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We investigate time-dependent properties of Einstein-Podolsky-Rosen �EPR� light beams generated in a
nondegenerate optical parametric oscillator �NOPO� driven by a sequence of laser pulses with Gaussian
time-dependent envelopes. This investigation continues our previous analysis �H. H. Adamyan and G. Yu.
Kryuchkyan, Phys. Rev. A 74, 023810 �2006�� and involves problems of two-mode quadrature squeezing as
well as intensity-difference squeezing in the time domain. The peculiarities of EPR beams are also discussed
in the framework of phase-space quantum distributions. Two kinds of non-Gaussian Wigner functions, for the
reduced one-mode state of periodically pulsed NOPO and for EPR beams which are combined on a one-half
beam splitter are calculated numerically. We also investigate the Wigner functions of intensity-correlated twin
beams following the conditional photon state-preparation scheme. It is demonstrated that the Wigner functions
involve negative values in parts of the phase space for the schemes with one, two, and three photons.
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I. INTRODUCTION

The recent development of continuous-variable �CV�
quantum information is stipulated mainly by preparation of
two-mode squeezed vacuum states which are a realization of
Einstein-Podolsky-Rosen �EPR� entanglement. It is recog-
nized that a nondegenerate optical parametric oscillator
�NOPO� is a suitable system for generation of these states,
and hence, for demonstration of CV entanglement �1�. In-
deed, CV entanglement as a two-mode squeezing was ex-
perimentally demonstrated for the first time in a NOPO op-
erating below threshold �2�. Since this significant milestone,
there have been further experimental observations of the
EPR entanglement �3–5�.

A type-II optical parametric oscillator pumped above
threshold has also been theoretically predicted to be a very
efficient source of bright entangled light �1�. The strong
quantum consideration of NOPO in this operational regime
showing the production of EPR states has recently been
given in �6�. Entanglement in the above-threshold NOPO
was last observed by three groups �7–9�. In the perspective to
generate intense EPR light beams the ultrastable phase-
locked type-II NOPO above threshold has been recently pro-
posed and experimentally realized in the area of quantum
optics �10–16�. Particularly, EPR entangled states under the
mode phase-locked condition have been investigated in
�13,14� and observed in phase-locked NOPO in �9�.

In the standard treatment of the optical parametric oscil-
lator, the pump is considered as a time-independent mono-
chromatic beam and the calculations are performed in the
frequency domain. In the CV regime, a wide variety of quan-
tum communication applications based on EPR entangled
states has been also demonstrated in the frequency domain.
The usual way to measure CV entanglement is the homodyne
detection in the frequency domain �2–5� which deals with

only frequency sidebands a few MHz apart from the carrier
frequency. Nevertheless, recent experimental achievements
in quantum optics initiate investigations of EPR entangle-
ment also in the time domain �17–22�. Such investigations
may open a way for new applications in many areas of time-
resolved quantum information and communications in addi-
tion to the well-known protocols already elaborated in the
spectral domain. For this goal a method of time-resolved
homodyne measurement has been developed following the
pioneering experiment on quantum tomography �23�. This
approach can be applied for measurements of the squeezing
in the time domain. In this area, generation and characteriza-
tion of quadrature-squeezed pulses as well as entangled light
pulses in the time domain have been recently performed
�17–19�. The time-domain analysis is convenient in the case
when the continuous time evolution of the light generated in
a NOPO is observed. A multimode treatment of OPO which
is valid for both pulsed and continuous-wave pump fields has
been presented in �24�. It should be also noted that the con-
ditional one-photon and two-photon Fock states have been
experimentally obtained from a pulsed nondegenerate para-
metric optical amplifier. These states have also been ana-
lyzed by the pulsed homodyne detection �25–27�. Another
field of time-domain analysis application is the generation of
non-Gaussian states in optical systems using a technique
called “photon subtraction” �28�. In this approach a small
fraction of the light is extracted on a beam splitter and de-
tected using photon counting in the time domain. Note that
generation of a superposition of odd photon number states
from a squeezed state produced by OPO is experimentally
demonstrated based on this approach �29�. In order to realize
CV teleportation of such non-Gaussian states, one needs to
generate EPR entanglement in the time domain. In this area,
the experimental generation and characterization of a two-
mode squeezed vacuum state in a time-gated way has been
recently demonstrated in �22�.

Thus for applications with nonclassical states, particu-
larly, with EPR states in the time domain, a rigorous study of
NOPO is needed for operating in various time-dependent
regimes. As a step in this direction a periodically pulsed
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NOPO, i.e., a NOPO under time-modulated pumping field,
has been proposed and studied theoretically �14,21� in appli-
cation to generation of EPR entangled light beams in the
time domain.

