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We examine theoretically and experimentally an imaging scheme that uses the transverse intensity profile of
the scattered light to reconstruct the locations of absorbers embedded in a turbid medium. This method is based
on an a priori knowledge of the scattered light patterns associated with a single absorber that is located at
various positions inside the medium. We discuss the range of validity of this method, and its sensitivity with
regard to noise, and propose an algorithm to improve its accuracy.
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I. INTRODUCTION

In the past decade great progress has been reported for
using the properties of the scattered waves to reconstruct the
space dependent properties of materials �1–9�. Applications
include a wide range of studies from stellar atmospheres in
astrophysics �10�, identification of certain geological layers
in seismology �11�, new ways to see through murky water in
oceanography �12�, identifying the health of plant canopies
in environmental science �13�, to recovering cancerous tu-
mors in bio-optical medicine �6–9�. In most of these appli-
cations the forward problem of finding the properties of the
scattered wave for a material with a given spatially depen-
dent scattering or absorption is nontrivial and usually re-
quires approximations. The associated inverse procedure of
reconstructing the medium’s characteristics from the scat-
tered wave is typically even more difficult, sometimes result-
ing in ill-posed problems that should be avoided �14�.

In many imaging situations, the theoretical description is
based on the inversion of the Fredholm equation of the first
kind �15,16�. This type of integral equation can be difficult to
solve. For example, in bio-optical imaging the interaction
between the light and a biological tissue is described by the
Boltzmann equation. Here the optical properties of the tissue
are described by scattering and absorption coefficients that
depend on the position. The forward problem is typically
approximated by the diffusion equation. If the scattered light
associated with the spatial inhomogeneity is much weaker
than the scattered light of the background, the Born approxi-
mation �17–22� can be applied resulting in a linear depen-
dence between the scattering coefficient and the correspond-
ing scattered light. The resulting Fredholm equation is then
the starting point for various inversion algorithms. The typi-
cal goal in bio-optical imaging is to reconstruct the location
of an embedded object without any prior knowledge about
the scattering medium. However, some progress has been
reported recently on how to include some prior knowledge
obtained from other methods in order to improve the image
reconstruction �23,24�.

In this paper we will examine a less ambitious inversion
scheme. It requires a certain ab initio knowledge of the scat-
tered light for media that contain a single absorber at a
known position. This scheme permits the reconstruction of
the positions of entire groups of absorbers in regimes where
the Born approximation could become invalid as the optical

response is nonlinear. Once the medium is “mapped out” and
the data bank of the scattered light patterns for all possible
single-absorber images is archived, one can reconstruct the
locations of an arbitrary set of objects. The combined image
obtained from several absorbers can be decomposed approxi-
mately into the arithmetic sum of these individual single-
absorber images with suitable weights that can be obtained
from multiple regression analysis.

The paper follows up on a recent work that demonstrated
a first proof of concept of decomposition based imaging
�DBI�. �25� It raised several challenges about the method’s
precise range of validity, its sensitivity to noise, possible
generalizations to imaging of absorbers that are located out-
side the grid defined by the a priori calibration data, and
about possible algorithms to improve the interpretation of the
inversion data. In this work we will report on progress in
each area. In Sec. II, we describe the downstream model that
can provide us very efficiently with scattered light distribu-
tion for media with an arbitrary number of absorbers. In Sec.
III we examine the quality of this approach by comparing the
predicted distribution with experimental data for media with
a single absorber. In Sec. IV we discuss the decomposition
based imaging scheme, apply it to the experimental situation,
and use the theoretically obtained data to examine its range
of validity. In Sec. V we show how a simple algorithm can
be applied to the raw data in order to improve the imaging
scheme significantly. In Sec. VI we examine our inversion
scheme for the more general situation in which an absorber is
located at a position that has not been mapped out by the a
priori calibration data. In the Sec. VII we conclude with a
summary and outlook on further work.

