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We present a quantum-theoretical treatment of biphoton generation in single-resonant type-II parametric
down-conversion. The nonlinear medium is continuously pumped and is placed inside a cavity which is
resonant for the signal field, but nonresonant for the idler deflected by an intracavity polarizing beam splitter.
The intensity of the classical pump is assumed to be sufficiently low in order to yield a biphoton production
rate that is small compared to the cavity loss rate. Explicit expressions are derived for the rate of biphoton
generation and for the biphoton wave function. The output spectra of the signal and idler field are determined,
as well as the second-order signal-idler cross-correlation function which is shown to be asymmetric with
respect to the time delay. Due to frequency entanglement in the signal-idler photon pair, the idler spectrum is
found to reveal the longitudinal mode structure of the cavity, even though the idler field is not resonant.

DOI: 10.1103/PhysRevA.77.023826 PACS number�s�: 42.65.Lm, 42.50.Ar, 03.67.�a

I. INTRODUCTION

In parametric down-conversion, a pump photon of fre-
quency �p incident on a medium with a second-order non-
linear susceptibility � is split into two photons with lower
frequency �1�. Spontaneous parametric down conversion pro-
duces photon pairs that can be entangled in many degrees of
freedom �2�. The resulting two-photon state, consisting of a
signal photon at frequency �s and an idler photon at fre-
quency �i=�p−�s, is often called a biphoton. Upon postse-
lection on the idler photons, the process provides a source of
heralded single photons which represent the principal re-
source in many quantum information processing protocols
like quantum cryptography �3–5� or linear optics quantum
computation �6�. Quantum networks have been proposed
�7,8� that rely on stationary atoms or ions as information
processing nodes and on single photons to transmit informa-
tion via optical fibers. First building blocks of this scheme
have already been realized �9,10�. For an efficient atom-
photon coupling, the photon bandwidth has to match the
linewidth of the atomic transition which is by orders of mag-
nitude smaller than the bandwidth of the photons emitted in
spontaneous parametric down-conversion.

In order to reduce the photon bandwidth, cavity-enhanced
parametric down-conversion can be applied. A bright source
of heralded narrow-band single photons was experimentally
realized �11� using a double-resonant optical parametric os-
cillator �OPO�. The nonlinear crystal was placed inside a
cavity resonant for both the signal and the idler field, and in
the output a single narrow-band longitudinal signal mode
was selected with an external frequency filter. Clearly, to
conditionally achieve single-photon generation, the OPO has
to be operated in the regime far below threshold where the
production rate of down-converted photons is small com-
pared to the loss rate of the cavity. A number of preceding
experiments for biphoton generation in a double-resonant
OPO far below threshold have been performed �12–17�, and
the first theoretical description was given in Ref. �13�. Re-
cently, the theory of the double-resonant OPO has been ex-
tended by analyzing the conditionally prepared single-photon

state �18� and by providing a multimode treatment which is
valid for both pulsed and stationary pump fields �19�.

To ensure reliable operation of a quantum network, con-
tinuous photon emission over a long period of time is essen-
tial. For this purpose, an active stabilization of the OPO is
necessary which proves to be a complicated task in the
double-resonant case while it is easier to achieve for a single-
resonant cavity. Continuous biphoton generation in a single-
resonant OPO far below threshold has recently been demon-
strated in our group �20� using a setup where only the signal
mode experiences resonance enhancement in the cavity
while the orthogonally polarized idler mode is nonresonant
due to deflection by an intracavity polarizing beam splitter.
Additional passive filtering with the help of an external cav-
ity can select a single longitudinal mode and will thus enable
the generation of narrow-band single photons.

To our knowledge, a theoretical treatment of the single-
resonant OPO far below threshold has not been performed so
far. The present paper aims to fill this gap. Based on the
concepts of the pioneering theoretical studies of spontaneous
parametric down-conversion �21,22�, we provide the theoret-
ical background for our experimental results �20�. Different
from the approaches used for the theoretical description of
the double-resonant OPO �13,18,19�, free-field quantization
of the idler field is inevitable for our scheme.

