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We investigate the conditions for and properties of the complete tunneling of light through a composite
barrier made of impedance-mismatched metamaterial layers. It is shown that two kinds of complete tunneling
phenomena exist: phase-unmodulated and phase-modulated complete tunneling. The local surface modes
formed near the interfaces between the metamaterial barrier layers play key roles in complete tunneling. Using
the terminology of coupled-mode theory, phase-unmodulated complete tunneling occurs through successive
mode couplings: from the incident light to the local surface mode and then to the other local surface mode and
finally to the light mode in the transmission layer. Phase-modulated complete tunneling results from the
complete transfer of the incident optical power to the transmission layer through the direct mediation of the
symmetrically and antisymmetrically coupled supermodes of the local surface modes.
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I. INTRODUCTION

Artificially structured metamaterials have opened a new
era in electromagnetism, and their unprecedented design
flexibility has enabled us to achieve new electromagnetic
devices unimaginable in conventional positive index media,
such as superlenses �1�, phase-compensated microcavities
�2�, photonic-band-gap structures having an average index of
zero �3�, and the cloak of invisibility �4–6�, to name a few.
Tunneling and related characteristics of evanescent waves in
such metamaterials have attracted much attention over the
last decade �1,7–15� and have shown many interesting and
sometimes quite surprising features, one of which is so-
called complete tunneling or transparent propagation of light
�7,9,13–15�. We say complete tunneling occurs when the
transmission coefficient of light incident upon a tunneling
barrier becomes exactly 1, in which case the incident light
can tunnel through a very long distance without any phase
delay or loss of power �if the barrier layers are lossless�.
Complete tunneling could not be implemented with only
positive index media and thus provides a good example of
how previously unimaginable optical phenomena or func-
tions can be realized with the advent of metamaterials.

II. THEORETICAL FRAMEWORK

Let us consider the frustrated total internal reflection
�FTIR� structure shown in Fig. 1. The composite tunneling
barrier is assumed to be composed of multiple mutually
impedance-mismatched layers, with the nth layer having
relative permittivity �n, relative permeability �n, and length
dn. The left �incident� and right �transmission� high-index
layers surrounding the barrier are assumed to have �l ,�l and
�r ,�r, respectively. Here we will consider the case when the
number of barrier layers is 3.

The incident light �either the TE-mode E field �Ey� or the
TM-mode H field �Hy�� can be written as �inc=exp�iklx�

+r exp�−iklx�, where kl
2=k0

2�l�l cos2 �l and k0=2� /� �� be-
ing the wavelength of light in vacuum�. r denotes the reflec-
tion amplitude. In the transmission layer, we can write the
transmitted light as �trans= t exp�ikr�x−�k=1

3 dk�� where t is the
transmission amplitude and kr

2=k0
2��r�r−�l�l sin2 �l�

=k0
2�r�r cos2 �r. kl and kr are assumed to have positive and

negative values if the corresponding layers have positive and
negative refractive indices, respectively. The different signs
of kl and kr are due to the fact that the direction of the wave
vector �k� and that of the Poynting vector �S� are antiparallel
in negative index materials �13�. In the barrier, the assumed
solution is �n=An exp�−�n�x−�k=1

n−1dk��+Bn exp��n�x
−�k=1

n−1dk��, where �n
2=k0

2��l�l sin2 �l−�n�n�. We assume all
� j’s have positive values.

The solutions in the respective layers must meet appropri-
ate boundary conditions at every interface between layers.
The required conditions are the continuity of � and that of
�1 /����� /�x�, where � denotes the relative permeability �
and the relative permittivity � when the incident light is TE
and TM polarized, respectively �13,14�. Using the transfer
matrix formulation, we can arrange these continuity condi-
tions into the following compact form:
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FIG. 1. Tunneling of incident light through a composite barrier
made of impedance-mismatched layers.
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� t

0
� = P�1

r
� = R · M · L�1

r
� . �1�

where L and R link the incident light �1,r� to �1�A1 ,B1� and
�3�A3 ,B3� to the transmitted light �t�, respectively. M can be
written as

�A3

B3
� = M�A1

B1
� = �

n=1

2

Mn
n+1�A1

B1
� , �2�

where Mn
n+1 connects �n�An ,Bn� to �n+1�An+1 ,Bn+1�. Using

Eq. �1�, we can obtain the transmission and reflection ampli-
tudes as t=det�P� / P22 and r=−P21 / P22. The reflection and
transmission coefficients are given by R= 	r	2 and T=1−R.

