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We study a four-level double-� atomic configuration working as a two photon linear amplifier where two
atomic transitions independently interact with cavity mode, while the other transitions are driven by a strong
pump field. It is found that our system always works as a phase sensitive linear amplifier with no window for
a phase insensitive linear amplifier. We also investigate that the system behaves as a two-photon correlated-
emission laser under certain conditions.
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I. INTRODUCTION

A one-atom laser, a device that utilizes a trapped atom for
the amplification of the laser field, is a system of interest in
quantum optics. In the last decade there have been many
theoretical proposals �1–5� as well as experimental demon-
stration �6–8� for the realizing of such a device. These ex-
periments have utilized a beam of atoms in such a way that
only one atom at a given time is responsible for lasing �6�.
Contrary to this, McKeever et al. �9� were the first to have
demonstrated the lasing of a single trapped atom. The same
group also presented the theoretical analysis of their experi-
ment �10�.

The one-atom laser operation needs small mode volume
�1,3� which demands high cavity finesse so that the “strong
coupling regime” conditions may be obtained. In this regime,
Rabi frequency of the atom is much greater than both the
atomic spontaneous emission rate and the cavity decay rate
causing the atom to undergo several Rabi cycles before the
decays. Theoretical predictions, from a full quantum descrip-
tion of the dynamics, are significantly different from the
semiclassical laser models �3�. The investigation of one atom
working as a source of a laser field is of fundamental interest
as it allows one to test certain predictions of quantum optics.
For example, in Ref. �11�, Pellizzari and Ritsch showed that
the stationary state of a one-atom Raman laser can get very
close to a photon number eigenstate. Although the output of
a one-atom laser is not a coherent state, it consists of a non-
classical state of radiation �1,12�. In a single atom laser one
can observe photon antibunching as well as sub-Poissonian
photon statistics �1� with coincidence measurements, particu-
larly at small pump rates �4�. The emission is weak as com-
pared with the laser standards and can be helpful in future
quantum information schemes �9�.

Here we study the atomic coherence effects in a one-atom
laser which are the basis of many interesting phenomenon
ranging from the correlated emission laser �13� to quantum
informatics. In the subject of correlated emission laser the
phase sensitive optical amplifiers �13,14� exhibit a wide
range of possibilities regarding the amplification of a signal
and the suppression of noise to continuous variable entangle-
ment �14�. We know that one important source of noise in

lasers is spontaneously emitted photons. In this case if the
two spontaneous emission events are correlated then it is
possible to quench the noise under certain conditions. In this
way the linewidth of the laser can be suppressed bellow the
Schawlow-Townes limit �15,16�. There are many systems
proposed for the correlated emission laser �13,17,18�. In
these systems usually the Fokker-Planck equation in
P-representation �19� is used to find the quantum noise
quenching condition, i.e., the vanishing of the diffusion co-
efficient for the relative phase at its phase locking point un-
der certain conditions �17,20�. We also adopt the same meth-
odology for finding the noise quenching parameters in our
proposal.

It has been found recently that the correlated emission
laser has the important property of producing a continuous
source of the two-mode entanglement �14,21,22� at macro
scale. It has been shown that a two-mode correlated emission
laser can lead to two-mode entanglement even when the av-
erage photon number in the field modes is very large �21,22�.
In fact Kiffner et al. studied the atomic system closer to our
system and showed the entanglement between the two differ-
ent cavity fields �14�.

In this paper we present a study of the four-level double-
� atomic system serving as a two-photon linear amplifier
and a correlated-emission laser. In our system two atomic
transitions are driven by strong classical fields and the other
two transitions are resonant to the cavity mode �i.e., we con-
sider the case when the two atomic transitions interacting
with the cavity are of the same frequency�. The configuration
we consider is, however, a “closed loop four-level atomic
configuration.” The same atomic configuration is discussed
in many papers with different perspectives �9,10,14�. In this
paper we find the parameters where the noise quenching can
be achieved and present a detailed analysis of the equations
obtained in our case. In this analysis both the resonant and
off-resonant case of atom-field interaction are discussed.