II. DOWNSTREAM MODEL

The decomposition based imaging scheme �DBI� will be
described in Sec. III. In contrast to many other imaging
schemes, DBI assumes some prior knowledge about the me-
dium’s optical response. As a result of this limitation, this
inversion scheme itself does not require a specific forward
model. However, in order to examine systematically the
range of validity of our imaging scheme for a wide range of
parameters, we need to generate theoretically the scattered
light patterns in an efficient and fully controlled way. These
computations require a forward model.
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As mentioned in the Introduction, the interaction of an
electromagnetic field with a turbid medium is often de-
scribed by the radiative transfer �Boltzmann� equation �1,2�
for which the light distribution is modeled by the position r
and � dependent irradiance I�r ,��. The medium is charac-
terized by a spatially dependent scattering and absorption
coefficient. Unfortunately, there are only a few analytical so-
lutions to this equation available and often large scale Monte
Carlo type computations are required, especially if there are
inhomogeneities embedded in the highly scattering medium
as in our situation.

To obtain the scattered light data in an efficient way, we
have adopted a simple downstream model, in which the
transverse brightness pattern of the light, denoted by L�y ,z�,
is evolved through the medium by the consecutive actions of

scattering and absorber operators Ŝ and Â. The incoming
laser beam enters our medium from the right at z=0. We
assume its intensity in the transverse direction is represented
by a Gaussian profile L�y ,z=0�=exp�−�y /wL�2�, where wL

denotes the transverse width of the beam and y is the dis-
tance from the z axis. In this work we have used wL
=1.1 mm, reflecting a typical width of our lasers. In the
downstream model, the propagation of the light through a
scattering layer of thickness D and an effective scattering
strength �S is given by the integral

L�y,z + D� =� dy�GS�y − y�,D,�S�L�y�,z� � Ŝ�D�L�y,z� .

�2.1�

The propagation of the light profile through an absorber is
represented by the multiplication

L�y,z + �� = GA�y,d,OA�L�y,z� � ÂL�y,z� , �2.2�

where we have assumed the absorber has a negligible longi-
tudinal extension �. In the numerical example below,
we represent the absorber by the “hole-burning” function
GA�y ,d ,OA��1−OA exp�−�2y /d�20�. Here d denotes the
diameter and OA �0�OA�1� models the opacity of the
absorber. For the scattering kernel GS�y−y� ,D ,�S� we
have examined Gaussian and Lorentzian distribution
functions, GS�y ,D ,�S��= �1 / ��D�S���

1/2 exp�−y2 / �D�S��� and
GS�y ,D ,�S�=D / ���S�D2+�S

−2y2��, respectively. A compari-
son with experimental data �below� can suggest which of the
two kernels is more suitable. Both kernels fulfill the required

additivity property, Ŝ�D�Ŝ�D�= Ŝ�2D�.
Let us now assume that there are four locations zn with

n=1, . . . ,4 at which we can place a rod shaped absorber into
the medium. The geometry is sketched in Fig. 1. The four
digit pattern �ijkl� with i , j ,k , l=0 or 1 denotes the occupa-
tion of the corresponding locations with rods. For example,
the notation �1101� refers to a three-absorber configuration
with rods that are located at positions z4, z3, and z1. In order
to use the downstream model to calculate the corresponding
transverse light distribution at output z=W for this configu-
ration, we have to apply the actions of the scattering and

absorption operators Ŝ and Â consecutively to the initial light
intensity profile L�y ,z=0�. In technical terms, this corre-

sponds to several consecutive integrations and multiplica-
tions according to

L1101�y,z = W� = Ŝ�W − z4�ÂŜ�z4 − z3�

�ÂŜ�z3 − z1�ÂŜ�z1�L�y,z = 0� . �2.3�

Here the rightmost operation Ŝ�z1� represents the first scat-
tering layer from the right edge of the medium at z=0 to the
location of the first �rightmost� absorber at z1.

As an example, we show in Fig. 2 how the brightness
pattern evolves for the �1101� configuration. A very narrow
incoming Gaussian profile �bottom graph� widens as it
propagates through the first scattering layer of width z1. The
middle part of the resulting distribution is then removed due

to the action of the absorption operator Â. The created hole
of diameter d then widens and partially fills up as the profile
is evolved to z3 through the next scattering layer of width
z3−z1. At z3 the absorption operator inserts another hole into
the distribution which is then scattered to z4, hole-punched,
and finally scattered to the left edge of the medium at z=W.

