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The entanglement between two modes of free scalar and Dirac fields as seen by two relatively accelerated
observers has been investigated. It is found that the same initial entanglement for an initial state parameter �
and its “normalized partner” �1−�2 will be degraded by the Unruh effect along two different trajectories
except for the maximally entangled state, which just shows the inequivalence of the quantization for a free field
in Minkowski and Rindler coordinates. In the infinite-acceleration limit, the state does not have distillable
entanglement for any � for the scalar field, but always remains entangled to a degree that is dependent on � for
the Dirac field. It is also interesting to note that in this limit the mutual information equals just half of the initial
mutual information; this result is independent of � and the type of field.
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Quantum-information theory has made rapid progress in
recent years, and more and more efforts have been expended
on the study of quantum information in the relativistic frame-
work �1�. In particular, entanglement in a relativistic setting
has received considerable attention because it is considered
to be a major resource for quantum-information tasks such as
quantum teleportation, quantum computation, and so on �2�.
In addition to the potential interest for quantum information,
the study of entanglement can also help us get a deeper un-
derstanding of black-hole thermodynamics �3� and the black-
hole information paradox �4�. Thus, many authors have in-
vestigated entanglement in relativistic frames �inertial or not�
for various fields �5–7�.

More recently, Fuentes-Schuller et al. �6� and Alsing et al.
�7� explicitly demonstrated that entanglement is a quantity
depending on the relative acceleration of one of the observ-
ers who, before being accelerated, shared a maximally en-
tangled bosonic or fermionic pair. Their results also showed
that different types of field will have qualitatively different
effects on the degradation of entanglement produced by the
Unruh effect �8�. In this Brief Report, we choose a generic
state as the initial entangled state:

��sk� = �1 − �2�0s�M�1k�M + ��1s�M�0k�M , �1�

where � is some real number that satisfies ���� �0,1�, and �
and �1−�2 are the so-called ‘‘normalized partners.’’ We will
try to see what effects this uncertain initial entangled state
has on the degradation of entanglement for two relatively
accelerated observers due to the presence of the initial state
parameter �. Notice that the Schwarzschild space-time very
close to the event horizon resembles the Rindler space in the
infinite-acceleration limit �6,9�. Hence, as in �6,7� our results
in this limit can be applied to discuss the entanglement be-
tween two free bosonic or fermionic modes seen by observ-
ers when one observer falls into a black hole and the other
barely escapes through eternal uniform acceleration.

Rindler coordinates are appropriate for describing the
viewpoint of an observer moving with uniform acceleration.
The world lines of uniformly accelerated observers in the
Minkowski coordinates correspond to hyperbolas to the left
�region I� and right �region II� of the origin which are
bounded by lightlike asymptotes constituting the Rindler ho-
rizon �6,7�, so the two Rindler regions are causally discon-
nected from each other �10�. An observer undergoing uni-
form acceleration remains constrained to either Rindler
region I or II and has no access to the other sector. The
system in Eq. �1� is bipartite from an inertial perspective, but
in a noninertial frame an extra set of modes in region II
becomes relevant. Thus, we will study the mixed-state en-
tanglement of the state as seen by an inertial observer Alice
detecting the mode s and a uniformly accelerated observer
Bob with proper acceleration a in region I detecting the sec-
ond mode k.

Bosonic entanglement. For a free scalar field, the
Minkowski vacuum state can be expressed as a two-mode
squeezed state in the Rindler frame �8,10�,

�0k�M =
1

cosh r
�
n=0

�

tanhn r�nk�I�nk�II, �2�

where cosh r= �1−e−2��k�c/a�−1/2, k is the wave vector, r is the
acceleration parameter, and �n�I and �n�II indicate the Rindler-
region-I particle mode and Rindler-region-II antiparticle
mode, respectively. Using Eq. �2� and the first excited state
�6,10�

�1k�M =
1

cosh2 r
�
n=0

�

tanhn r�n + 1��n + 1�k�I�nk�II,

we can rewrite Eq. �1� in terms of Minkowski modes for
Alice and Rindler modes for Bob. Since Bob is causally
disconnected from region II, we will trace over the states in
this region and obtain