III. CONDITIONS FOR COMPLETE TUNNELING

A. Derivation

If we set �1d1=�3d3=	 �see Sec. IV for the physical
meaning of this condition�, the actual transmission and re-
flection amplitudes can be written as �16�

t =
8i
r3kl�1�2�3

� + i�
, �3�

r =

 + i�

� + i�
, �4�

where

� = ��1 + 
12�2���2 + 
23�3��klkr − 
l1
r3�1�3�

�sinh�2	 + �2d2� + 2�
23�1�3 − 
12�2
2��klkr + 
l1
r3�1�3�

�sinh��2d2� + ��1 − 
12�2���2 − 
23�3��klkr − 
l1
r3�1�3�

�sinh�2	 − �2d2� , �5�

� = ��1 + 
12�2���2 + 
23�3��
r3kl�3 + 
l1kr�1�

�cosh�2	 + �2d2� + 2�2��1 − 
13�3��
r3kl�3 − 
l1kr�1�

�cosh��2d2� + ��1 − 
12�2���2 − 
23�3��
r3kl�3 + 
l1kr�1�

�cosh�2	 − �2d2� , �6�


 = ��1 + 
12�2���2 + 
23�3��klkr + 
l1
r3�1�3�

�sinh�2	 + �2d2� + 2�
23�1�3 − 
12�2
2��klkr − 
l1
r3�1�3�

�sinh��2d2� + ��1 − 
12�2���2 − 
23�3��klkr + 
l1
r3�1�3�

�sinh�2	 − �2d2� , �7�

� = ��1 + 
12�2���2 + 
23�3��
r3kl�3 − 
l1kr�1�

�cosh�2	 + �2d2� + 2�2��1 − 
13�3��
r3kl�3 + 
l1kr�1�

�cosh��2d2� + ��1 − 
12�2���2 − 
23�3��
r3kl�3 − 
l1kr�1�

�cosh�2	 − �2d2� . �8�


lm is given by 
lm=�l /�m for TE-mode incident light and

lm=�l /�m for TM light. From Eqs. �7� and �8�, we can see
that if we can configure the FTIR structure so that �1

=
13�3 and kl=
lrkr, � vanishes and 
 becomes


 = �2/
lr
12��� cosh��2d2� + � sinh��2d2�� , �9�

where

� = 2
12�1�2�kl
2 + 
l1

2 �1
2�sinh�2	� , �10�

� = ��1
2 + 
12

2 �2
2��kl

2 + 
l1
2 �1

2�cosh�2	�

+ ��1
2 − 
12

2 �2
2��kl

2 − 
l1
2 �1

2� . �11�

If we can further meet the condition tanh��2d2�=−� /� or
exp�2�2d2�= ��−�� / ��+��, 
 becomes zero as well, and
finally complete tunneling can occur. Therefore, we can con-
clude that complete tunneling occurs when the following
conditions are satisfied:

�1d1 = �3d3 = 	 , �12�

kl = 
lrkr, �13�

�1 = 
13�3, �14�

tanh��2d2� = −
�

�
or exp�2�2d2� = �� − ��/�� + �� .

�15�

B. Some comments

We want to make a few remarks about the complete tun-
neling under the conditions of Eqs. �12�–�15�.

�1� For the realization of complete tunneling, 
12 must be
negative. Positive 
12 or positive � results in �−���+�,
which requires exp�2�2d2��1 or �2d2�0 because ��0
�17�. Since it is impossible to meet this requirement, we must
make 
12�0, i.e., we need at least one metamaterial layer for
complete tunneling. 
12�0 compels 
23 to be negative also
due to the condition 
13�0 �from Eq. �14��.