FIG. 1. Sketch of the experimental setup with three rods embed-
ded into the tank.
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FIG. 2. Propagation of the transverse brightness profile L�y� for
the downstream model to generate the shadow pattern for the three-
rod configuration �1101�. The bottom shows the incoming laser
beam with width wL=0.11 cm. We used the Lorentzian scattering
kernel with �S=0.53, and the absorbers with d=0.95 cm and opac-
ity OA=1. The absorbers were placed at locations z1=6.5 cm, z3

=11.1 cm, and z4=13.4 cm, measured from the entry surface of the
medium of total length W=16 cm.
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In order to obtain the corresponding shadow pattern we
have to subtract the scattered light pattern associated with no

absorber, L0000�y ,z=W�= Ŝ�W�L�y ,z=0�, leading to

Sijkl�y,z = W� � L0000�y,z = W� − Lijkl�y,z = W� . �2.4�

The corresponding shadow pattern for S1101�y ,z=W� is dis-
played by the top graph in Fig. 2.

A system with a maximum of four possible absorbers can
have eleven different arrangements. This signal space in-
cludes six two-rod configurations �1100, 1010, 1001, 0110,
0101, and 0011�, four three-rod configurations �1110, 1101,
1011, and 0111�, and finally one four-rod configuration
�1111�. As we assume an a priori knowledge of the four
single-rod configurations �1000, 0100, 0010, and 0001�, we
call them calibration states.

III. EXPERIMENTAL LIGHT SCATTERING DATA

The top view of the experimental setup was already
sketched in Fig. 1. We have illuminated a 12 liter glass tank
�30 cm�16 cm�26 cm� with a 661 nm diode laser with
a power of 80 mW and input beam diameter of about wL
=1.1 mm. At locations z=6.5, 8.8, 11.1, and 13.4 cm from
the entry surface of the tank we have placed cylinders as
absorbers. These plastic rods have a diameter of d
=0.95 cm and a length of 20.3 cm. As a scattering medium
we used a 2% milk–water mixture with various concentra-
tions. A 3.2 mm diameter optical fiber bundle connected to a
broad area detector �NewFocus 2031� scanned the scattered
light in 481 steps along the y direction, parallel to the exit
wall of the tank.

In a separate work �26–28�, we described how one can
use measurements of the light distribution inside the medium
along the optical axis to determine reliably the scattering and
absorption coefficients as well as the anisotropy factor g. For
a HeNe laser the empirical formula �s=� 310 cm−1 approxi-
mates the scattering coefficient, where � denotes the concen-
tration of 2% milk in the water. For the data presented below
we chose �=100 ml milk/9.2 l water suggesting a scattering
coefficient of about �s=3.3 cm−1 leading to an inverse scat-
tering length of about 0.3 cm. In other words, the rod spac-
ings of either 2.3 cm, 4.6 cm, or 6.9 cm, are much larger
than this length. With an isotropy of about g=0.93 this cor-
responds to a reduced scattering length of ��s��

−1=4.2 cm.
In order to improve the accuracy, the data were averaged

over two independent runs. In Fig. 3 the dashed curves show
the four single-rod shadow patterns as well as the zero-rod
distribution. For better comparison they were normalized to
satisfy S�y=0�=1. The solid curves are the corresponding
shadows calculated from the downstream model discussed
above. We found that the Lorentzian scattering kernel
matched the experimental data a little bit better than the
Gaussian form for these particular scattering parameters and
arrangements of rods. This agreement is certainly not perfect
and different scattering kernels could improve the match.
The five theoretical curves were fitted with a single free pa-
rameter �S=0.53. The set for S0001�y� corresponds to the case
where the absorber is closest to the laser source. It has the

widest shadow, confirming that shadows can widen in a scat-
tering medium as predicted by the downstream model.