II. MASTER EQUATION FOR THE FIELD DENSITY
OPERATOR

Our system consists of a single four-level atom trapped in
a cavity. The atom interacts with two classical fields acquir-
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ing energy and interacts with the cavity field to amplify it.
Atomic level structure is shown in Fig. 1 where the transi-
tions �a�↔ �c� and �b�↔ �d�, with transition frequencies la-
beled as wac and wbd, interact with the cavity mode having
coupling constant g1 and g2. These two transitions have de-
tuning �2=v2−wac and �4=v4−wbd, respectively, where v2
and v4 are the cavity resonance frequencies. The atomic tran-
sitions �a�↔ �d� and �b�↔ �c� are labeled as wad and wbc and
are driven by a strong classical field of frequency �1 and �3,
respectively. The field �1 and the atomic transition wad have
detuning �1=�1−wad. Similarly the field �3 and atomic
transition frequency wbc are mismatched by detuning �3
=�3−wbc.

It is clear from Fig. 1 that our system is a closed loop
system as stated earlier. For the study of such a system, we
first derive the equation of motion for the reduced density
operator of the cavity field where the free part of the Hamil-
tonian for the field and the atom are HF=�va†a and HA
=�i=a,b,c,d��i � i��i�, respectively. For simplicity sake, we
have considered the situation where the atomic transitions
from �a�↔ �c� and �b�↔ �d� have equal frequencies �i.e., v2
=v4=v�.

The interaction part of the Hamiltonian consists of two
parts. One is related to the �a�↔ �c� and �b�↔ �d� transitions
and is the so-called cavity Hamiltonian. Under dipole and
rotating wave approximation we can write this part of the
Hamiltonian as

HC = �a�g1�a��c� + g2�b��d�� + H.c., �1�

where g1 and g2 are the vacuum Rabi frequencies and a�a†�
is the annihilation �creation� operator of the field mode. It is
to be noted that in the following calculations we take g1 and
g2 as real quantities. The second part of the Hamiltonian
governing the interaction of the atom and the classical fields
�denoted by HL� is given by

HL = − ��1e−i�1t�a��d� − ��2e−i�3t�b��c� + H.c., �2�

where �1 and �2 are the Rabi frequencies of the driving
fields. In general the Rabi frequencies are complex, i.e., �1
= ��1 �e−i�1, �2= ��2 �e−i�2. The equation of motion for the
atom-field density operator is given by

d�

dt
= −

1

i�
��,HA + HF + HC + HL� + L	��� , �3�

where the last term represents decay and reads

L	��� = −
1

2�
i=1

4


i��i
†�i� + ��i

†�i − 2�i��i
†� . �4�

The atomic transition operators �1= �d��a�, �2= �c��a�, �3

= �c��b�, and �4= �d��b� denote the corresponding transitions
in the atomic internal state and 
i are the decay rates of these
atomic transitions.

Reduced density operator

In this section we obtain the equation of motion for the
reduced density operator of the cavity field. For convenience,
we transform the Schrödinger picture density operator into

the interaction picture via Ŵ=ŴF � ŴA where ŴF and ŴA
are the unitary operators corresponding to the field and the
atom, respectively. In the expression of unitary operator cor-
responding to the atom we also add detunings of the atomic
levels. Under this transformation the density operator is

given as �̃=Ŵ�Ŵ†, where we put a tilde to mark the new
frame. Since our configuration consists of a closed loop, we
consider �1=�2=�a, and �3=�4=�b, which insures that the
two photon resonance condition is fulfilled. This also ensures
that the Hamiltonian will be time independent in the interac-
tion picture.