This paper is organized as follows. In Sec. II, the basic
equations for describing the nonlinear interaction between
the quantized signal and idler fields are provided. The bipho-
ton production rate and the biphoton wave functions are de-
rived in Sec. III by applying the standard perturbative treat-
ment in the Schrödinger picture �1�. The results are used in
Sec. IV to derive the spectral properties of the emitted radia-
tion and to study the second-order signal-idler cross-
correlation function. Section V concludes the paper by estab-
lishing the connection to real experimental situations.

II. BASIC EQUATIONS

A. Interaction Hamiltonian

We consider type-II parametric down-conversion in a
nonlinear crystal of length l that is pumped by a monochro-
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matic linearly polarized classical field of frequency �P. The
crystal is assumed to be placed inside a cavity which is reso-
nant for the signal field, but not for the idler field, polarized
orthogonal to the signal. Figure 1 shows a schematic picture
of the corresponding experimental setup �20�. The central
frequencies �S and �I of the signal and idler field depend on
the properties of the birefringent nonlinear crystal and are
determined by energy and momentum conservation known
as phase-matching �1�:

�P = �S + �I, �2.1�

k�p��P� = k�s��S� + k�i��I� . �2.2�

Here, k�p, k�s, and k�i are the wave vectors of the pump, signal,
and idler waves which are collinear in the considered setup,
with the signal leaving the cavity in a positive x direction.
The standing-wave fields of the pump and the signal inside
the cavity are composed of two components, propagating in
a negative and positive x direction, respectively. Because of
the phase-matching conditions, only those components con-
tribute to the parametric interaction that have the same
propagation direction as the idler wave. Neglecting the vec-
tor notation of the fields, the positive-frequency part of the
electric field in the relevant component of the classical pump
inside the crystal can be written as

EP,cr�x,t� = EPei�kp��P�x−�Pt�. �2.3�

The weak signal and idler fields inside the crystal are de-
scribed by the operators ES,cr

�+� =ES,cr
�−�† and EI,cr

�+� =EI,cr
�−�†, respec-

tively, denoting the positive-frequency part of their copropa-
gating field components. The interaction Hamiltonian can be
written in the simplified form

Hint =
�

2l
�

−l

0

dx�EP,crES,cr
�−� EI,cr

�−� + EP,cr
� ES,cr

�+� EI,cr
�+� � , �2.4�

where the second-order nonlinear susceptibility � is
frequency-dependent �1�. Before utilizing Eq. �2.4�, we need
to find explicit expressions for the operators ES,cr

�+� and EI,cr
�+� .

B. Free-field operators

For later use, we start by providing the operators for the
signal and idler fields in free space. The positive-frequency

electric field operator of a wave with transverse cross-section
A propagating freely in the x direction is given by E�+��x , t�
=limL→� � j=0

� � �� j

2�0LAaje
i�j�x/c−t� with � j =2�jc /L, where L is

the quantization length and aj denotes the photon annihila-
tion operator of mode j. Let us consider the signal field and
introduce the frequency difference � j =� j −�S. Using 	�
=2�c /L, the transition to the continuum limit is performed
via the replacement � jaj¯→ �	��−1/2�−�S

� d�a��S+��¯,
where the continuous field operators a��� have the dimen-
sion s1/2. Since the bandwidth of the signal is small com-
pared to its central frequency �S, the integration interval can
be extended to −�, and we arrive at the approximate operator
representation

ES
�+��x,t� =� ��S

2�0cA
�

−�

� d�

�2�
a��S + ��ei��S+���x/c−t�,

�2.5�

where �23�

�a��1�,a†��2�� = 
��1 − �2� . �2.6�

Similarly, the corresponding operator for the idler field in
free space is given by

EI
�+��x,t� =� ��I

2�0cA
�

−�

� d�

�2�
b��I + ��ei��I+���x/c−t�,

�2.7�

where

�b��1�,b†��2�� = 
��1 − �2� . �2.8�

Since in type-II parametric down-conversion signal and idler
photons are polarized orthogonally, we have