IV. DECOMPOSITION BASED IMAGING (DBI)

For our DBI scheme, the four single-rod shadow patterns
S0001, S0010, S0100, and S1000 form the calibration states. For
brevity, we denote these four states by Vn�y�, with n
=1, . . . ,4. The goal in the DBI method is to express each of
the eleven multirod shadow patterns approximately as an
arithmetic sum of the four calibration states with optimum
weight factors �n. The states Vn�y� are typically positive and
not orthogonal to each other. As a result, a quantum
mechanical-like decomposition scheme based on simple sca-
lar products does not work. The decomposition was done by
using the standard 	2 linear least square fitting approach
�14�, where the factors �n were determined from minimizing
the error between the particular shadow signal Sijkl�y� and
the superposition of the calibration states

	2��n� � � dy	Sijkl�y� − 

n=1

n

�nVn�y��2

f�y�2. �4.1�

The arbitrary function f�y� can be used to give certain spatial
regions in y more weight; for example, it could be chosen
proportional to the volume element in 3D. For simplicity we
chose f�y�=1. The resulting four linear equations for the
weights �n can be obtained from the four conditions
�	2 /��n=0. The four weights �n are obtained by a simple
matrix inversion.

In Table I�a� we show the resulting weight factors �n for
the experimental data. For a better comparison, the digits in
the parentheses indicate the presence �1� or absence �0� of an
absorber. We note that some configurations require negative
weights or weights with absolute values larger than unity in
order to approximate the image obtained from the multiple
absorbers. For example, the two-absorber shadow S1100�y�
�first row of Table I�a�� requires �2=−0.342 and �1=0.162,
even though there were no absorbers at z2 and z1 in this
particular configuration.
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FIG. 3. Experimental shadow functions S0000�y�, S1000�y�,
S0100�y�, S0010�y�, and S0001�y�. The graphs were normalized to
S�y=0�=1. The scattering medium was a mixture of 100 ml of 2%
milk with 9.2 liters of water and the rods were at locations z1

=6.5 cm, z2=8.8 cm, z3=11.1 cm, and z4=13.4 cm. For compari-
son, the dashed curves correspond to the corresponding data ob-
tained from the downstream model with a Lorentzian scattering
kernel, �S=0.53, OA=1, and incoming beam width wL=0.11 cm.
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Even though the associated value of 	2 can be computed
for each run and it is a measure of how well the optimum
superposition of the calibration states matches the multirod
image, it is not clear whether it should be used as a direct
indicator of the quality of the particular reconstruction. As
the calibration states are nonorthogonal, the best-fit superpo-
sition with a very small value of 	2 could be obtained from
“incorrect” weight factors �n that do not represent the true
presence or absence of the rods. On the other hand, a large
value of 	2 could be associated with weight factors that rep-
resent the actual rods more accurately than for smaller 	2.

In order to have a less ambiguous measure for the accu-
racy of the reconstruction scheme we introduce a new quan-
tity. It is based on the assumption that a calibration state
associated with a rod that is absent in the multirod configu-
ration should have ideally a vanishing weight in the super-
position. In our signal space of eleven multirod configura-
tions with a total of 44 weights factors, 16 weights
correspond to an absent rod indicated by �0�. We therefore
define a contamination factor C as the average of the �abso-

lute value� of all those 16 weight factors that correspond to
an absent rod. For our experimental data in Table I�a�, this
amounts to C=0.13. This value is sufficiently close enough
to zero that the identification of the nonexistent rods should
be possible.

In order to examine how this factor C depends on various
parameters such as the scattering strength �S, the absorbers’
opacity OA, and also on noise, we have used the downstream
model to generate the eleven multirod configurations. The
simple structure of the downstream model indicates that C
depends only on the ratio d /�S. In other words, doubling the
absorbers’ diameter leads to the same result as halving the
scattering strengths.

From the simulations for the experimentally suggested
parameters �S=0.53, wL=0.11 cm, d=0.96 cm, OA=1, W
=16 cm, and no noise we have obtained a contamination
factor C=0.0025. This remarkably small value suggests that
it is the experimentally unavoidable noise that deteriorates
the inversion quality. At least in principle, the simple analyti-
cal structure of the downstream model could also predict
scattering profiles that are easier to invert than the experi-
mental curves. But this is not very likely as simulations
based on the Gaussian scattering kernel lead to similarly ac-
curate inversions in the absence of noise.