From the governing equation of motion for the density
matrix

d�̃

dt
= −

1

i�
��̃,H0 + HC� + L	��̃� , �5�

we obtain the equation of motion of the reduced density
matrix for the cavity field using d

dt ��̃F�=TrA� d�̃
dt

�, which yields

d�̃F

dt
= − ig1�a†, �̃ac� − ig2�a†, �̃bd� + H.c. �6�

It is clear from Eq. �6� that for the reduced density matrix �̃F,
we need �̃ac, �̃bd, and their Hermitian conjugates. To get
these expressions we return to Eq. �5� and solve it for �̃ac,
�̃bd, and their Hermitian conjugates. During solving for these
parameters we retain only those terms that are first order in
coupling constants g1 and g2. Also we expand �̃ in Eq. �5� up
to first order, �̃= �̃0+ �̃C, and consider that HC is first order in
g1 and g2. The resulting uncoupled differential equations are

d�̃0

dt
= L0��̃0� , �7�

d�̃C

dt
= −

1

i�
��̃0,HC� + L0��̃C� , �8�

where

FIG. 1. �Color online� Two-photon linear amplifier atomic con-
figuration showing its coupling with the pumping lasers and the
cavity modes of the cavity.
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L0�·� = −
1

i�
�· ,H0� + L	�·� . �9�

Equation �7� is the zeroth-order equation which describes the
interactions of the atom with the classical laser fields and Eq.
�8� is the first-order equation governing the cavity mode and

the damping terms. We find the steady-state ��̇̃0=0� solution
of Eq. �7� for �̃0 with the condition TrA��̃0�= �̃F. Inserting
this solution into Eq. �8� we obtain the steady-state solution

of Eq. �8� for �̃C. With these two solutions ��̃0 and �̃C� we
find

ig1�̃ac = �11a�̃F + �12a
†�̃F + 
11�̃Fa + 
12�̃Fa†,

ig2�̃bd = �22a�̃F + �21a
†�̃F + 
22�̃Fa + 
21�̃Fa†. �10�

Here the coefficients �ij and 
ij are given in the Appendix. It
follows on substituting Eq. �10� into Eq. �6� that

d

dt
�̃F = �
11

* + 
22
* �aa†�̃F + �
11 + 
22��̃Faa† − ��11 + �22�a†a�̃F − ��11

* + �22
* ��̃Fa†a + �
12

* + 
21
* �aa�̃F + �
12 + 
21��̃Fa†a†

− ��12
* + �21

* ��̃Faa − ��12 + �21�a†a†�̃F − �
11
* + 
22

* + 
11 + 
22�a†�̃Fa + ��11 + �22 + �11
* + �22

* �a�̃Fa†

− �
12
* + 
21

* − �12
* − �21

* �a�̃Fa + ��12 + �21 − 
12 − 
21�a†�̃Fa†. �11�

Equation �11� provides the bases for further calculation
where we study the lasing properties of our system.

III. TWO-PHOTON LINEAR AMPLIFIER

This section evaluates the noise and gain terms for two
conjugate quadratures so that we may examine our system as
a two-photon linear amplifier. We make a system of first-
order differential equations for expectation values of the op-
erators a, a†, a†a, and aa, which are required to calculate the
variance of quadratures. Starting with the equation of motion
for the expectation values �i.e., d

dt �O�= d
dtTr�O�̃F�

=Tr�O d
dt �̃F��, Eq. �11� provides the differential equations for

the required operators

d�a�
dt

= �1�a� + �2�a†� , �12�

d�a†a�
dt

= ��1 + �1
*��a†a� + �2

*�aa� + �2�a†a†� + �11, �13�

d�aa�
dt

= 2�1�aa� + 2�2�a†a� + 2�12, �14�

where

�1 = − ��11 + �22 + 
11 + 
22� , �15�

�2 = − ��12 + �21 + 
12 + 
21� , �16�

�11 = − �
11 + 
22 + 
11
* + 
22

* � , �17�

�12 = − ��12 + �21� . �18�

This set of equations of motion for the expectation values
�Eqs. �12�–�14�� have the same structure as was derived by

Ansari, Gea-Banacloche, and Zubairy in Ref. �13�. However,
in our case the coefficients of these operators have a different
structure. It is well-known that the system of equations from
Eqs. �12� and �14� are exactly solvable. Here we discuss two
special cases of resonant and off-resonant atom-field interac-
tions.