�a��1�,b†��2�� = 0. �2.9�

C. Field operators inside the crystal

We now turn to the fields inside the crystal. If the nonlin-
ear interaction is small, we do not need to consider the com-
plicated problem of field quantization in a nonlinear medium,
but we can represent the field operators inside the crystal by
adapting the corresponding expressions for the free-field op-
erators in order to account for the presence of a lossless
dispersive medium �1�. In accordance with Ref. �24�, the
operator for the positive-frequency part of the idler field in-
side the crystal then takes the approximate form

EI,cr
�+� �x,t� =� ��I

2�0cAnI
�

−�

� d�

�2�
b��I + ��ei�kI���x−��I+��t�,

�2.10�

where we introduced the wave vector at frequency �I+�,

kI��� =
�I + �

c
ni��I + �� . �2.11�

Here, the replacements �0→�0ni
2 and c→c /ni have been per-

formed where ni is the refractive index of the idler wave and
nI=ni��I�.
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FIG. 1. �Color online� Scheme of the considered experiment.
The cavity acts as a one-sided resonator for the signal field, while
the idler field is nonresonant due to deflection at an intracavity
polarizing beam splitter. The signal-idler cross-correlation function
is determined by delayed coincidence detection.
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To describe the signal field, we have to take the presence
of the resonator into account. Let us first assume a lossless
resonator completely filled with the nonlinear medium. The
quantization length of the field is then equal to the crystal
length l. When ns denotes the refractive index of the signal,
the adapted resonator eigenfrequencies characterizing the
longitudinal modes can be written as

�m =
�m0 + m��c

ns��m�l
with m0 =

�SnSl

�c
, �2.12�

where nS=ns��S�, m=0, �1, �2, . . . and m0� 	m	. Since the
frequency difference between adjacent modes is small com-
pared to the total spectral width of the signal, as will become
obvious in Sec. IV, we can assume without lack of generality
that �S coincides with the frequency of a longitudinal mode
and m0 is an integer, i.e., that the cavity is tuned to reso-
nance. Using the Taylor expansion 	ns��m�=nS+ ��m

−�S�
�ns

�� 	�=�S
, we find from Eq. �2.12� after minor algebra

that

�m 
 �S + m
�vg,S

l
� �S + m	�c, �2.13�

where

vg,S =
c

nS + �S� �ns

��
�

�=�S

�2.14�

is the group velocity of the signal at frequency �S. By adapt-
ing the empty-cavity field operator �23� with the replace-
ments �0→�0ns

2 and c→c /ns, the part of the standing-wave
signal field operator inside the crystal that corresponds to a
component traveling in a positive x direction in the lossless
resonator is found to be

ES,cr
�+� �x,t� =� ��S	�c

�0nScA�
�

m=−�

�

am
ei�m�x/cns��m�−t�

2
.

�2.15�

Here, we replaced the quantization length under the square-
root sign by the expression l=�vg,S /	�c
�c / �nS	�c�, fol-
lowing Eqs. �2.13� and �2.14�. Moreover, the summation has
been extended to m=−�, in analogy to the expanded integra-
tion range in Eq. �2.5�. The photon annihilation and creation
operators for mode m obey the usual commutation relation
�am ,am�

† �=
m,m�
.

When resonator losses are incorporated, the modes turn
into quasimodes and the annihilation operators am in Eq.
�2.15� become time-dependent. According to the input-
output formalism �23,25� for a one-sided cavity with loss
constant �, the damping of mode m is described by

ȧm�t� = −
�

2
am�t� + ��am

IN�t� . �2.16�

The operators am
IN�t� and am

OUT�t� characterize the ingoing and
outgoing photon flux at frequency �m and have the dimen-
sion s−1/2. They are related by the boundary condition

am
IN�t� = ��am�t� − am

OUT�t� . �2.17�

In order to determine am�t�, we use the representation

am
OUT�t� =

1
�2�

�
−�

�

d�a��m + ��e−i�t, �2.18�

where, in analogy to Eq. �2.6�,

�a��m + ��,a†��m�
+ ���� = 
m,m�


�� − ��� . �2.19�

Equation �2.19� implies that the quasimodes do not overlap
which is justified in the good-cavity limit