In order to simulate this noise, we have multiplied each of
the eleven signals Sijkl�y� with a factor �1+r�, where r de-
notes a uniformly distributed random number between −R

r
R for each location y. It turns out that a noise level of
R=4.5% increases the parameter C for the theoretical signals
to the same value as for the experimental data, C=0.13. In
Table I�b� we have shown all 44 weights for the theoretical
data with a multiplicative noise of 4.5%. Even though the
noise makes a direct comparison of experimental with theo-
retical weight factors less meaningful, there are still common
trends. For example, the state �0011� seems to be quite robust
under noise whereas the weights for �1101� deteriorate sig-
nificantly. The theoretical data also reveal a simple scaling
law for a small level of noise; we found that on average for
0.5% 
R the contamination factor scales linearly with R.
For a noise level R exceeding about 25%, the factor C ex-
ceeds 0.5, making the decomposition based method very un-
reliable. In separate simulations we have also included addi-
tive noise and found that similar conclusions about the
qualitative behavior of C hold.

In the series of Figs. 4 we show how the accuracy of DBI
depends on various parameters. In Fig. 4�a� we display C as
a function of the inverse scattering strength �S

−1. We see that
independent of the absorber’s size d, a higher scattering �low
�S

−1� increases the accuracy of our scheme. This particular
scaling in our approach to imaging is extremely helpful as a
large level of scattering makes a practical imaging in turbid
media usually more difficult. We note, however, that in the
limit of very large scattering certain analytical approxima-
tions to the forward model, such as the diffusion theory, be-
come applicable that can simplify the theoretical framework
for the inversion. This limit might also suggest a better form
for the scattering kernels.

For comparison, we have also included by the dashed line
the difference between the true shadow and their best pos-
sible fit as defined in Eq. �4.1�. The parameter 	2��S

−1� shows

TABLE I. The weight factors �1, �2, �3, and �4 associated with
the shadow basis states S0001, S0010, S0100, and S1000 for eleven dif-
ferent absorber combinations. The presence or absence of an ab-
sorber is indicated by the number in parentheses. �a� Experimental
data for the four-rod system described in Sec. III. �b� Theoretical
data: Scattering strength �S=0.53, absorber diameter d=0.95 cm,
OA=1, and incoming laser width w=1.1 cm.

�a� Weight factors for the experimental data

�4 �3 �2 �1

0.682�1� 1.156�1� −0.342�0� 0.162�0�
0.827�1� 0.136�0� 0.635�1� 0.176�0�
0.793�1� 0.112�0� −0.152�0� 1.051�1�
−0.015�0� 0.680�1� 0.961�1� 0.036�0�
−0.007�0� 0.795�1� −0.109�0� 1.072�1�
−0.004�0� 0.070�0� 0.294�1� 1.220�1�
0.591�1� 0.556�1� 1.505�1� −0.391�0�
0.564�1� 0.641�1� 0.348�0� 0.859�1�
0.706�1� −0.042�0� 0.606�1� 1.072�1�
0.015�0� 0.297�1� 1.016�1� 0.919�1�
0.556�1� 0.138�1� 1.571�1� 0.502�1�

�b� Weight factors for the theoretical signals with noise

�4 �3 �2 �1

0.679�1� 1.173�1� −0.203�0� 0.074�0�
0.832�1� −0.105�0� 1.169�1� −0.072�0�
0.880�1� −0.193�0� 0.292�0� 0.880�1�
0.039�0� 0.439�1� 1.425�1� −0.173�0�
0.017�0� 0.732�1� 0.077�0� 0.974�1�
0.004�0� 0.021�0� 0.647�1� 1.027�1�
0.574�1� 0.938�1� 0.723�1� 0.104�0�
0.556�1� 1.140�1� −0.497�0� 1.202�1�
0.719�1� −0.189�0� 1.069�1� 0.830�1�
−0.055�0� 0.837�1� 0.395�1� 1.115�1�
0.554�1� 0.677�1� 0.547�1� 1.066�1�
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usually the same qualitative trends as the contamination fac-
tor C��S

−1�. As �S
−1 decreases from �S=10 to 0.1, 	2 changes

from 0.18 to much smaller values that depend on the amount
of noise R. The lower values at �S