In this paper we continue the investigation of periodically
pulsed NOPO following Ref. �21�. Our goal is twofold. In
one part of the present paper we extend our previous results
�21� regarding NOPO above threshold under action of a se-
quence of the Gaussian pulses. The other part of the paper is
devoted to calculation of dynamics of the Wigner functions
for the pulsed regime of NOPO, since Wigner functions give
a complete description of the states of quantum systems.

The paper is arranged as follows. In Sec. II we briefly
describe the theory of periodically pulsed NOPO. Section III
is devoted to analysis of EPR entanglement and intensity-
difference squeezing in the time domain for NOPO under
Gaussian pulses. In Sec. IV we consider EPR beams from a
different perspective on the base of the Wigner functions. We
calculate two types of Wigner functions, first for squeezing
components of EPR beams, which are combined on a one-
half beam splitter, and second for each of the subharmonic
modes. In Sec. V we present theoretical analysis of non-
Gaussian quantum states with negative values of W�x , p�
generated on periodically pulsed NOPO. The various state-
preparation schemes counting n=1, n=2, and n=3 photons
are considered. We summarize our results in Sec. VI.

II. PERIODICALLY PULSED NOPO: BRIEF DESCRIPTION

In this section we briefly describe a type-II phase-matched
NOPO with a triply resonant optical ring cavity driven by a
periodic sequence of laser pulses. The semiclassical and
quantum theories of time-modulated NOPO were developed
in Refs. �14,21� and here we only add some important details
regarding the case of laser pulses with Gaussian time-
dependent envelopes.

Thus, we consider the NOPO based on intracavity para-
metric interaction between pump mode �labeled as �3�� and
two subharmonic modes ��1� and �2�� of orthogonal polariza-
tions. These modes have plane polarizations and are all
propagating in the same direction. The pump mode at the
central frequency �3=�L is driven by a periodically pulsed
laser field.

We assume in-field as nonstationary Gaussian pulses
which can be written in the following form:

EL�t,z� = �
−�

�

�L�t,z,��d� , �1�

where in one-nonmonochromatic mode approximation and
for the case of a single pulse

�L�t,z,�� =
1

�2��2
E0Le−�2/2�2

e−i��+�L�teikLz, �2�

i.e., it is defined as a classical pump beam with Gaussian
frequency envelope of full-width at half-maximum band-
width ��=� and central frequency �L. The Gaussian func-
tion e−�2/2�2

is the weight of the component �+�L of the
pulse. Thus, the time-dependent field is

EL�t,z� = E0Le−t2/T2
e−i��Lt−kLz�, �3�

where T=�2 /�.
We consider below the case of the Gaussian pulses sepa-

rated by the time intervals �. The corresponding time-
dependent field is

EL�t,z� = E0Lf�t�e−i��Lt−kLz�, �4�

f�t� = �
n=−�

�

e−�t − t0 − n��2/T2
. �5�

In this regime the dynamics of the intracavity modes, which
are the pump mode and the modes of subharmonics, are also
pulsed. Therefore, at the quantum level, we use a specific
second-quantization form of the intracavity field operators in
the terms of pulse modes, i.e., we consider the expansion of
the field operators through the time-dependent amplitudes
defining the wave-packet envelopes of the intracavity modes
and the annihilation mode operators bn. The pump mode
described by the operator b3 is driven by the amplitude-
modulated external field at the central frequency �L=�3. The
parametric interaction leads to a generation of pair correlated
pulses of orthogonal polarization in the ��2� medium, which
are described by the operators b1 and b2.

We assume wideband collinear phase matching which can
be more effectively realized in a periodically poled crystal.
The basic energy conservation for the central frequencies and
perfect phase matching imply that �L→�1�↑�+�2�→�, �1

=�2=
�L

2 , and �k=kL��L�−k1��1�−k2��2�−kg=0, where kg

is the poling wave vector. The corresponding interaction
Hamiltonian within the framework of the rotating wave ap-
proximation and in the interaction picture is

H = i	�f�t��ei
Lb3
† − e−i
Lb3�

+ i	k�ei
kb3b1
†b2

+ − e−i
kb3
†b1b2� , �6�

where � is the coupling constant of the in field with the
�3-intracavity mode which is proportional to the amplitude
E0L of the pump field and constant kei
k determines the ef-
ficiency of the parametric process.

Note that the operators bn �n=1,2 ,3� are intracavity en-
velope operators for pump �b3� and subharmonic modes �b1�,
�b2� which satisfy the commutation relations, �bn ,bm

† �=�nm.
Such discrete mode operators �30,31� are more suitable for
complete quantum description of pulsed dynamics than usual
continuous bosonic operators that satisfy the commutation
relation �a�t� ,a†�t���=��t− t��. This approach has recently
been used also for complete quantum description of both the
process of a down conversion and NOPO in pulsed regimes
�24,31–34�. A thorough discussion of continuous and discrete
operator description of light beams in both time and fre-
quency space may be found in �35�.