Resonant case

For the sake of computational simplicity we take decay
rates of different atomic level to be equal, i.e., 
1=
2=
3
=
4=
. In this case �1 becomes equal to zero for �a=�b
=0. We find the expressions for �2, �11, and �12 under these
conditions, i.e.,

�2 =
2
g1g2�1�2

P6
, �19�

�11 =
2
�g1

2 + g2
2���1�2��2�2�2
2 + ��1�2 + ��2�2�

P6P7
, �20�

�12 =
2
g1g2�1�2�P7 − 4��1�2��2�2�

P6P7
, �21�

where P6=
2���1�2+ ��2�2�+4 ��1�2 ��2�2 and P7= ���1�2
− ��2�2�2+2
2���1�2+ ��2�2�. Now we assume that �2 is a real
number, i.e., �2=�2

*. In this case Eq. �19� shows that the
product of Rabi frequencies �1�2= ��1 �e−i�1 ��2 �e−i�2

→ ��1 � ��2 �e−i��1+�2�. This suggests that by adjusting the
phases of the classical fields we can control phase sensitive
amplification. This is possible when �1=−�2 so that the
imaginary part of the equation always vanishes. By taking �2
a real number also makes �12 real. In this case, Eqs.
�12�–�14� attain the simple form

d�a�
dt

= �2�a†� , �22�
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d�a†a�
dt

= �2�aa� + �2�a†a†� + �11, �23�

d�aa�
dt

= 2�2�a†a� + 2�12. �24�

The resulting solutions are

�a�t = �a�0 cosh��2t� + �a†�0 sinh��2t� , �25�

�a†a�t = �a†a�0 cosh�2�2t� +
�aa�0

2
sinh�2�2t�

+
�a†a†�0

2
sinh�2�2t� +

�11

2�2
sinh�2�2t�

+
�12

�2
	cosh�2�2t� − 1
 , �26�

�aa�t = �a†a�0 sinh�2�2t� +
�aa�0

2
	cosh�2�2t� + 1


+
�a†a†�0

2
	cosh�2�2t� − 1
 +

�11

2�2
	cosh�2�2t� − 1


+
�12

�2
sinh�2�2t� . �27�

With the above solution in hand, we consider the vari-
ances of two quadratures defined by X1= 1

2 �a+a†� and X2

= 1
2i �a−a†�. The expectation values for these quadratures are

given by

�X1�t = �G1�t��X1�0, �28�

�X2�t = �G2�t��X2�0, �29�

where

G1�t� = exp�2�2t�, G2�t� = exp�− 2�2t� �30�

are identified as the gain terms in defined quadratures, re-
spectively. Our system is therefore phase-sensitive for non-
vanishing �2. The variances of two quadratures are obtained
using the standard methods discussed in Ref. �16�,

��X1�t
2 = G1��X1�0

2 + N1�G1 − 1� , �31�

��X2�t
2 = G2��X2�0

2 + N2�G2 − 1� , �32�

where

N1 =
2�12 − �2 + �11

4�2
, �33�

N2 =
2�12 − �2 − �11

4�2
�34�

show the noise dependence in the two conjugate quadratures.
When �2�0, we have N1�N2. Similarly, when �2�0, we
have N1�N2 and this is only possible when e−i��1+�2�=−1.

Regarding g��� and the fact that g1 and g2 occur in a
symmetric way in the expression of G1, G2, N1, and N2, we

make one more assumption, namely, g1=g2=g which does
not effect our analysis. The resulting simple expressions for
gains and noises are

G1�t� = exp�4t
��1���2�g2

P6

 , �35�

G2�t� = exp�−
4t
��1���2�g2

P6

 , �36�

N1 =
1

4
+

��1���2�	2
2 − 2��1���2� + ���1� − ��2��2

2P7

,

�37�

N2 =
1

4
−

��1���2�	2
2 + 2��1���2� + ���1� + ��2��2

2P7

.

�38�

Next we investigate the gain and noise for a few typical
regions.

When any one of the Rabi frequencies is zero

In the absence of both driving fields our system becomes
two two-level systems interacting with the same cavity field
where the upper state decays to the lower state, respectively.
Since there is no source of external excitation we do not have
any gain after the whole system reaches its steady state. The
equation of motion for the cavity field is d�F /dt=0. In case
any of the Rabi frequencies is equal to zero, we see from Eq.
�19� that �2=0. Therefore from Eqs. �35�–�38�, it is apparent
that

G1 = G2 = 1, N1 = N2 =
1

4
, �39�

unless 
=0. We have no gains and consequently no noise
added because variances do not change.