�2� The most distinct characteristic of complete tunneling
through impedance-mismatched layers compared to that
through impedance-matched layers is that it can occur only
at specific incident angles ��CT� which can simultaneously
satisfy Eqs. �12�–�15�. When the barrier is symmetric, Eqs.
�12� and �14�— are satisfied automatically �because 
13=1
and d1=d3� and do not impose any restrictions on the inci-
dent angles. However, if 
13�1, for example, there can be at
most one �CT, which is given from Eq. �14� as sin2 �CT
= ��1�1−
13

2 �3�3� / ��1−
13
2 ��l�l�. If this value meets other

conditions �Eqs. �12�, �13�, and �15�� as well, complete tun-
neling indeed occurs. However, if it does not, complete tun-
neling never occurs. Similarly, when the surrounding layers
are mutually impedance matched �which produces 
lr= �1�,
Eq. �13� does not confine the incidence angles. However, if

lr�1, complete tunneling can occur only at one �CT which
satisfies sin2 �CT= ��l�l−
lr

2 �r�r� / ��1−
lr
2 ��l�l� �18�. If this

value does not satisfy any one of Eqs. �12�, �14�, and �15�,
complete tunneling cannot take place.

�3� Equation �13� is an extended version of the Brewster
angle condition. That is, if we neglect the tunneling barrier,
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we have just one interface between the incidence and trans-
mission layers. In this situation, total transmission �zero re-
flection or complete power transfer� occurs only when Eq.
�13� is satisfied. Therefore, we can view Eq. �13� as an ef-
fective impedance-matching condition between the incidence
and transmission layers.

C. Phase-modulated and phase-unmodulated
complete tunneling

A specific solution of Eq. �14� is given as �1+
12�2=�2
+
23�3=0. In this case, � becomes zero in addition to � and

 while � does not �see Appendix A for proof�. This makes
t in Eq. �3� become exactly 1, and the tunneling does not
generate a phase delay. We will refer to this kind of complete
tunneling as phase-unmodulated complete tunneling. How-
ever, other solutions of Eq. �14� cause a nonzero phase delay
of ��=−�� /2−tan−1�� /��� /kl. We will refer to this mode as
phase-modulated complete tunneling. Therefore, in addition
to the effective impedance-matching condition between the
surrounding layers, we need the following conditions:

�1� for phase-modulated complete tunneling,

�1 = 
13�3 � − 
12�2, �16�

tanh��2d2� = −
�

�
, �17�

�1d1 = �3d3 = 	; �18�

�2� for phase-unmodulated complete tunneling �19�,

�1 + 
12�2 = �2 + 
23�3 = 0, �19�

�2d2 = 2�1d1 = 2�3d3. �20�

It is notable that what matters in the phase-unmodulated
complete tunneling are not the absolute lengths of barrier
layers but the ratios between them. If we scale all the lengths
of the barrier layers by a common factor, the complete tun-
neling characteristics will not change.

IV. CONSIDERATION OF THE CONDITIONS
FOR COMPLETE TUNNELING

A. Local surface modes in barrier layers and phase-modulated
complete tunneling

Let us set the lengths of the first and third barrier layers to
be sufficiently long �see Fig. 2�. If we consider the two re-
maining interfaces separately, we can see that local surface
modes �12 and �23 can be formed near the interfaces between
the barrier layers 1 and 2, and between the barrier layers 2
and 3, respectively �see Fig. 3�a��. They denote the guided
surface modes along the z axis with propagation constants of
�12

�0�=k0���1�1−
12
2 �2�2� / �1−
12

2 ��1/2 and �23
�0�=k0���2�2

−
23
2 �3�3� / �1−
23

2 ��1/2. It is notable that these local surface
modes are the same kind of modes as surface plasmon po-
lariton �SPP� waves �20�.