The master equation for the reduced density matrix of the
nonmonochromatic modes and for the case of zero detuning
is obtained as
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��

�t
=

1

i	
�H,�� + �

i=1

3


i�2bi�bi
� − bi

†bi� − �bi
†bi� , �7�

where 
1, 
2, and 
3 are the damping rates of modes �1, �2,
and �3. We consider below the case of high cavity losses for
the pump mode �
3�
 ,
1=
2=
�, when the pump mode is
eliminated adiabatically. In this regime, the stochastic equa-
tions of motion for the complex c-number variables �i and �i
corresponding to the operators bi and bi

† have the following
form �21�:

d�1

dt
= − �
 + ��2�2��1 + ��t��2 + W�1

�t� , �8�

d�1

dt
= − �
 + ��2�2��1 + ��t��2 + W�1

�t� . �9�

Here ��t�= f�t��k /
3, �=k2 /
3, and the equations for �2 ,�2

are obtained from �8� and �9� by exchanging the subscript
�1�� �2�. Our derivation is based on the Ito stochastic cal-
culus, and the nonzero correlators are

�W�1
�t�W�2

�t��	 = ��f�t� − ��1�2�/
3, �10�

�W�1
�t�W�2

�t��	 = ��f�t� − ��1�2�/
3. �11�

Note that while obtaining these equations we used the trans-
formed boson operators bi→bi exp�−i
i�, being 
3=
L,

1=
2= 1

2 �
L+
k�. This leads to cancellation of the phases
at intermediate stages of calculations.

The semiclassical and quantum analysis of Eqs. �8� and
�9� have been performed in Ref. �21� in applications to two
schemes of NOPO: Driven by continuously modulated pump
field; and under action of a periodic sequence of rectangular
laser pulses. We apply below these results for a more experi-
mentally feasible scheme of NOPO under Gaussian laser
pulses. In the other part of the paper, we numerically calcu-
late the non-Gaussian Wigner functions for NOPO for the
above threshold regime in the framework of the master equa-
tion �7�.

First, we briefly discuss the mean photon number of sub-
harmonic modes �ni	= �bi

†bi	 �i=1,2� in the semiclassical
treatment. The analysis shows �21� that similar to the stan-
dard NOPO with stationary pump field amplitude, the peri-
odically pulsed NOPO also exhibits threshold behavior,
which is easily described through the period averaged pump
field amplitude f�t�= 1

� 
0
� f�t�dt. As shown in the Appendix,

for the case of Gaussian pulses �2� and �3�, an above-
threshold regime is realized if

� � �th =


3

��k

�

T
. �12�

We find that as for usual NOPO, the phase difference of the
generated modes ��i=�i

�, �i=�nie
i�i, ni= ��i�2� is undefined

due to the phase diffusion, while the sum of phases �1+�2
=�L+2�m �m=0,1 ,2 , . . .�. The mean semiclassical photon
numbers for subharmonic modes are equal from one to the
other �n1=n2=nc� due to the symmetry of the system, 
1

=
2=
, and have been calculated in the following form:

nc
−1�t� = 2��

−�

0

exp�2�
0

�

���t� + t� − 
�dt�
d� . �13�

This result is obtained for over-transient t�
−1 and above-
threshold regimes. Typical results for two different param-
eters of the Gaussian pulses are presented in Fig. 1.

III. EPR ENTANGLEMENT
AND INTENSITY-DIFFERENCE SQUEEZING

INDUCED BY GAUSSIAN PULSES

In the field of CV quantum variables it is an established
standard to describe squeezing with the spectra of quantum
fluctuations, as has been done even for some pulsed squeez-
ing experiments �36�. Indeed, most of the experiments, relay-
ing on optical intracavity interactions, have been performed
for fields outside a cavity in the spectral domain. The other
quantity characterizing quantum noise is the total squeezing
or integrated on the spectral bandwidth squeezing which can
be naturally investigated in the time domain. The usage of
cavities in NOPO limits the bandwidth of squeezing or EPR
correlation within the cavity bandwidth. In this section we
investigate the integral two-mode squeezing for periodically
pulsed NOPO. Two types of quantum noise reduction effects,
the quadrature squeezing as well as the intensity-difference
squeezing, are considered.