When Rabi frequencies are equal

Here we consider a special case when both the Rabi fre-
quencies are equal �i.e., ��1 � = ��2 � = ����. In this case the
following results are obtained for the gain and noises:

G1 = exp� 4
g2���2t

2
2���2 + 4���4�
= exp� 2
g2t


2 + 2���2� � exp�
g2t

���2 �, ��� � 
,

� exp�2g2t



�, ��� � 
 , �40�
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G2 = exp�−
4
g2���2t

2
2���2 + 4���4�
= exp�−

2
g2t


2 + 2���2� � exp�−

g2t

���2 �, ��� � 
,

� exp�−
2g2t



�, ��� � 
 , �41�

N1 =
1

4
+

���2�2
2 − 2���2�
8
2���2

=
1

4
+


2 − ���2

4
2

� −
���2

4
2 , ��� � 
 ,

N1 → − � when 
 → 0, �42�

�
1

2
, ��� � 
 , �43�

N2 =
1

4
−

���2�2
2 + 6���2�
8
2���2

=
1

4
−


2 + 3���2

4
2

� −
3���2

4
2 → − � , ��� � 
 ,

N2 → − � when 
 → 0, �44�

�0, ��� � 
 . �45�

We see �for �2�0� that G1�1, G2�1, and G1=1 /G2
always hold. If �� � �
, it becomes a peculiar phase-
sensitive linear amplifier; X1 amplified whereas X2 deampli-
fied, with noise only in the X1 quadrature. If �� � �
, X1 is
amplified whereas X2 deamplified, but unequal infinite minus
noises accompanied into both the quadratures. In this case
our system becomes a degenerate parametric amplifier �13�.
The system behaves differently when �2�0. The noise N1
behaves like noise N2 and Gain G1 behaves like G2, and vice
versa, for a suitable choice of phase i.e., exp�−i��1+�2�
=1�, see Figs. 2 and 3.

Other regions

From the two special and extreme cases, one might guess
the whole picture. For those cases we already have quite a
few expressions there, though it is apparent that we will en-
counter more formidable expressions in other regions. In that
sense, a glimpse to the graphs gives us an insight. Here we
present graphs of gains and noises under the conditions used
hitherto; �a=�b=0, 
i=
, gi=g, and �1�2= ��1 � ��2�. For
each Gi, Ni we provide two graphs, one in the proximity of
the origin and the other for a more broader view. This is
because there are quite a few variations near the origin. Also
note the ranges of each gain and noise. Parameters are deter-
mined regarding experimental conditions, for example, those
in Ref. �9�.

In the previous work �17� �where atomic coherence in a
three level cascaded model is initially injected�, two quadra-
tures obtained the same gain but different added noises. Also
in Ref. �13� atomic coherence is induced by a driving field
and the system behaves as a phase insensitive linear ampli-
fier, i.e., equal gain and equal noise in both quadratures for
�� � �	 whereas it becomes a parametric amplifier, i.e., dif-
ferent gains, G1G2=1, and vanishing noises in both quadra-
tures for �� � �	. These results show that the way atomic
coherence enters into a system leads to differences in the
dynamics of the system. Compared to the above cited papers,
our system is close to the second one since the atomic co-

FIG. 2. �Color online� Gain and noise of quadrature X1. We set

=1 MHz, g=10 MHz, and t=10 ns. For gain and noise there are
two graphs, respectively: One in the proximity of the origin and the
other for a more broader view.

FIG. 3. �Color online� Gain and noise of quadrature X2. We set

=1 MHz, g=10 MHz, and t=10 ns. For gain and noise there are
two graphs, respectively: One in the proximity of the origin and the
other for a more broader view.
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herence is induced by driving fields. However, as we see in
the graphs, our system shows remarkably different behavior
as compared with the other system. It always works as a
phase sensitive linear amplifier with no window for a phase
insensitive linear amplifier. However, it never obtains vanish-
ing added noises for both quadratures as in the case for a
parametric amplifier. Therefore it cannot reproduce the result
of Ref. �13�. It also adds noise to amplified quadrature X1
through preferred selection of phases of the driving fields,
and no noise to deamplified quadrature X2 so that it cannot
reproduce the result of Ref. �17�.