If we consider both interfaces or include the coupling ef-
fects between them �see Fig. 3�b��, we can show that the

guided mode �B
�0� having the propagation constant of �B

�0�

along the z axis becomes identical to the symmetrically and
antisymmetrically coupled supermodes of �12 and �23, i.e.,
�B

�0�=�s�a�
�0� = ��12��23� /
2 �see Appendix B for details�

when �1�=
13�3��−
12�2�, where �n�= ���B
�0��2−�n�nk0

2�1/2.
Their propagation constants will be denoted as �s

�0� and �a
�0�,

respectively, and their dispersion relation is given by
tanh��2�d2�=−2
12�1��2� / ���1��

2+
12
2 ��2��

2�. This is just the
condition given by Eq. �17� with 	→� and �n�=�n or �B

�0�

=�s�a�
�0� =k0


�l�l sin �l, which makes �1�=
13�3��−
12�2� equal

to Eq. �16�.
Therefore, what Eqs. �16� and �17� demand for phase-

modulated complete tunneling is that there must exist sym-
metrically or antisymmetrically coupled supermodes ��s�a��
and that the z directional component of the wave vector of
the incident light must be equal to their propagation con-
stants, i.e., �s�a�=k0


�l�l sin �l. The dispersion relation of

�s�a�, i.e., Eq. �17�, is different from that of �s�a�
�0� mentioned

above, because of the influence of the finite lengths of the
first and third barrier layers, and the presence of the inci-
dence and transmission layers. The propagation constant
�s�a� also becomes different from �s�a�

�0� for the same reason

�we will try to verify this argument numerically using per-
turbation theory in Sec. V� �21�.

z

2 2:A κ′−1 1: 0A κ′− → 3 3:A κ′−

x

1d 1 2d d+

2 2:B κ′+1 1:B κ′+ 3 3: 0B κ′+ →

2 (0) 2 2
0( ) [( ) ]n B n nkκ β ε µ′ = −

FIG. 2. Barrier layers after setting the lengths of the first and
third barrier layers to be sufficiently long.
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FIG. 3. �a� Local surface modes �12 and �23, and �b� their sym-
metrically and antisymmetrically coupled supermodes �s�a�

�0�

= ��12��23� /
2.
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The condition �s�a�=k0

�l�l sin �l is a kind of phase-

matching condition between the incident plane wave and the
supermodes in the finite barrier ��s�a�� so that the optical
power of the incident light can be completely transferred to
the supermodes. This power can be completely transferred to
the light mode in the transmission layer if the surrounding
layers are effectively impedance matched.

Therefore, we can conclude that phase-modulated com-
plete tunneling is a kind of successive mode-coupling phe-
nomenon: from the incident plane wave to the guided super-
modes in the barrier and then to the plane wave in the
transmission layer �see Fig. 4�a��. However, if the transfer
rates of optical power through these two mode couplings are
different, the incident optical power cannot be transferred
completely to the transmission layer. Therefore, we need Eq.
�18� for complete tunneling, which makes the two transfer
rates identical, so that the optical power transfers smoothly
and completely from the incident light to the light mode in
the transmission layer.

B. Phase-unmodulated complete tunneling

The dispersion relations of the local surface modes �12
and �23 can be written as �1�+
12�2�=0 and �2�+
23�3�=0,
where �1�2�� = ���12

�0��2−�1�2��1�2�k0
2�1/2 and �2�3�� = ���23

�0��2

−�2�3��2�3�k0
2�1/2. They become identical to Eq. �19� when

�1=�1�, �3=�3�, and �2=�2�=�2�, which can be rewritten as the
following simple equation: �12

�0�=�23
�0�=k0


�l�l sin �l. There-
fore, what Eq. �19� demands for phase-unmodulated com-
plete tunneling is that �1� the propagation constants of �12
and �23 are the same and �2� the z directional component of
the wave vector of the incident light must be equal to this
propagation constant �22�. This is also a kind of phase-
matching condition between the incident plane wave and the
local surface modes ��12 and �23�. Since �12

�0�=�23
�0�, the

power guided along the z axis in the form of �12 can be
completely transferred to �23, and vice versa. That is, phase-
unmodulated complete tunneling occurs through successive
mode couplings: from the incident plane wave to the local
surface mode ��12� and then to the other local surface mode
��23� and finally, if the surrounding layers are effectively
impedance matched, to the plane wave in the transmission
layer �see Fig. 4�b��.

As is the case in phase-modulated complete tunneling, if
the transfer rates of optical power through these three mode
couplings are different, the incident optical power cannot be
transferred to the transmission layer completely. Equation
�20� makes these transfer rates the same so that the optical
power transfers smoothly and completely from the incident
light to the light mode in the transmission layer.