−1=0.1 are 	2=10−8 �for
R=0�, 	2=6�10−3 �for R=0.1%�, and 	2=6�10−2 �for R
=1%�. This behavior of 	2 would �incorrectly� suggest a
monotonic deterioration of the method with increasing �S

−1.
However, the contamination graph for d=2 cm shows that
this trend is not monotonic; in fact, with C��S=3.3�=0.03 the
DBI method works better than for larger �C��S

−1=2.75�
=0.08� as well as for smaller amounts of scattering �C��S

−1

=4�=0.2�. As seen from the monotonic graph for 	2��S
−1�,

this island of increased accuracy would not have been iden-
tified based on 	2. As 	2 is the result of an averaging over a
much larger number of fluctuating quantities, it also fluctu-
ates much less than C.

Unfortunately, small levels of multiplicative noise deterio-
rate the accuracy of DBI significantly. For R=0.1% the low-
est possible contamination is about C=0.001 and for R
=1% it grows to C=0.01. We purposely chose identical se-
quences of random numbers for the computations to show

two aspects. First, we see that for sufficiently large scattering
�1
�S� the contamination factors become independent of
the absorber’s size d for the same noise level R. Second, as
we decrease the noise level from R=1% to 0.1%, the corre-
sponding contamination shrinks precisely by a factor of 10
suggesting a linear scaling of C as a function of R. An
unacceptable value of C�0.5 would be reached at the
10–30 % noise level, independent of the size of the absorber.

The nearly constant value of C��S� for nonzero noise and
for sufficiently large scattering can be understood as the re-
sult of a cancellation of two competing mechanisms. The
underlying noise-free contamination C decreases nearly like
a power law C��S

−m making DBI more accurate for �S→�.
In the same high-scattering limit, however, the resulting
shadow patterns for various rod configurations become also
more similar to each other which makes it easier for the
noise to wash out their relative differences. Once the data for
different rod configurations become too similar, DBI has to
fail suggesting the opposite trend of an increasing C for �S
→�.

In Fig. 4�b� we show that the contamination decreases
with increasing opacity OA of the absorbers. With respect to
a practical imaging device, this trend is again favorable as a
real obstacle in a biological tissue, e.g., usually partially
transmits the light and does not necessarily have 100% opac-
ity as the plastic rods we used in our experiment. Similar to
Fig. 4�a� any noise will deteriorate the image quality; this is
especially significant for absorbers with small physical ex-
tension as seen by the graph for d=1 cm for R=0%, 0.1%,
and 1%. For a larger rod diameter and large opacity, the
contamination factor is similar for no noise and R=0.1%.
For larger levels of noise �R�1% �, the contamination is
nearly independent of the opacity as well as the diameter.
This can be seen by the two almost flat curves at the top of
the figure.

V. RESOLUTION IMPROVING ALGORITHM

In our experiment �Table I�a�� the largest weight associ-
ated with a nonexistent rod is 0.348 �in 1101�, whereas the
smallest weight that is associated with an existing rod is
0.294 �in 0011�. This means that a simple algorithm that
changes globally the weight factors to either 0 or 1 based on
a given threshold value would not work for our data. This
failure is simply a consequence of the fact that absorbers that
are in the shadow of other absorbers cannot obtain enough
light to contribute to the shadow strength. As an example, the
leftmost absorber in �1111� has only a weight factor of 0.556
for the calibration state S1000 that was obtained under an
unblocked illumination.

Below we propose an algorithm that can improve the
weights subsequently. It is based on the observation that the
weights �1 that are associated with a vanishing rod at z1 are
easiest to identify. For example, in all eleven signal runs, the
largest value of these weights is only 0.176 �in 1010�. Once
we have identified an �in principle� vanishing weight, we can
omit the particular calibration state V1�y� and minimize the
shadow pattern again with respect to the remaining three
states V4, V3, and V2. As the four original weights of all
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FIG. 4. �a� Average contamination factor C for the eleven mul-
tiabsorber configurations as a function of the inverse scattering pa-
rameter �S