�AB =
1

cosh2r
�
n=0

�

tanh2nr�n,
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�n = �2�1n�	1n� +
���1 − �2��n + 1�

cosh r
�1n�	0�n + 1��

+
���1 − �2��n + 1�

cosh r
�0�n + 1��	1n� +

�1 − �2��n + 1�
cosh2 r

�0�n

+ 1��	0�n + 1�� , �3�

where �nm�= �ns�M�mk�I. The partial transpose criterion pro-
vides a sufficient condition for the existence of entanglement
in this case �11�: if at least one eigenvalue of the partial
transpose is negative, the density matrix is entangled; but a
state with positive partial transpose can still be entangled. It
is the well-known bound or nondistillable entanglement �12�.
By interchanging Alice’s qubits, we get the eigenvalues of
the partial transpose �AB

TA in the �n ,n+1� block:

��
n =

tanh2n r

2 cosh2 r

	n ��	n

2 +
4�2�1 − �2�

cosh2 r
� ,

where 	n=�2 tanh2 r+ �1−�2�n /sinh2r. Obviously the eigen-
value �−

n is always negative for finite acceleration �r
��.
Hence, this mixed state is always entangled for any finite
acceleration of Bob. In the limit r→�, the negative eigen-
value will go to zero. To discuss this further, we will use the
logarithmic negativity which serves as an upper bound on the
entanglement of distillation �12�. This entanglement mono-
tone is defined as N���=log2��T�, where ��T� is the trace
norm of the partial transpose �T. We therefore find

N��AB� = log2 �2

cosh2 r
+ �

n=0

�
tanh2n r

cosh2 r

��
�2 tanh2 r +
�1 − �2�n

sinh2 r
�2

+
4�2�1 − �2�

cosh2 r � .

For vanishing acceleration �r=0�, N��AB�=log2�1
+2����1−�2�. In the range 0
 ����1 /�2 the larger �, the
stronger the initial entanglement; but in the range 1 /�2
� ���
1 the larger �, the weaker the initial entanglement.
For finite acceleration, the monotonic decrease of N��AB�
with increasing r for different � means that the entanglement
of the initial state is lost to the thermal fields generated by
the Unruh effect. From Fig. 1 it is surprisingly found that the
same initial entanglement for � and its normalized partner
�1−�2 will be degraded along two different trajectories ex-

cept for the maximally entangled state, i.e., ���=1 /�2. This
phenomenon, due to the coupling of � and the hyperbolic
functions related to r, just shows the inequivalence of the
quantization for a scalar field in the Minkowski and Rindler
coordinates. The logarithmic negativity is exactly zero for
any � in the limit r→�, which indicates that the state does
not have distillable entanglement.

The mutual information, which can be used to estimate
the total amount of correlations between any two subsystems
of the overall system, is defined as �13�

I��AB� = S��A� + S��B� − S��AB� , �4�

where S���=−Tr�� log2 �� is the entropy of the density ma-
trix �. From Eq. �3�, we can obtain the entropy of this joint
state,

S��AB� = − �
n=0

�
tanh2n r

cosh2 r

�2 +

�1 − �2��n + 1�
cosh2 r

�
�log2

tanh2n r

cosh2 r

�2 +

�1 − �2��n + 1�
cosh2 r

� . �5�

Tracing over Alice’s states for �AB, we get Bob’s density
matrix in region I; its entropy is

S��BI� = − �
n=0

�
tanh2n r

cosh2 r

�2 +

�1 − �2�n
sinh2 r

�
�log2

tanh2n r

cosh2 r

�2 +

�1 − �2�n
sinh2 r

� . �6�

In the same way, we have Alice’s density matrix by tracing
over Bob’s states; its entropy is given by

S��A� = − ��2 log2 �2 + �1 − �2�log2�1 − �2�� . �7�

We draw the behaviors of the mutual information I��AB� ver-
sus r for different � in Fig. 2. For vanishing acceleration, the
initial mutual information is Ibi=−2��2 log2 �2+ �1
−�2�log2�1−�2��. In the range 0
 ����1 /�2 the larger �,
the stronger Ibi; but in the range 1 /�2� ���
1 the larger �,
the weaker Ibi. As the acceleration increases, the mutual in-
formation becomes smaller. It is interesting to note that, ex-
cept for the maximally entangled state, the same initial mu-
tual information for � and �1−�2 will be degraded along
two different trajectories. However, in the infinite-
acceleration limit, the mutual information converges to the
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FIG. 1. �Color online� Logarithmic negativity of the bosonic
modes versus r for different �.
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FIG. 2. �Color online� Mutual information of the bosonic modes
versus r for different �.
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same value again, i.e., Ibf =−��2 log2 �2+ �1−�2�log2�1
−�2��, which equals just half of Ibi. Obviously if Ibi is higher,
it is degraded to a higher degree in this limit. Since the
distillable entanglement in the infinite-acceleration limit is
zero, it is safe to say that the total correlations consist of
classical correlations plus bound entanglement in this limit.