� � 	�c. �2.20�

After inserting Eq. �2.17� into Eq. �2.16�, we obtain by Fou-
rier transformation the solution

am�t� =
1

�2�
�

−�

�

d�a��m + ��
��

�
2 + i�

e−i�t, �2.21�

which has to be applied to Eq. �2.15�. The operator for the
relevant field component of the signal in the lossy cavity can
then be written as

ES,cr
�+� �x,t� =� ��S

2�0nScA

��	�c

2�
�

m=−�

� �
−�

�

d�
a��m + ��

�

2
+ i�


ei�kS,m���x−��m+��t�. �2.22�

Here,

kS,m��� =
�m + �

c
ns��m + �� �2.23�

is the wave vector corresponding to a traveling-wave com-
ponent of frequency �m+�. The denominator in the integral
in Eq. �2.22� describes radiation suppression for frequencies
� with 	�−�m	= 	�	�� while resonance enhancement oc-
curs for �
�m.

So far, we have assumed a resonator length Lr that coin-
cides with the crystal length l. If Lr� l, a rigorous quantiza-
tion of the signal field has to account for the exact position of
the crystal inside the resonator, but is beyond the scope of
the present paper. For the purposes of our approximative
treatment, however, it is sufficient to describe the signal field
inside the crystal by Eq. �2.22� with 	�c=	� and �m=�S
+m	�, where 	� is the effective free spectral range. The
latter can be represented as

	� =
2�

T
with T =

2l

vg,S
+

2�Lr − l�
c

, �2.24�

where T is the effective cavity round-trip time of a signal
photon.

III. RATE OF BIPHOTON GENERATION AND THE
BIPHOTON WAVE FUNCTION

With the expressions for the operators of the signal and
idler field at hand, we are now in the position to specify the
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interaction Hamiltonian and to derive a perturbative solution
of the Schrödinger equation. Making use of Eqs. �2.1�, �2.3�,
�2.10�, and �2.22�, as well as Eq. �2.13� with 	�c→	�, and
taking the frequency-dependence of the nonlinear suscepti-
bility into account, we find from Eq. �2.4�

Hint = i�� �
m=−�

� �
−�

�

d�
��

�

2
− i�

�
−�

�

d��Fm��,���


a†��m + ��b†��I + ���ei�m	�+�+���t + H.a.,

�3.1�

where we introduced the function

Fm��,��� =
���P;�m + �,�I + ���

���P;�S,�I�l
�

−l

0

dxei�kP−kS,m���−kI�����

�3.2�

and defined the constant

� =
− iEP

8��0cA
��S�I

nSnI
���P;�S,�I��	� . �3.3�

We are interested in the regime far below threshold where
the biphoton production rate � is much smaller than the cav-
ity damping rate,

� � � , �3.4�

and the mean photon number in the resonator is therefore
close to zero. Since the mean time interval between biphoton
emission events is large compared to the cavity damping
time, the resonator can be assumed to be empty before each
emission event. For this case, we can perform a perturbative
treatment of the nonlinear interaction, assuming that at the
initial time t=0, the combined signal-idler field is in the
vacuum state, described by 	0
= 	0
S � 	0
I. In the following
we rely on the ideas developed for the theory of spontaneous
parametric down-conversion �1,21,22�. By expanding the
formal solution of the time-dependent Schrödinger equation,
up to a normalization factor, the state vector describing the
combined signal-idler field at a time t=	t��−1 is found to

be 	��	t�
� 	0
+ 	�̃�	t�
 with

	�̃�	t�
 =
1

i�
�

0

	t

dtHint�t�	0
 . �3.5�

After substituting Eq. �3.1� into Eq. �3.5�, integration with
respect to t yields

	�̃�	t�
 = �
m=−�

� �
−�

�

d�
���

�

2
− i�

�
−�

�

d��Fm��,���	t


sinc�1

2
�m	� + � + ���	t�


ei/2�m	�+�+���	ta†��m + ��b†��I + ���	0
 ,

�3.6�

where we used the sinc-function defined as sinc�z�= sin z
z with

sinc�0�=1.