V. NUMERICAL CALCULATION RESULTS

For a proof-of-principle example, we calculated the trans-
mission coefficients of incident light ��=1550 nm� through a
FTIR structure whose incidence and transmission layers are
composed of glass ��l=�r=2.25, �l=�r=1� and where air
��1=1, �1=1� acts as the first layer of the composite tunnel-
ing barrier. If we choose the material parameters as �2=
−3.33, �2=1 and �3=1, �3=1, and set d2=0.2� and d1=d3
=0.4�, phase-unmodulated complete tunneling cannot take
place because we cannot satisfy Eqs. �19� and �20�: d2 /d1
=2�1 /�2=−2
12. We show the calculated transmission coef-
ficients �for TM-mode incident light� in Fig. 5; from them we
obtained two incident angles at which complete tunneling
occurs: �CT,1=51.35° and �CT,2=57.30°. Please note that
more than one �CT is available since the barrier was assumed
to be symmetric and the surrounding layers were impedance
matched. Both �CT,1 and �CT,2 correspond to phase-
modulated complete tunneling, i.e., �CT,1 and �CT,2 are re-
lated to the symmetrically and antisymmetrically coupled su-
permodes �s and �a, respectively �see Fig. 6, where we show
the H-field �Hy� intensity distributions when complete tun-
neling occurs�. The phase delays were −0.125 and 0.610 �m,
respectively. We note that the tunneling characteristics are
highly sensitive to the incident direction of the light, a fea-
ture that can be applied to incident-direction-selective trans-
mission filters.

To see in more detail whether �CT,1 and �CT,2 have their
origin in the symmetrically and antisymmetrically coupled
supermodes ��s�a��, we calculated the transmission coeffi-
cients when only the thickness of the first and third barrier

① ②( )s aψ(a)

23ϕ12ϕ
①

②

③(b)

FIG. 4. Successive mode couplings in �a� the phase-modulated
and �b� the phase-unmodulated complete tunneling phenomena.
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FIG. 5. Transmission coefficients of the TM incident light
through a FTIR structure whose incident and transmission layers
are made of glass and air acts as the first layer of the composite
tunneling barrier, �2=−3.33, �2=1, and �3=1, �3=1, and d2

=0.2�.
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layers was varied and plotted the derived values of �CT in
Fig. 7 as triangles and squares �the transmission coefficients
when d1=d3=0.5� are plotted in Fig. 5�. In addition, we also
show the incident angles at which the z directional wave
vector of the incident light is equal to �s�a�, calculated using
perturbation theory �see solid lines� �20�. They are very simi-
lar, and nearly identical when the first and third barrier layers
are relatively thick, which demonstrates clearly that the
phase-modulated complete tunneling has its origin in �s�a�.

From Fig. 7, we can see that, when d2=� /3, phase-
unmodulated complete tunneling occurs, since we can meet
the condition d2 /d1=−2
12=0.6. It must be mentioned that
there is another way to interpret phase-unmodulated com-
plete tunneling. It can be regarded as a special case of phase-
modulated complete tunneling. It occurs through two se-
quential mode couplings: from the incident plane wave to the
supermodes in the finite barrier ��s�a�, not �s�a�

�0� � and then to

the light mode in the transmission layer, when the propaga-
tion constants �s�a� of such supermodes �including the effects
of the finite lengths of the first and third barrier layers� be-
come equal to �12

�0� and �23
�0�, which are the propagation con-

stants of the local surface modes �12 and �23 determined by

neglecting multi-interface coupling effects as well as the in-
fluence of the finite lengths of the first and third barrier lay-
ers.