A. Time-dependent quadrature squeezing

We can construct position and momentum operators for
the two modes of NOPO and the eigenvalues of these opera-

FIG. 1. Mean photon number versus dimensionless time for
the following parameters: �a� �=10−8
 , �=1.1�th , �=6
−1 , T
=0.6
−1; �b� �=10−8
 , �=1.1�th ,�=2
−1 , T=0.5
−1.
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tors would define the phase space. The criterion of two-mode
quadrature squeezing or EPR entanglement is formulated as
V= 1

2 �V�X1−X2�+V�Y1+Y2���1 in terms of the variances of
the quadrature amplitudes of two modes Xk=Xk��k�
= 1

�2
�bk

†e−i�k +bke
i�k� , Yk=Xk��k− �

2
� �k=1,2�, where V�x�

= �x2	− �x	2 is a denotation of the variance.
As it was shown theoretically, in NOPO under a continu-

ous monochromatic pump the integral intracavity two-mode
squeezing is limited, and reaches only 50% relative to the
level of vacuum fluctuations, i.e., 1

2 �V�1 �see �37,38�, for
a linear treatment of quantum fluctuations and �6� for non-
perturbative treatment�. However, a spectral squeezing sig-
nificantly lower than the integral squeezing has been
achieved at definite low-frequency spectral ranges.

Nevertheless, as has been shown �21�, the time modula-
tion of pump field amplitude essentially improves the degree
of squeezing in NOPO. On the whole the level of integral
two-mode squeezing, which characterizes the degree of EPR
entanglement, goes below the limit V= 1

2 for the definite time
intervals. In this section we illustrate this effect for the real-
istic experimental situation, that is, a NOPO under a periodic
sequence of Gaussian laser pulses.

Our analysis is based on the equations that have been
obtained in Ref. �21�,

d

dt
�n+	 = �2��t� − 2
 − ���n+	 − ��n+

2	 − 2��t��R	 + �� ,

�14�

d

dt
�R	 = − �2��t� + 2
 + ���R	 − ��n+R	 − 2��t� + �� ,

�15�

d

dt
� = − 4
� + 2
�n+	 �16�

for the following time-dependent quantities: �n+	= �b1
†b1	

+ �b2
†b2	, �R	= �b1

†b1	+ �b2
†b2	− �b1b2	+ �b1

†b2
†	, and �= ��b1

†b1

−b2
†b2�2	. We apply these equations for the case of the Gauss-

ian pump pulses, i.e., for

��t� =
�k


3
�

n=−�

�

e−�t − n��2/T2
�17�

and for the symmetrical NOPO, 
1=
2=
, where the mean
photon number of subharmonic modes are equal from one to
another �n1	= �n2	= �n	.

In the linear treatment of quantum fluctuations the vari-
ance V�t�=1+ ��R	 obeys the following equation:

dV

dt
= − 2�
 + ��t� + �nc�V + 2
 + 2��nc + �� , �18�

leading to the result

V�t� = 2�
−�

t

exp�− 2�
�

t

�
 + ��t�� + �nc�t���dt�
�
 + �c���

+ 2
��
−�

�

e4
���−��nc����d��
d� . �19�

This result is obtained for an over-transient regime t− t0
�
−1 and in � /
�1 approximation for periodic on time
parameter ��t� in �17�. Note that in the current experiments
the ratio k /
 �typically 10−8 or less�, and hence � /

=k2 /

3�1 is the small parameter of the theory. This result
relies on the above-threshold regime. The analysis of the
below-threshold regime leads to the formula �19� with nc
=0.

The dependence of V versus the scaled time is shown in
Fig. 2 for the parameters as in Fig. 1 and for two nonstation-
ary regimes. The dashed lines in Fig. 2 indicate the degree of
two-mode squeezing for the stationary regimes: T�
−1, �
→0, and �=�th. In both nonstationary regimes �a� the pulses
of duration T=0.6
−1 separated by the time interval �
=6
−1 and �b� T=0.5
−1 , �=2
−1, the modulation of the
quadrature variances repeats the periodicity of the pump la-
ser. Figures 2�a� and 2�b� illustrate CV entanglement when
duration of the pulses is close to a characteristic dissipation
time. It is clearly seen that the variances for pulsed dynamics
obey the EPR criterion V2�1 /4 for definite time intervals.
We also found a remarkable result that the variance goes
below the stationary limit of 0.5 in the ranges where photon
number is maximal for appropriate chosen parameters. For
intensity comparing Figs. 1�a� and 2�a�, we conclude that for
time intervals leading to the maximal photon number nmax
=6.5�107, the corresponding variance is equal to V=0.35.
On the other hand, the maximal variance Vmin=0.146 takes

FIG. 2. Degree of two-mode squeezing versus dimensionless
time for the following parameters: �a� �=10−8
 , �=1.1�th , �
=6
−1 , T=0.6
−1; �b� �=10−8
 , �=1.1�th , �=2
−1 , T=0.5
−1.
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place for the main photon number n=2.5�106.
Similar conclusions hold for the output measured integral

two-mode squeezing which is realized if Vout=2
�V−1��0
�30�. The lower bound for Vout in the stationary limit V
�1 /2 reads as Vout /2
�−1 /2. The above results indicate
that in the periodic pulsed regimes the normalized output
variance becomes less than −1 /2, i.e., Vout /2
�−1 /2 for the
definite time intervals.

