expect, for a
pure SI process, that the distribution of nuclear recoil mo-
menta will show four peaks along the polarization axis at
�Q�= � ��k1�+ �k2�� and �Q�= � ��k1�− �k2��. These general fea-
tures are indeed seen in the calculated cross sections. The

nuclear recoil cross sections at 58 eV show four clearly de-
fined rings �whose peak heights we must emphasize would
diverge if we could use an infinite grid�. Even at 52 eV, we
can see a clear signature of SI in the nuclear recoil cross
section where there are two distinct rings at the extremes of
momentum transfer along with two secondary wings devel-
oping inside the prominent wings—the signature of “virtual
SI.”

In summary, we have shown that sequential ionization
leaves a clear signature in the nuclear recoil cross section,
even when it is integrated over all energy sharings of the
ejected electrons. This signature is clearly visible at 52 eV,
which is 2.4 eV below the SI threshold. We see “virtual SI”
structure in the nuclear recoil cross section even at 44 eV,
while the SDCS at the same photon energy is flat. Measuring
nuclear recoil �16� does not require detection of the electrons
at all and thus avoids completely the need for coincidence
measurements. However, kinematically complete coinci-
dence measurements will be necessary to see the “nondipole”
angular patterns of ejection for nonsequential ionization that
appear at any energy below the sequential threshold.
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