VI. SUMMARY

In this paper, the conditions for and properties of the com-
plete tunneling of light through impedance-mismatched bar-
rier layers were investigated. We showed that there are two
kinds of complete tunneling, phase-unmodulated and phase-
modulated complete tunneling, whose origins are related to
the local surface modes formed near the interfaces between
metamaterial barrier layers and their coupled supermodes,
respectively. While phase-unmodulated complete tunneling
occurs through successive mode couplings, from the incident
light to the local surface mode and then to the other local
surface mode and finally to the light mode in the transmis-
sion layer, phase-modulated complete tunneling involves two
mode couplings, from the incident plane wave to the plane
wave in the transmission layer through the direct mediation
of the supermodes of the local surface modes.
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APPENDIX A

Under the conditions of Eqs. �12�–�15�, � and � reduce to

� = �2/
lr
12�cosh��2d2���� − ��/����� , �A1�

� = �4/
lr
12�
l1kl�1 cosh��2d2���� − ��/����� , �A2�

where

�� = 2
12�1�2�kl
2 − 
l1

2 �1
2�sinh�2	� , �A3�

�� = ��1
2 + 
12

2 �2
2��kl

2 − 
l1
2 �1

2�cosh�2	�

+ ��1
2 − 
12

2 �2
2��kl

2 + 
l1
2 �1

2� , �A4�

�� = 2
12�1�2 cosh�2	� , �A5�

�� = ��1
2 + 
12

2 �2
2�sinh�2	� . �A6�

If we look for the condition for �=0, i.e., ���=���, we
obtain �1

2=
12
2 �2

2. Since 
12 must be negative for complete
tunneling as was mentioned in the main text, we finally have
�1+
12�2=0. That is, if �1+
12�2=0, � becomes zero. Then
what about �? If we calculate ���−���, it becomes

��� − ��� = 2
12�1�2���1
2 + 
12

2 �2
2��kl

2 + 
l1
2 �1

2� + ��1
2 − 
12

2 �2
2�

��kl
2 − 
l1

2 �1
2�cosh�2	�� . �A7�

Therefore, we can be sure that � does not vanish when �1
+
12�2=0.
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FIG. 6. H-field intensity distributions when complete tunneling
occurs.
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FIG. 7. Values of the incident angle ��CT� at which complete
tunneling occurs �triangles and squares�. Dotted lines show the in-
cident angles at which the z directional wave vector of the incident
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�0� and �s�a�
�0� . Solid lines show the incident

angles at which the z directional wave vector of the incident light is
equal to �s�a� calculated using perturbation theory, Eq. �B14�.
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APPENDIX B

If we consider the layers shown in Fig. 2, we can obtain
the dispersion relation of the guided mode �B

�0� in the barrier
having the propagation constant �B

�0� as

−
�2� − 
23�3�

�1� + 
12�2�
exp�− �2�d2� =

�2� + 
23�3�

�1� − 
12�2�
exp��2�d2� ,

�B1�

when �1��
12�2��0 and �2��
23�3��0. We can assume �1�
−
12�2��0 and �2�−
23�3��0 since we are interested only in
the case when 
12�0. If �1�=
13�3��−
12�2�, Eq. �B1� be-
comes

exp��2�d2� = �
�1� − 
12�2�

�1� + 
12�2�
, �B2�

and reduces further to coth��2�d2 /2�=−�1� /
12�2� and
tanh��2�d2 /2�=−�1� /
12�2�.

The mode field in the second barrier layer can be written
as

�2 = A2 exp�− �2��x − d1�� + B2� exp��2��x − d1 − d2�� ,

�B3�

where B2�=B2 exp��2�d2�. From the continuity conditions at
x=d1, we have

B1 exp��1�d1� = A2 + B2� exp�− �2�d2� , �B4�

�1�B1 exp��1�d1� = 
12�2��− A2 + B2� exp�− �2�d2�� , �B5�

and from these we can obtain

B2�/A2 = −
�1� + 
12�2�

�1� − 
12�2�
exp��2�d2� . �B6�

We can also get Eq. �B6� from the continuity conditions at
x=d1+d2. If �1�=
13�3��−
12�2� �which results in �2�+
23�3�
�0�, we have B2� /A2= �1. Since A2 and B2� express the con-
tributions of local surface modes �12 and �23 to the mode
field distribution in layer 2, respectively, we can see that the
contributions of �12 and �23 are either in phase or out of
phase, while their magnitudes are always the same in the
barrier layer 2. Therefore, we can rewrite Eq. �B3� as