Fermionic entanglement. With the single-mode approxi-
mation used by Alsing et al., the fermionic Minkowski
vacuum can be written as �7�

�0�M = cos r�0�I�0�II + sin r�1�I�1�II, �8�

and the only excited state is given by

�1�M = �1�I�0�II, �9�

where cos r= �1+e−2�c/a�−1/2 and the acceleration parameter
r is in the range 0�r�� /4 for 0�a�� in this case. Using
Eqs. �8� and �9� for the Minkowski particle states �0k�M and
�1k�M and tracing over the modes in region II, we get

�AB = �1 − �2��01�	01� + ���1 − �2� cos r��01�	10� + �10�

�	01�� + �2�cos2 r�10�	10� + sin2 r�11�	11�� , �10�

with �mn�= �m�A
M�n�BI. The partial transpose criterion pro-

vides a necessary and sufficient condition for entanglement
in a mixed state of two qubits �11�: if at least one eigenvalue
of the partial transpose is negative, the density matrix is en-
tangled. Interchanging Alice’s qubits, we obtain an eigen-
value of the partial transpose �AB

TA ,

�− =
1

2
��2 sin2 r − ��4 sin4 r + 4�2�1 − �2�cos2 r� ,

which is always negative for 0�r�� /4. Thus, the state is
always entangled for any uniform acceleration of Bob. The
logarithmic negativity is expressed as

N��AB� = log2�1 − �2 sin2 r + ��4 sin4 r + 4�2�1 − �2�cos2 r� .

For vanishing acceleration �r=0�, N��AB�=log2�1
+2����1−�2�. For finite acceleration, the entanglement is de-
graded by the Unruh effect just as shown in Fig. 3. We find
that in the range 0
 ����1 /�2, for larger �, the initial en-
tanglement is higher, but it is not always degraded to a
higher degree. It should be noted that for 1 /2
 ���
1 /�2
the final entanglement of the initial state is higher than that
of the maximally entangled state, i.e., log2�3 /2��0.585, and

for ���=��4−�2� /7 the maximal final entanglement is
log2��5+4�2� /7��0.606. In the range 1 /�2� ���
1, the
larger �, the weaker the initial entanglement and the lower
the final entanglement. Unlike the behaviors of the bosonic
case, except for the maximally entangled state, the same ini-
tial entanglement of the fermionic modes for � and �1−�2

will be degraded along two different trajectories and asymp-
totically reach two different nonvanishing minimum values
in the infinite-acceleration limit �r=� /4� due to the coupling
of � and the trigonometric functions related to r. In
the infinite-acceleration limit N��AB�=log2�1−�2 /2
+ ����2−7�2 /4��0, which means that the state is always
entangled. This is in strong contrast to the bosonic case and
shows that the fermionic system can be used as a resource
for performing certain quantum-information-processing
tasks.

As for the bosonic case, we go through the same process
again and get the mutual information for these fermionic
modes,

I��AB� = �1 − �2 sin2 r�log2�1 − �2 sin2 r�

+ �2 sin2 r log2 �2 sin2 r − �1 − �2 cos2 r�log2�1

− �2 cos2 r� − �2 cos2 r log2 �2 cos2 r − �2 log2 �2

− �1 − �2�log2�1 − �2� , �11�

whose trajectories versus r for different � are shown by Fig.
4. For vanishing acceleration, the initial mutual information
is Ifi=−2��2 log2 �2+ �1−�2�log2�1−�2��, whose behaviors
are the same as those of Ibi for the bosonic modes. The mu-
tual information becomes smaller as the acceleration in-
creases, and again we surprisingly find that the same initial
mutual information for � and �1−�2 will be degraded along
two different trajectories except for the maximally entangled
state. In the infinite-acceleration limit the mutual information
converges to If f =−��2 log2 �2+ �1−�2�log2�1−�2��, which
is just half of Ifi. This behavior is reminiscent of that seen for
the bosonic case, so we conclude that