B. Photon-number difference squeezing in the time domain

Let us now discuss photon-number correlation in the time
domain, considering output twin light beams from the pulsed
NOPO. The photon-number correlation of twin beams is usu-
ally characterized by the intensity-difference squeezing in
the spectral domain since the presentation of Ref. �39�. In
this way the intense twin beams’ quantum correlations have
been experimentally observed several years ago in NOPO
operated above its threshold �40� and the experimental
progress in this direction has been made in a series of papers
�41�. It should be noted again the difference between the
focus of this section and the above-mentioned papers in this
area. We analyze the intensity-difference squeezing in the
time domain, but not in the spectral domain.

We focus on the measurement scheme of photon-number
correlation in terms of photoelectric currents of two modes
�i1�t�	 , �i2�t�	. The photocurrent difference variance R�t�
= ��i1�t�− i2�t��2	− ��i1�t�	− �i2�t�	�2 in accordance with a stan-
dard theory of photoelectric detection reads as

R�t� = Rshot�t� + �2Q�
�2��n1	 + �n2	��G�t� − 1� , �20�

where Q is the total charge per photopulse, � is the dimen-
sionless quantum efficiency of detectors ���1�, the shot-
noise term Rshot�t� is proportional to the sum of photon num-
bers Rshot�t���n1�t�	+ �n2�t�	=2�n�t�	, while G�t�
=��t� /2�n�t�	, ��t�= ��b1

†b1−b2
†b2�2	.

Using Eq. �16� of periodically pulsed NOPO, the normal-
ized variance G�t� can be obtained in the following form:

G�t� =
2


�n�t�	�−�

0

d�e4
��n�t + ��	 . �21�

Surprisingly, the variance G�t� is expressed in a simple
enough form and in the framework of “exact” quantum
theory without restoring to a linear treatment of quantum
fluctuations.

For the case of an ordinary NOPO with stationary pump
amplitude, f�t�= f0=const, we conclude that

�n�t�	 = ns =
�f0 − 

3/k

k
, �22�

i.e., �n�t�	 is the stationary mean photon number of the
modes, and then

G�t� = �/2�n	 =
1

2
. �23�

Thus, in this case the variance normalized to the level of
quantum fluctuations for the coherent state reaches only 50%

relative to the coherent shot noise level. The late result is in
agreement with the result of Ref. �42�, carried out in the
framework of the stationary solution of the Fokker-Planck
equation.

Thus, for an ordinary NOPO under monochromatic pump,
the normalized variance of the photon-number difference G
is equal to 1

2 for arbitrary parameters in contrast to the
quadrature variance V which is a complex function of the
system’s parameters. Nevertheless, for the periodically
pulsed NOPO the corresponding time-dependent variances
V�t� and G�T� display the same temporal behavior for the
wide range of the parameters. Indeed, using Eqs. �14� and
�16� we obtain

dG

dt
= �− 2
 − 2��t� + ��1 + �n+	� − 2��t�

�R	
�n+	

+ �G
G + 2
 .

�24�

Since �G�
, n+�1, and hence
�R	

�n+	 �1, the equation can be

simplified as

dG

dt
= − 2�
 + ��t� − �nc�G + 2
 . �25�

As we show, Eqs. �18� and �25� coincide if �nc�
.
This result clearly shows that looking for two-mode

quadrature squeezing in the time domain for periodically
pulsed NOPO above threshold is equivalent to looking for
time-dependent photon-number difference squeezing.

Note that the numerical calculations on the base of the
formulas �5�, �13�, and �21� approve of this result. In fact, as
shown in our calculations, the curves for G�t� are coincided
with the curves �a� and �b� for V�t� depicted in Fig. 2. Thus,
we conclude that a demonstration of the integral CV en-
tanglement in the time domain can be performed also by a
direct measurement of the photon-number difference squeez-
ing.

IV. WIGNER FUNCTIONS AND PROBABILITY
DISTRIBUTIONS OF QUADRATURE AMPLITUDES

In this section we consider two-mode squeezed states pro-
duced in the pulsed NOPO from a different perspective on
the base of quantum distributions in the phase space. We
calculate numerically two kinds of Wigner functions, for the
reduced, one-mode state of NOPO and for EPR beams which
are combined on a one-half beam splitter. This investigation
seems to be interesting in the area of pulsed homodyne de-
tection and the so-called optical homodyne tomography. In
the method of pulsed homodyne detection a single measure-
ment of the quadrature amplitude of the signal pulse is per-
formed for each pulse in the time domain. Therefore, the
periodically pulsed NOPO is suitable for such a scheme of
the measurement.