−1. The symbols represent various levels of multiplicative
noise in the signals. The dashed line is the least square fitting pa-
rameter 	2 for d=2 cm and R=1%. All data are computed from the
downstream model with the same parameters as in Fig. 2. �b� Av-
erage contamination factor C as a function of the opacity OA of the
absorbers.
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modes are directly coupled, the other weights might become
also difficult to interpret. If we take the run �1100� as an
example, the rematching with three states changes the four
weights from �0.682 �1�, 1.156 �1�, −0.342 �0�, 0.162 �0�� to
�0.701 �1�, 0.992 �1�, −0.004 �0�, 0 �0��. This is obviously a
significant improvement as now �in contrast to its previous
value �2=−0.342� also the second weight �2 �=−0.004� can
be uniquely identified as an absent rod. This scheme can be
repeatedly applied for all runs in which a weight is suffi-
ciently small to suggest an absent rod.

In a similar fashion we can also clean up the data if the
first weight �1 can be unambiguously identified with an ex-
isting rod. For example, the first weight �1 in the 1001 run
�third row of the table� is 1.051. In this case we can subtract
the corresponding identified calibration state from the signal,
Snew�y��S1001�y�−1. S0001�y� and rematch the new data Snew

without the state V1. In this case the old set �0.793 �1�, 0.112
�0�, −0.152 �0�, 1.051 �1�� changes to �0.800 �1�, 0.049 �0�,
−0.033 �0��. Once again the small second and third weights
are significantly improved. Because of the linearity it is im-
portant that the state V1 is removed with the weight 1. If we
had used a weight factor of 1.051, the weights in the new
superposition would be unaffected due to the linearity of our
decomposition scheme.

VI. RESOLUTION FOR OFF-GRID ROD LOCATIONS

So far we have assumed that the possible locations of the
rods in the signal space were restricted to the same locations
as the rods of the calibration data. Let us now weaken this
constraint and permit the rods to take arbitrary positions. Our
method remains applicable to this more general situation if
the shadow pattern of a rod that has been placed at location z
between two grid points zn−1
z
zn excites mainly the cor-
responding calibration states associated with the nearby
neighbor grid locations, Vn−1�y� and Vn�y�. If, however, it
turns out that calibration states associated with locations fur-
ther away are required as well in the optimum superposition,
the corresponding weights cannot be used to identify unam-
biguously the position of the rods. Furthermore, if the asso-
ciated neighboring signal states are the only states that lead
to appreciable weights, then one could even use these two
weights �n and �n−1 to improve the resolution and attempt to
reconstruct the precise rod location z.

To obtain some first insight into this question, we have
increased our calibration space to nine �Vn�y� where n
=1, . . . ,9� associated with rods that are located at positions
zn=1,2 , . . . ,9 cm inside a tank that extends from z=0 to
W=10 cm. For simplicity, we have used a single test rod
whose location z was varied continuously from 0 to 10 cm.
For each location z we have computed the corresponding
shadow pattern and decomposed it in the nine-dimensional
calibration space. For rod positions z �
1 cm or �9 cm� that
are not between two calibration points, the decomposition
requires weights that are much larger than plus or minus
unity, so the scheme fails for exterior positions. For locations
z that are inside the calibration grid, the situation is fortu-
nately much more favorable.

In Fig. 5 we show the corresponding five weights �n as-
sociated with the five calibration states V2, V3, V4, V5, and V6

as a function of the single-rod position z. If this location z
happens to match a particular grid point zN, for consistency
we have �n=�n,N forcing all weight states to vanish except
one. The data are encouraging and suggest that the decom-
position based method works nicely even for off-grid loca-
tions z. In the entire range 2 cm
z
6 cm the dominant
weights are associated with the two direct neighbor modes.
The largest deviation occurs for z5.6 cm, where the neigh-
boring modes have the weights �50.85 and �60.48, re-
spectively, but the mode V3 contributes with a weight as
large as �30.25. In our experience, negative weights are
usually associated with absent rods, so the negative weights
do not disturb our decomposition scheme and can be elimi-
nated by our algorithm of Sec. V.