The nonnormalized vector 	�̃�	t�
 refers to the state of the
radiation field on the condition that a signal-idler photon pair
has been produced during the time interval 	t. Since this

condition applies with the probability ��̃�	t� 	 �̃�	t�
, the bi-
photon production rate is given by

� =
1

	t
��̃�	t�	�̃�	t�
 . �3.7�

Applying the commutation relations, Eqs. �2.8� and �2.19�,
we get from Eq. �3.6�

��̃�	t�	�̃�	t�
 = �	t�2 �
m=−�

� �
−�

�

d�
	�	2�

��

2
�2

+ �2


�
−�

�

d��	Fm��,���	2


sinc2�1

2
�m	� + � + ���	t� . �3.8�

Because of the properties of the sinc function, the integral is
dominated by the region m	�+�+���� /	t. If 	t is suf-
ficiently large and Fm�� ,��� is a slowly varying function of
�� in this region, the latter function can be replaced by its
value at ��=−m	�−� �1�. Using the relation
�−�

� sinc2�z�dz=�, the integration with respect to �� is then
readily performed, and we obtain

��̃�	t�	�̃�	t�
 = 2�	�	2	t �
m=−�

� �
−�

�

d�
�

��

2
�2

+ �2

	�m���	2,

�3.9�

where

�m��� = Fm��,− m	� − �� . �3.10�

For further evaluation, we need to specify the function
�m���. Using Eqs. �2.2�, �2.11�, and �2.23� with �m=�S

+m	�, Taylor expansion around the central frequencies �S
and �I yields

kP − kS,m��� − kI�− m	� − �� 
 �m	� + ��
�0

l
,

�3.11�

where we introduced the time constant

�0 =
l

c�nI + ��I
�ni

��
�

�=�I

− nS − ��S
�ns

��
�

�=�S

� .

�3.12�

The latter is equivalent to
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�0 =
l

vg,I
−

l

vg,S
�3.13�

and describes the difference between the transit times of a
signal and idler photon through a crystal of length l, origi-
nating from the difference in the signal and idler group ve-
locities, vg,S and vg,I, defined by Eq. �2.14� and by the cor-
responding equation for the idler wave, respectively. Since in
any real experiment 	vg,S−vg,I	�vg,S, it follows that
	�0	� �	��−1 where we used Eq. �2.24�. Hence we are con-
sidering a parameter range in this problem that is character-
ized by the combined inequality

� � � � 	� � 	�0	−1, �3.14�

where Eqs. �2.20� and �3.4� have been incorporated �27�.
Assuming a constant nonlinear susceptibility within the
bandwidth given by 	�0	−1, we find from Eqs. �3.10�, �3.11�,
and �3.2� that

�m��� 

1

l
�

−l

0

dxei�m	�+���0/lx. �3.15�

In order to determine the rate of biphoton generation, we
have to insert Eq. �3.15� into Eq. �3.9� where the integration
with respect to � is effectively restricted to the cavity band-
width � with ��	�. Hence we neglect � compared to
m	� in Eq. �3.15� for m�0. Moreover, Eq. �3.14� implies
	��0	�1 in the relevant interval 	�	�� and therefore
�0���
1. After integration with respect to x, we get the
approximation

�m��� 
 �m�0� = sinc�m	�
�0

2
�e−im	��0/2, �3.16�

which can be used in connection with Eqs. �3.9�, �3.7�, and
�3.3� to determine the rate of biphoton generation,

� = � �	Ep	
4�0cA

�2�S�I

nSnI
	� �

m=−�

�

sinc2�m	�
�0

2
� . �3.17�

Further simplification is possible if we transform the sum
into an integral with respect to z=m	��0 /2, introducing the
positive increment dz=	�	�0	 /2 where dz�1 because of
Eq. �3.14�. We then arrive at the expression

� 
 � �	Ep	
4�0cA

�2�S�I

nSnI

2�

	�0	
�3.18�

that does not depend on the properties of the resonator be-
cause the mean photon number in our cavity is approxi-
mately zero and, in addition, an associated idler mode exists
for each signal mode which meets the requirement for energy
conservation.