�2 = A2�exp�− �2��x − d1�� � exp��2��x − d1 − d2���

=
1

2

��12 � �23� , �B7�

which clearly demonstrates that symmetric and antisymmet-
ric supermodes of �12 and �23 are formed when �1�=
13�3�
and �1�+
12�2��0 �or �2�+
23�3��0�.
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�5�–�8�

� = ��1 + 
12�2���2 + 
23�3��klkr − 
l1
r3�1�3�sinh�2	 + �3d3�

+ 2��1 − 
12�2��klkr�2 + 
l1
23
r3�1�3
2�sinh��3d3�

− ��1 + 
12�2���2 − 
23�3��klkr + 
l1
r3�1�3�

�sinh�2	 − �3d3� , �B8�

� = ��1 + 
12�2���2 + 
23�3��
r3klk3 + 
l1kr�1�cosh�2	 + �3d3�

+ 2�3��1 − 
12�2��
r3kl�2 − 
l1
23kr�1�cosh��3d3�

+ ��1 + 
12�2���2 − 
23�3��
r3kl�3 − 
l1kr�1�

�cosh�2	 − �3d3� , �B9�


 = ��1 + 
12�2���2 + 
23�3��klkr + 
l1
r3�1�3�sinh�2	 + �3d3�

+ 2��1 − 
12�2��klkr�2 − 
l1
23
r3�1�3
2�sinh��3d3�

− ��1 + 
12�2���2 − 
23�3��klkr − 
l1
r3�1�3�

�sinh�2	 − �3d3� , �B10�

� = ��1 + 
12�2���2 + 
23�3��
r3kl�3 − 
l1kr�1�cosh�2	 + �3d3�

+ 2�3��1 − 
12�2��
r3kl�2 + 
l1
23kr�1�cosh��3d3�

+ ��1 + 
12�2���2 − 
23�3��
r3kl�3 + 
l1kr�1�

�cosh�2	 − �3d3� , �B11�

and we cannot find any conditions for complete tunneling. A
similar conclusion to this can be drawn when �2d2=�3d3=	 is
assumed.

�17� Since cosh�2	��1, we have �� ��1
2+
12

2 �2
2��kl

2+
l1
2 �1

2�
+ ��1

2−
12
2 �2

2��kl
2−
l1

2 �1
2��0.
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�18� For �CT to exist, the relative permittivity and relative perme-
ability values of the surrounding layers must satisfy the fol-
lowing inequalities:

�l
2 � ��r/�l��r�l � �r

2 or �r
2 � ��r/�l��r�l

� �l
2 �TE mode� , �B12�

�l
2 � ��r/�l��r�l � �r

2 or �r
2 � ��r/�l��r�l

� �l
2 �TM mode� . �B13�

�19� If �1+
12�2=�2+
23�3=0, Eqs. �10� and �11� become �
=−2�1

2�kl
2+
l1

2 �1
2�sinh�2	� and �=2�1

2�kl
2+
l1

2 �1
2�cosh�2	�, re-

spectively, and Eq. �15� reduces to �2d2=2	.
�20� If we set �=1 in all layers, the propagation constants of the

TM local surface modes reduce to �12
�0�=k0��1�2 / ��1+�2��1/2

and �23
�0�=k0��2�3 / ��2+�3��1/2, which are identical to the

propagation constants of the SPP waves, neglecting the loss in
the metals.

�21� If we use perturbation theory, �s�a� can be calculated from

��s�a��2 = ��s�a�
�0� �2 + k0

2
�
−�

0

��l�l − �1�1�	�s�a�
�0� 	2dx

+�
d1+d2+d3

�

��r�r − �3�3�	�s�a�
�0� 	2dx� . �B14�

Therefore, we can see that, if �l�l��1�1 and �r�r��3�3, we
have �s�a���s�a�

�0� .
�22� We must note that, if the barrier is symmetric, i.e., 
13=1, �1

=�3, and d1=d3, Eq. �19� can be easily satisfied. However, this
does not mean that Eq. �19� cannot be satisfied if the barrier is
not symmetric. The barrier must be symmetric when either the
permeability or the permittivity has a symmetric distribution
through the barrier layers �including a constant one�.
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