Our calculations are based on the quantum state diffusion
�QSD� approach that represents the reduced density operator
of two generated modes by the mean over the projectors onto
the stochastic states ���	 of the ensemble ��t�=M����	�����,
where M denotes the ensemble averaging. The corresponding
equation of motion is
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�d��	 = −
i

	
H���	dt +

1

2
�L†L + �L†	�L	 − 2�L†	L����	dt

+ �L − �L	����	d� , �26�

where � indicates the dependence on the stochastic process,
the complex Wiener variable d�i satisfies the fundamental
properties M�d�i�=0, M�d�id� j�=0, M�d�id� j

��=�ijdt, and
the expectation value �Li	= ����Li���	.

First, we calculate Wigner functions based on QSD for
each of the individual �signal or idler� modes. This is ob-
tained by integrating the two-mode Wigner function
W��1 ,�2� over one of the phase-space variables �1 or �2

corresponding to the operators b1 and b2. Due to the symme-
try of the W��1 ,�2� with respect to �1 or �2, the one-mode
Wigner functions for the signal and the idler modes are equal
to each other and can be represented as

W1��� =� d2�2W��1,�2� . �27�

We calculate W1��� by using the reduced density operators
for each of the modes which are constructed from the density
operator � of both modes by tracing over one of the modes
�1�2�=Tr2�1����.

We assume the adiabatic limit for the fundamental mode,

3�
1 ,
2, that allows us to operate effectively with two
subharmonic modes. Indeed, in this limit of strongly dumped
fundamental mode �3 the corresponding effective Hamil-
tonian reads as

Heff = i	
k�f�t�


3
�ei
kb1

†b2
† − e−i
kb1b2� , �28�

while the master equation for the subharmonic modes �7�
becomes

��

�t
=

1

i	
�Heff,�� + �

i=1

3


i�2bi�bi
� − bi

†bi� − �bi
†bi�

+
k2


3
�2b1b2�b1

†b2
† − b1

†b1b2
†b2� − �b1

†b1b2
†b2� . �29�

It is obvious that the appearance of the last term in this
equation means that the influence of the adiabatically elimi-
nated fundamental mode is also reduced to an additional loss
mechanism for the subharmonic modes. In the undepleted
pump approximation the last term in this equation should be
omitted.

We perform calculations using the standard form of the
Wigner functions in a Fock space

Wi��,�� = � �i,mnWmn��,�� �i = 1,2� , �30�

where � ,� are the polar coordinates in the complex phase-
space plane and the coefficients Wmn�� ,�� are the Fourier
transforms of matrix elements of the Wigner characteristic
function.

Examples of both Wigner functions W1��� and corre-
sponding distributions of quadrature amplitudes are plotted
in Fig. 3 for the different time intervals within the pulsing

period, which correspond to the minimum and maximum
values of the photon numbers. As we see, the Wigner func-
tions depend only on the radial coordinate �= ���, and are
uniformly distributed with respect to the phase � ��=�ei��.
This radial symmetry is obvious and reflects the well-known
phenomenon of phase diffusion occurring in NOPO.

The one-mode Wigner function for NOPO under
continuous-wave pump field was analytically calculated in
�43�. Our results have similar form with this analytical result,
however additionally contain some important details con-
cerning nonstationary pulsed regime of NOPO. Clearly the
Wigner function is non-Gaussian and hence the two-mode
state from which it is derived is non-Gaussian as well.

We next calculate the Wigner function for the EPR beams
by combining the correlated output modes �1� and �2� with a
one-half beam splitter. This procedure is proposed here for
verification of EPR entanglement in the time domain as a
two-mode squeezing. Note that the opposite procedure is
usually used for generation of CV entangled light beams.
Indeed, it was demonstrated that quadrature entanglement
can be achieved by linear interference of two intense ampli-
tude squeezed modes on a beam splitter �44�.

We consider the output behavior of NOPO assuming that
all losses occur through the output couples �21�. In this case
the output fields of subharmonics are bi

out�t�=�2
bi�t� �i

FIG. 3. Wigner functions for each of the modes at different
times: �a� corresponds to time with minimal photon number and �b�
for maximal photon number. The parameters are �=0.05
 , �
=1.3�th , �=4
−1 , T=1
−1.
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=1,2�, and the output modes �bA ,bB� from the one-half beam
splitter can be expressed as

bA = �2
�b1 + b2� , �31�

bB = �2
�b1 − b2� . �32�

We present below the results for the Wigner functions
WA���, WB��� of the combined, dimensionless modes �
=�1+�2, �=�1−�2 corresponding to the operators bA /�2
,
bB /�2
. The time evolution of the Wigner functions within
the pulsing period t0+� is presented in Figs. 4 and 5.