The presented perturbative treatment relies on the condi-

tion 	�0	�	t��−1 so that the wave function 	�̃�	t�
 in
Eq. �3.6� and the approximation leading to Eq. �3.9� are
valid simultaneously. The normalized vector 	�

= ��	t�−1/2	�̃�	t�
 can be denoted as the biphoton wave func-
tion since it represents the state of the radiation field on the
condition that exactly one signal-idler photon pair is present.

A more convenient representation of the biphoton wave
function is obtained if the sinc-function in Eq. �3.6� is re-
placed by 2�
�m	�+�+��� according to the standard pro-
cedure �22�. Mathematically, this corresponds to the limit
	t→�, implying �→0; then the integration with respect to
�� can be performed immediately. In analogy to the expres-
sion given in Ref. �22�, we obtain the biphoton wave func-
tion

	�
 = N �
m=−�

� �
−�

�

d�
�m���
�

2
− i�

a†��S + m	� + ��


b†��I − m	� − ��	0
 , �3.19�

where �m��� is given by Eq. �3.15� and N is a normaliza-
tion constant. The explicit value of N �26� is not important as
long as only normalized quantities characterizing the radia-
tion field are considered. Equation �3.19� clearly reveals the
frequency-entanglement between the signal and idler photon
and will serve as our basic equation to determine the prop-
erties of the emitted radiation.

IV. PROPERTIES OF THE EMITTED RADIATION

A. Output spectra of the signal and idler field

First we investigate the output spectra SS��� and SI��� of
the signal and idler field, defined as

SS/I��� =
1

2�
�

−�

�

d�GS/I
�1����ei��, �4.1�

where GS
�1���� and GI

�1���� are the first-order temporal corre-
lation functions of the respective fields outside the resonator.
In the following, it is convenient to use the Heisenberg pic-
ture and to start from the expression

GS/I
�1���� = ��	ES/I

�−��x,t�ES/I
�+��x,t + ��	�
 . �4.2�

Here, 	�
 is the time-independent biphoton wave function

given by Eq. �3.19� and ES
�+�=ES

�−�† and EI
�+�=EI

�−�†
denote the

positive-frequency parts of the time-dependent operators of
the electric fields in free space, given by Eqs. �2.5� and �2.7�.
Let us first determine the spectrum of the idler field. Consid-
ering

b��I + ���b†��I − m	� − ��	0
 = 
��� + m	� + ��	0
 ,

�4.3�

due to Eq. �2.8�, we obtain from Eqs. �2.7� and �3.19�

EI
�+��x,t�	�
 � �

m=−�

� �
−�

�

d�
�m���
�

2
− i�


ei��I−m	�−���x/c−t�a†��S + m	� + ��	0
 .

�4.4�

By taking the inner product of EI
�+��x , t+��	�
 and

EI
�+��x , t�	�
 and applying the commutation relation Eq.

�2.19�, we find
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GI
�1���� � �

m=−�

� �
−�

�

d�
	�m���	2

��

2
�2

+ �2

e−i��I−m	�−���. �4.5�

In analogy to the derivation of Eq. �3.17�, the dependence of
�m on � can be neglected within the relevant bandwidth
determined by �. After inserting Eq. �3.16� into Eq. �4.5�, the
Fourier transform yielding the idler spectrum according to
Eq. �4.1� is readily performed. The signal spectrum can be
determined in a completely analogous way, and we finally
arrive at the relation

SS/I��� � �
m=−�

�
sinc2�m	�

�0

2 �
��

2
�2

+ ��S/I − m	� − ��2

. �4.6�

Equation �4.6� indicates that both the signal and idler spec-
trum are composed of Lorentzians of half-width � centered
at frequencies �S/I−m	� with m=0, �1, . . . where the re-
spective spectral envelopes are determined by the sinc-
function in the nominator. From Fig. 2 it becomes obvious
that the frequency bandwidth of the signal and idler photons
is characterized by 	�0	−1. Their temporal uncertainty is thus
equal to the modulus of the time constant �0 introduced in
Eq. �3.12� and resulting from the phase-matching conditions.
Even though the idler wave is not resonant, the longitudinal
mode structure of the resonator is revealed in the idler spec-
trum due to the frequency entanglement between the signal
and idler photon which arises from the interaction underlying
the biphoton generation process.