We also notice some overshooting. In other words, the
weights do not necessarily take their largest value at that
value of z at which its corresponding calibration rod was
centered. For example, the maxima are �31.05 �z
=2.8 cm�, �41.0 �z=4 cm�, �51.09 �z=5.2 cm�, and �6

1.3 �z=6.4 cm�. This is related to the fact that all weights
are coupled and if some turn negative, the other weights can
increase beyond unity to compensate. This effect certainly
makes the reconstruction of the rod location more difficult.

The weights are not perfectly symmetric between the cor-
responding grid locations. However, once the corresponding
neighbor grid points are uniquely identified, one could use
a linear approximation to model their z dependence. For
example, we could assume that for 3 cm
z
4 cm the
weights are approximated by �3�z�1− �z−3� and �4�z�
1+ �z−4�. If we invert this simple formula to predict the
location z as a function of the two weights, we obtain
z3��3�4−�3 and z4��4��4+3. As the predicted positions
are systematically overestimated and underestimated by the
two weights, respectively, we can take the average value,
Zpred��3 ,�4���7−�3+�4� /2, as the predicted position of the
rod. To examine the accuracy of this estimate, we have
graphed in Fig. 6 the relative error, defined as �Zpred−z � /z as
a function of the true position z. As expected the error is zero
close to the grid points z=3 and 4 cm. In the entire interval,
the largest error is less than 2% amounting to an uncertainty
of less than 1 mm. In other words, finding the predicted lo-
cation of the rod by interpolating the corresponding neigh-
boring weight factors permits the scheme to increase its pre-
dicted accuracy far beyond the spatial scale given by the grid
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FIG. 5. Weight functions as a function of the location z of an
absorber based on nine calibration states associated with locations
z=1,2 , . . . ,9 cm. ��S=0.34, d=0.95 cm, OA=1, W=10 cm, and
wL=0.11 cm.�
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point spacing of the calibration runs. We note that this
scheme for off-grid rods as well as the resolution improving
algorithm discussed in the previous section require that the
rods are identical to those used for the calibration runs. For
the more general case in which the size or optical properties
of the rod configurations differ from those used in the single-
rod calibration measurements, more systematic studies are
required to determine the direct practical applicability for
bio-optical systems.

VII. SUMMARY AND CONCLUSION

We have examined the range of applicability of the de-
composition based imaging method �25�. In contrast to most
imaging techniques, DBI requires the a priori calibration of
the medium. This calibration is accomplished by placing a
representative single absorber into the medium at various
locations and measuring the resulting scattered light spec-
trum outside the medium. DBI is based on an ad hoc as-
sumption that the resulting shadow patterns in the scattered
light associated with several absorbers can be related to a
simple superposition of shadow patterns associated with each
absorber separately. As this equality is valid only approxi-
mately, we had to use a multiregression analysis to determine
the best-fit weights for each single-absorber shadow pattern

instead of a direct inversion. Also, in contrast to the usual
Born or Rytov approximation of diffusive imaging, which
permits a mathematical derivation of the corresponding Fred-
holm integral equation, a similar derivation for DBI is pres-
ently lacking. As a consequence, it is nontrivial to evaluate
analytically the region of validity of DBI and it therefore
requires a numerical analysis of the final data. We introduced
the contamination parameter C as quantitative measure of the
accuracy of the reconstruction method for all possible rod
configurations.

Using this measure we could show systematically that
DBI works best for large scattering media and absorbers with
small extension. For multiplicative noise, the accuracy of the
method becomes independent of the diameter and the scat-
tering strength of the background medium. We also proposed
an algorithm that can improve the position reconstruction
from our experimental data significantly. Furthermore, we
suggested that if an object is placed at a location that has not
been previously recorded for a prior single absorber, mainly
the nearby single-absorber modes are important. These
weight factors can be used to interpolate the precise location
of the absorber with surprising accuracy.

The present work examined absorbers that were arranged
along the beam line to study the impact of the mutual block-
ing of the light. In order to generalize DBI to a fully two- or
three-dimensional scheme, we have to understand how DBI
works if absorbers are placed along the transverse beam di-
rection. Clearly, in the case the shadow patterns do not over-
lap, a unique decomposition of multiabsorber shadow pat-
terns into single-absorber shadows can be done exactly.
However, it is presently not clear how the scheme will work
if the shadow patterns overlap.
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