If =
1

2
Ii, �12�

which is independent of � and the type of field.
It should be noted that, if we set the initial entangled state

as
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FIG. 3. �Color online� Logarithmic negativity of the fermionic
modes versus r for different � �notice that �Nm

=��4−�2� /7�.
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FIG. 4. �Color online� Mutual information of the fermionic
modes versus r for different �.
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��sk� = ��0s�M�0k�M + �1 − �2�1s�M�1k�M , �13�

we will have the same behavior of the entanglement degra-
dation for the same � that is shown in Figs. 1–4.

Summarizing, the entanglement of the scalar and Dirac
fields in noninertial frames is degraded by the Unruh effect
as Bob’s rate of acceleration increases, but their behaviors of
the degradation of entanglement are different for the same
initial state parameter �. It is surprisingly found that the
same initial entanglement for � and �1−�2 will be degraded
along two different trajectories except for the maximally en-
tangled state, which just shows the inequivalence of the
quantization for a free field in Minkowski and Rindler coor-
dinates. In the infinite-acceleration limit, which can be ap-
plied to the case of Alice falling into a black hole while Bob
barely escapes, the state does not have distillable entangle-
ment for any � for the scalar field but always remains en-

tangled to a degree that is dependent on � for the Dirac field.
It should be noted that, for ���=��4−�2� /7, we will have the
maximal final entanglement for the fermionic state in this
limit. Further analysis shows that, with increasing accelera-
tion parameter r, the mutual information is degraded to a
nonvanishing minimum value which is dependent on � for
these two fields. However, it is interesting to note that the
mutual information in the infinite-acceleration limit equals
just half of the initial mutual information, independently of �
and the type of field.

This work was supported by the National Natural Science
Foundation of China under Grant No. 10675045; the
FANEDD under Grant No. 200317; the Hunan Provincial
Natural Science Foundation of China under Grant No.
07A0128; and the construct program of key disciplines in
Hunan Province.

�1� A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 �2004�; D.
Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu,
Phys. Rev. Lett. 80, 1121 �1998�; J. W. Pan, C. Simon, C.
Brukner, and A. Zeilinger, Nature �London� 410, 1067 �2001�;
S. J. van Enk and T. Rudolph, Quantum Inf. Comput. 3, 423
�2003�.

�2� D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of
Quantum Information �Springer-Verlag, Berlin, 2000�.

�3� L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys. Rev.
D 34, 373 �1986�; C. Callan and F. Wilzcek, Phys. Lett. B
333, 55 �1994�.

�4� S. W. Hawking, Commun. Math. Phys. 43, 199 �1975�; Phys.
Rev. D 14, 2460 �1976�; H. Terashima, ibid. 61, 104016
�2000�.

�5� A. Peres, P. F. Scudo, and D. R. Terno, Phys. Rev. Lett. 88,
230402 �2002�; R. M. Gingrich and C. Adami, ibid. 89,
270402 �2002�; P. M. Alsing and G. J. Milburn, ibid. 91,

180404 �2003�.
�6� I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95,

120404 �2005�.
�7� P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E.

Tessier, Phys. Rev. A 74, 032326 �2006�.
�8� P. C. W. Davies, J. Phys. A 8, 609 �1975�; W. G. Unruh, Phys.

Rev. D 14, 870 �1976�.
�9� R. M. Wald, General Relativity �University of Chicago Press,

Chicago, 1984�.
�10� N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved

Space �Cambridge University Press, New York, 1982�.
�11� A. Peres, Phys. Rev. Lett. 77, 1413 �1996�.
�12� G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 �2002�;

M. B. Plenio, Phys. Rev. Lett. 95, 090503 �2005�.
�13� R. S. Ingarden, A. Kossakowski, and M. Ohya, Information

Dynamics and Open Systems—Classical and Quantum Ap-
proach �Kluwer Academic Publishers, Dordrecht, 1997�.

BRIEF REPORTS PHYSICAL REVIEW A 77, 024302 �2008�

024302-4