B. Signal-idler cross-correlations

The coincidence rate for detecting an idler photon at time
t and a signal photon at time t+�, both at equal distance from
the end facet of the crystal, is proportional to the temporal
correlation function

GIS
�2���� = ��	EI

�−��x,t�ES
�−��x,t + ��ES

�+��x,t + ��EI
�+��x,t�	�
 ,

�4.7�

where again ES
�+� and EI

�+� are the free-field operators defined
by Eqs. �2.5� and �2.7�. With the explicit expression for the
biphoton wave function 	�
, given by Eq. �3.19�, we get

ES
�+��x,t + ��EI

�+��x,t�	�


� ei���S+�I��x/c−t�−��S� �
m=−�

�

e−im	���
−�

�

d�
�m���
�

2
− i�

e−i��	0
 ,

�4.8�

where Eq. �4.3� and the corresponding relation for the signal
modes

a��S + ���a†��S + m	� + ��	0
 = 
��� − m	� − ��	0
 ,

�4.9�

following from Eq. �2.6�, have been applied. According to
Eq. �4.7�, the correlation function GIS

�2���� is proportional to
the squared norm of the Hilbert vector on the right-hand side
of Eq. �4.8�. It can be determined from the explicit expres-
sion for �m���, given by Eq. �3.15�, together with the inte-
gral identities

−
1

�
�

−�

�

d�
e−i�t

�

2
− i�

= �0 if t � 0

1 if t = 0

2e−�/2t if t � 0.
� �4.10�

First, it is important to observe that

GIS
�2���� = 0 if � +

�0

2
� −

	�0	
2

, �4.11�

which is equivalent to ��−�0 for �0�0 and ��0 for �0
�0, respectively. Mathematically, Eq. �4.11� is due to the
expression �t=���− x

l �0� which results from inserting Eq.
�3.15� into Eq. �4.8� and is negative in the given case for any
x inside the crystal, i.e., for −l�x�0. Therefore the upper
line of Eq. �4.10� applies. Physically, the correlation function
vanishes because the arrival time of the signal photon in a
photon pair can precede the arrival time of the corresponding
idler photon at most by a time interval that is within the
temporal uncertainty interval 	�0	 inherent in the biphoton
generation process.

On the other hand, the presence of the resonator allows a
signal photon to be detected considerably later than the as-
sociated idler photon since the signal photon may bounce
back and forth between the resonator mirrors repeatedly be-
fore leaving the resonator. For time delays � outside the lim-
its of Eq. �4.11�, we approximate �m��� by Eq. �3.16� where
the integration with respect to x has been performed and the
dependence on � has been neglected. After inserting Eq.
�3.16� into Eq. �4.8�, the damping of the cavity gives rise to
a factor proportional to e−�/2� for GIS����0, which follows

FIG. 2. �Color online� Schematic plot of the normalized signal
and idler output spectra. The width of the Lorentzian peaks is de-
termined by the cavity damping rate �, and they are separated by
the free spectral range 	�=2� /T. The envelope, described by the
sinc-function in Eq. �4.6�, yields the total spectral width 2� / 	�0	.
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from the third line of Eq. �4.10� �28�. Since GIS
�2����= �ES

�+�


�x , t+��EI
�+��x , t�	�
�2, we finally get from Eq. �4.8� the ap-

proximate result

GIS
�2���� � e−��� �

m=−�

�

sinc�m	�
�0

2
�e−im	���+�0/2��2

if � +
�0

2
� −

	�0	
2

. �4.12�

According to Eq. �3.13�, the sign of �0 is determined by the
relation between the signal and idler group velocities, i.e.,
�0�0 for vg,S�vg,I and �0�0 for vg,S�vg,I. A numerical
evaluation reveals that Eq. �4.12� describes a decaying peri-
odic function with peaks of width 	�0	 centered at �= jT
−�0 /2, where j=0,1 , . . . and T=2� /	� is the cavity round-
trip time. The time shift −�0 /2 of the peaks arises since for
�0�0 the time needed by the center of the signal wave
packet to travel from the middle of the crystal to its end facet
is by the amount �0 /2 shorter than the time needed by the
center of the idler wave packet to cover the same distance
while the opposite holds for �0�0.