Another difference from the result of Ref. �13� occurs
when there are no classical driving fields. The system in �13�
behaves as a phase-insensitive amplifier while we do not
have this result. The reason is that the injected atoms are

prepared in an excited state which serves as a source of en-
ergy to the cavity field while our system does not have that
kind of source in the absence of driving fields.

Off-resonant case

In this section, again we consider equal decay rates. For
the case where �a��b, �1 is in general not zero, but if �a
=�b, then it becomes zero. Here, for the sake of simplicity,
we consider an equal nonzero detuning case which gives the
following results:

�2 =
2g1g2�1�2�
 + i�����d�2 + 2
2��s� − 2i�
��d��2

��d�2	4
2��s + �2� + ��d�2
 + 4
4��s�2 ,

�46�

�11 =
2
�g1

2 + g2
2���1�2��2�2��s	��d�2 + 4
2�
2 + �2 + �s�
 − 8
2��1�2��2�2�

	�
2 + �2��s + 4��1�2��2�2
���d�2	��d�2 + P9
 − P8�
, �47�

�12 =
2g1g2�1�2	�
2 + �2��s + 4��1�2��2�2
����d�2�	��d�2 + P9
 − P8�

	�
2 + �2��s + 4��1�2��2�2
���d�2	��d�2 + P9
 − P8�
, �48�

where �d= ��1�2− ��2�2, �s= ��1�2+ ��2�2, P8
=16
2 ��1�2 ��2�2��s−
2�, and P9=4
2��d+
2+�2�. Here
the phase of �2 is determined by �
+ i���1�2 so we can
make �2 real by adjusting the phases of driving fields as in
the resonant case. This could be achieved by setting the
imaginary part of �2 �i.e., � cos��1+�2�−
 sin��1+�2�� in
Eq. �46� equal to zero. According to this situation the sum of
the phases can easily be adjusted so that the condition �1
+�2=tan−1�
 /�� should be fulfilled for any value of 
 and
�. Therefore we take �2=�2

*�0 which is achievable by ad-
justing the phases of the driving fields. In this situation, for
the off-resonant case with modified values of �2, �11, and �12
�Eqs. �46�–�48��, we have exactly the same differential equa-
tions, as given in Eqs. �12�–�14� for the expectation values of
different field operators. Hence we can straightforwardly get
the expressions for the quadratures and relevant expressions
for gains and variances. The noises in the conjugate quadra-
tures in the off-resonant case are given by

N1 =
2 Re��12� − �2 + �11

4�2
, �49�

N2 =
2 Re��12� − �2 − �11

4�2
, �50�

showing explicitly the identical expressions as in the case of
resonant atom-field interaction. Again we see that g1, g2 ap-
pear in a symmetric way so that we may assume g1=g2=g
without any problem. Basically we have similar results for
gains and noises for a nonzero off-resonant case if we adjust

driving fields appropriately. We show corresponding graphs
for gains and noises.

IV. TWO PHOTON LASER

In this section, we investigate the properties of our system
as a correlated emission laser adding cavity decay terms
which are essential for the purpose, i.e.,

�d�

dt
�

decay
= − 	�a†a�F + �Fa†a − 2a�Fa†� , �51�

where 	 is the cavity decay rate. Since we do not consider
the saturation of the gain medium our equations are valid in
the linear regime below threshold. However, to a good ap-
proximation we can get information about phase drift and the
diffusion term of steady state.