A qualitative demonstration of strong EPR entanglement
that is below the stationary limit is provided in Figs. 4�a� and
4�b�, which show the Wigner function of the combined
modes �A� and �B� for the time intervals corresponding to the
maximal squeezing. Indeed, the qualitative measurement of
the time-dependent squeezing effect can be revealed from
our results by considering the quadrature amplitude probabil-
ity distributions P�x� , P�y��x=Re��� ,y=Im����. Those are
plotted in the backgrounds of Fig. 4. Note that probability
distribution P�x ,
� for any quadrature amplitude operator
X�
�= 1

�2
�ae−i
+a†ei
� can be obtained by integrating the

Wigner function over the conjugate quadrature

P�x,
� = �
−�

�

dpW�x cos 
 − p sin 
,x sin 
 + p cos 
� .

�33�

In Fig. 4 we plot the marginal distributions P�X�= P�x ,0�
and P�Y�= P�x ,� /2�. The evolution of the Wigner function
of �A� mode as well as the evolution of the quadrature am-
plitude distribution within the pulsing period is demonstrated
in Fig. 5: �a� shows the Wigner function which is close to the
Gaussian at t= tc−T, where tc= t0+ i��i�Z� is a center point
of the Gaussian pulse; �b� shows squeezed Wigner function
evolved for a time t= tc; and �c� and �d� show that after a time
t= tc+0.75T two additional side humps are displayed. It
should be noted that analogous two-humps structure dis-
played the Wigner function of a degenerate optical paramet-
ric oscillator �OPO� in the above-threshold regime �see, for
example, �45��. These humps correspond to the states with
equal numbers of photons and opposite phases. As we see
from the formulas �13� with decreasing the parameter �, the
photon number involved in the above-threshold operational
regime increases. In this regime the Wigner function �c�
splits into two well-separated humps.

V. NEGATIVE WIGNER FUNCTIONS
IN THE CONDITIONAL

STATE-PREPARATION SCHEMES

In this section we consider Wigner functions of intensity-
correlated twin beams following the conditional state-
preparation scheme. According to the method of conditional
measurement, counting n photons in one of the correlated
modes projects the other mode in an n-photon Fock state,
which can then be analyzed using quantum homodyne to-
mography. These measurements were recently demonstrated
for one-photon Fock state �n=1� �25,26� as well as for two-
photon Fock state �n=2� �27� by using a pulsed nondegen-
erate amplifier producing a pure two-mode squeezed state.
The prepared states have been analyzed by a homodyne de-
tection operating in a time-resolved regime. Here we con-
sider this problem for the more general case that includes the
full description of dissipative and pump field effects in the
framework of the theory of periodically pulsed NOPO. The
single-photon conditional measurement �n=1�, as well as
both two-photon �n=2� and three-photon �n=3� measure-
ment schemes, is considered. We assume that for the multi-
photon cases, n=2 or n=3, the detection of coincidences by
the photodiodes operating on a photon-counting regime
mean that at least two-photon or three-photon states are cre-
ated by the same pulse.

For this goal we calculate the conditional Wigner func-
tions for light pulses if one of the modes �labeled trigger� is
prepared in an n-photon Fock state �n=1,2 ,3�. When
n-photon Fock state ��n�2�	 of the trigger mode �2� is de-
tected, then the signal mode �1� is prepared in a quantum
state whose density operator �1�n� reads as

�1�n� =
��n�2�����n�2�	

Tr��n�2�����n�2�	
. �34�

FIG. 4. Wigner functions for transformed coordinates: �a� mode
�1+�2; �b� mode �1−�2. The parameters are �=0.05
 , �
=1.3�th , �=4
−1 , T=1
−1.
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The resulting conditioned Wigner function of the output
signal mode �1� is calculated on the formula analogous to Eq.
�30�,

W�n;�,�� = �
m,p

�m�1���1�n��p�1�	Wmp��,�� , �35�

where �m�1�	 and �p�1�	 are the Fock basis states of the mode
�1�.

We present the results of numerical calculations based on
the QSD approach for the following Wigner functions:
W�1;� ,��, W�2;� ,��, and W�3;� ,�� corresponding to the
various conditional measurement schemes with n=1, n=2,
and n=3 photon Fock states.