Transforming the sum in Eq. �4.12� into an integral,
the expression for the signal-idler cross-correlation function
can be further approximated, in analogy to the procedure
applied to derive Eq. �3.18�. Introducing z=m	��0 /2
and dz=	��0 /2, we find that GIS

�2�����e−��I2 with I
=�−�

� sinc�z�cos�az�dz since sinc�z� is an even function of z.
Because of the periodicity of the cosine function, the param-
eter a can be written as a=1+2��− �� �

T
�+1�T� /�0 where � �

T
�

denotes the largest integer that does not exceed � /T. Since
I=� for 	a	�1 and I=0 for 	a	�1, Eq. �4.12� takes a simple
form that can be combined with Eq. �4.11� to yield the com-
pact approximate representation

GIS
�2���� � �

j=0

� �e−�jT if �� − jT +
�0

2
� �

	�0	
2

0 else,
�

�4.13�

where j= 	� �
T
�	 �see Fig. 3�. Here, we took into account that

due to Eq. �3.14� cavity damping is negligible during the
time interval 	�0	, i.e., exp�−��0�
1.

V. DISCUSSION AND CONCLUSIONS

In a real experiment, the sharp peaks of the function
GIS

�2���� will be broadened due to the finite resolution time of
the detector setup. When the latter is taken into account by
performing the convolution with respect to a Gaussian func-
tion, Eq. �4.13� yields the time-averaged cross-correlation
function

GIS
�2���� � �

j=0

�

exp�− �jT −
4�jT − ��2

�	T�2 � , �5.1�

where 	T characterizes the effective resolution time and
where we have assumed 	T� 	�0	. The resulting averaged
function is plotted in Fig. 4 for two different values of 	T. A

second-order cross-correlation function showing the behav-
ior of the solid line in Fig. 4 has recently been measured in
our group �20�, and the results have been found to be in
excellent agreement with the predictions derived from Eqs.
�4.11� and �4.12�.

We still note that for spontaneous parametric down-
conversion in a double-resonant cavity the signal-idler cross-
correlation function has also been found to exhibit a comb-
like structure which is, however, symmetric with respect to
the time delay �14–16�. The effect has been explained by
applying the concept of mode locking to the frequency-
entangled biphoton state, pointing out that due to the large
coherence time of the pump, photon pairs with different fre-
quencies have a common phase and form a coherent super-
position �14�.

FIG. 3. Schematic representation of the normalized second-
order signal-idler cross-correlation function GIS

�2���� according to Eq.
�4.13� for �0�0 and � /	�=0.05. If the time delay � is equal to
zero or multiples of the cavity round-trip time T=2� /	�, the func-
tion exhibits pronounced peaks which decay with the cavity damp-
ing time �−1.

FIG. 4. Time-averaged second-order signal-idler cross-
correlation function GIS

�2���� for � /	�=0.05. The ratio between
the resolution time 	T and the cavity round-trip time T=2� /	� is
assumed as 	T /T=0.02 �dashed line� and 	T /T=1 �solid line�,
respectively.
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To summarize, we performed a theoretical investigation
of biphoton generation by spontaneous parametric down-
conversion in a single-resonant OPO far below threshold. We
derived analytical expressions for the rate of biphoton gen-
eration, for the output spectra of the signal and idler fields, as
well as for the second order signal-idler cross-correlation
function. Our investigations provide the theoretical back-
ground for explaining the results of a recent experiment �20�,

where stable continuous operation of a single-resonant OPO
far below threshold has been demonstrated.
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