Examples of the Wigner functions for the below-threshold
operational regime of NOPO are plotted in Fig. 6 for the
time intervals within the pulsing period, which correspond to
the maximum values of negativity. As we see, all three
Wigner functions clearly display negative regions in the
phase space that reflect a highly nonclassical character of
quantum states. All Wigner functions are rotationally sym-
metric and hence the conditional mixed states are phase in-
dependent. In Fig. 7 we show the radial dependence of the
Wigner functions. We stress that the results depicted in Figs.
6�a� and 6�b� are in agreement with the experimental and
theoretical results on conditional Wigner functions W�1� and
W�2� presented in �27�. Thus, the corresponding conditional
mixed states are very close to one-photon and two-photon
Fock states. The nonclassicality of the mixed states depicted

in Figs. 6 and 7 are displayed as quantum interference ef-
fects. It is quite reasonable that these effects for the state
preparation schemes based on pulsed NOPO are less than for
the case of the photon pair generated in the process of para-
metric down conversion �26,27� or in an ideal nondegenerate
amplifier producing a pure two-mode squeezed state �27�.
The negative values of the Wigner functions W�1�, W�2�, and
W�3� decrease with increasing of the photon number of the
signal mode. Nevertheless, as our analysis shows, the nega-
tivity of Wigner functions also takes place for the pulsed
NOPO above threshold. However, in this regime the time
intervals when the Wigner functions involve negative values
correspond to a small number of photons. With increasing of
the parameter � �the intensity of the pump field� such time
intervals become shorter. Thus, the time intervals where the
Wigner functions contain negative values become shorter as
well.

VI. CONCLUSION

In conclusion, we have studied the peculiarities of EPR
light beams in the time domain. We have continued the re-
cent investigation of periodically modulated NOPO and EPR
entanglement �21� in one side and also we have considered
the intensity-difference squeezing and the quantum distribu-
tions of EPR beams on the other side. We have proposed
here a more realistic scheme generating nonstationary EPR
beams, that is, a NOPO pumped by a sequence of Gaussian
laser pulses. More importantly, we have seen that such

FIG. 5. Evolution of the
Wigner function within the puls-
ing period for the parameters �
=0.05
 , �=1.3�th, �=4
−1, T
=1
−1: �a� t= tc−T, �b� t= tc, �c� t
= tc+T, �d� t= tc+2T.

ADAMYAN, ADAMYAN, AND KRYUCHKYAN PHYSICAL REVIEW A 77, 023820 �2008�

023820-8



NOPO leads to formation of EPR beams with high degree
of two-mode quadrature squeezing as well as intensity-
difference squeezing. Indeed, we have demonstrated the op-
erational regimes �depending on the durations of the pulses
and the intervals between them� for which the level of the
total squeezing, i.e., integrated on the spectral bandwidth
squeezing, goes below the standard limit established for an
ordinary NOPO with monochromatic pumping. We have
demonstrated for the wide range of the parameters that the
time-dependent quadrature variance V�t� is equal to the nor-
malized correlation function G�t� describing photon-number-
difference squeezing. Thus, we have concluded, that the CV
entanglement in the time domain can be relatively easily
demonstrated by direct measurement of the intensity-

difference squeezing. More importantly, we have analyzed
the evolution of various Wigner functions within the pulsing
period. These results demonstrate a highly nonclassical char-
acter of mixed states generated in periodically pulsed NOPO.
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APPENDIX: CALCULATION OF THE THRESHOLD

We calculate the threshold of generation for NOPO under
a sequence of Gaussian pulses. For this goal we turn, at first,
to integration of a periodic function.

Let us consider a periodic function constructed as follows:

g�t� = �
n=−�

�

f�t + n�� . �A1�

It is easy to prove that

�
0

�

g�t�dt = �
−�

�

f�t�dt . �A2�

Indeed,

F�t� = �
−�

t

f���d� , �A3�

and we assume that F�+��= I� +�.
Then

�
0

�

g�t�dt = �
n=−�

� �
0

�

f�t + n��dt = �
n=−�

�

�F„�n + 1��… − F�n���

= F�+ �� − F�− �� = I , �A4�

because F�−��=0.
Applying Eq. �A2� we obtain

1

�
�

0

�

�thf�t�dt =


3

k
, �A5�

FIG. 7. Radial dependence of Wigner functions for conditional
measurement for the parameters �=0.05
 , �=0.5�th , �
=4
−1 , T=1
−1: n=1 �solid line�, n=2 �dashed line�, n=3 �dotted
line�.

FIG. 6. Wigner functions and corresponding quadrature distri-
butions for conditional measurement within the pulsing period for
the parameters �=0.05
 , �=0.5�th , �=4
−1 , T=1
−1: �a� n=1,
�b� n=2, �c� n=3.
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�th
T

�
�

−�

�

e−t2/T2
dt/T =



3

k
, �A6� �th =



3

��k

�

T
=


k
���

�

T
. �A7�
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