To convert our cavity decay term added master equation
to a c-number Fokker-Planck equation in the
P-representation, we use

a������ = ������� , �52�

a†������ = � �

��
+ �*������� . �53�

Hence our system is described by
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�P

�t
= ���
11 + 
22�� �

��
� −

�2

�� � �*� + ��11 + �22 + 	�
�

��
�

+ ��12 + �21�� �

��
�* −

�2

��2� + �
12 + 
21�
�

��
�*


+ c.c.�P . �54�

We transform the above equation into the amplitude and
phase variable r and � representation by considering �
=rei�. The relevant operators can be written as

�

��
=

1

2
e−i�� �

�r
−

i

r

�

��
� , �55�

�

��
� =

1

2r

�

�r
r2 −

i

2

�

��
, �56�

�2

�� � �* =
1

4r2�r
�

�r
r

�

�r
+

�2

��2� , �57�

�2

��2 =
1

4
e−2i�� �2

�r2 −
1

r2

�2

��2 −
2i

r

�2

�r � �
−

1

r

�

�r
+

2i

r2

�

��
� .

�58�

The Fokker-Planck equation in phase and amplitude repre-
sentation is obtained,

�P

�t
= −

1

2

��drP�
�r

−
��d�P�

��
+

1

2r

�2�Dr�P�
�r � �

+
1

4r

�

�r

1

r

��DrrP�
�r

+
�2D��

��2 , �59�

where we identify drift and diffusion coefficients in the mas-
ter equation �59� of P representation, i.e.,

dr = r2��1 + �1
* + �2e−2i� + �2

*e2i�� + �11, �60�

d� = −
i

2
��1 − �1

* + �2e−2i� − �2
*e2i�� +

1

2r2 	�12e
−2i� − �12

* e2i�
 ,

�61�

Dr� = − i	�12e
−2i� − �12

* e2i�
 , �62�

Drr = r2	�11 + �12e
−2i� + �12

* e2i�
 , �63�

D�� =
1

4r2 	�11 − �12e
−2i� − �12

* e2i�
 . �64�

The quantities �1, �2, �11, and �12 are expressed in Eqs.
�15�–�18� where we have replaced �1 by �1−	 to include the
cavity decay terms.

Assuming zero detuning �where �1=0� and the condition
�2=�2

*�0, the obtained phase drift term from Eq. �59� leads
to

d���
dt

= �d�� � − �2�sin 2�� , �65�

which clearly indicates that the phase locking condition
�d��=0 along with the stability condition d�d�� /d��0 can
be achieved when �=� �13� in our case. When this condition
is satisfied, the diffusion coefficient for the steady state �r2

= n̄� is given by

D�� =
1

4n̄
�− 
11 − 
22 − 
11

* − 
22
* + �12 + �21 + �12

* + �21
* �

= 4
g2�8��1�2��2�2�

�
Re��1�2� + �2
2 + �s�	��1�2��2�2 − �s Re��1�2�


�2
2 + �s��s − 4��1�2��2�2
.

�66�

In the last expression we have considered the case where
g1=g2=g. We plot Eq. �66� for the Rabi frequencies �1 and
�2 in Fig. 4�a� which shows that, apart from the case when
any of or both the driving fields equal to zero, there are a set
of points where D��=0 can be achieved. If we consider equal
Rabi frequencies than the condition for the diffusion coeffi-
cient to be zero is �=
 /�3. This condition indicates clearly
that the vanishing of the diffusion coefficient is independent
of the coupling constants of the cavity fields. Here we
present two more graphs of the diffusion coefficient for two
important cases of equal Rabi frequency �Fig. 4�b�� and a
fixed Rabi frequency �Fig. 4�c��. In both these cases we draw
the graphs showing the relation of the decay constant 
 with
the Rabi frequency.

V. CONCLUSION

We have studied the quantum dynamics of a double-
�-type single-atom system with particular emphasis on the
gain and squeezing of the emitted light. The atomic coher-
ence induced by two driving fields causes the system to be-
have as a phase sensitive linear amplifier. This is a different
behavior from previously studied systems. This result again
emphasizes the importance of the way coherence affects the
dynamics of the system. In other aspects, we can control the
driving fields so that the controlled coherence between the
atomic states yields a correlation between the phases of the
spontaneously generated photons of the cavity field. With an
appropriate choice of parameters this system is shown to
satisfy the condition of a two photon correlated-emission la-
ser. Thus we show that the correlated-emission laser can be
realized under a certain condition for some values of Rabi
frequencies of the driving fields.
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APPENDIX: COEFFICIENTS

Here we give the explicit definitions of the coefficients aij
and 
ij which enter the master equation �11� for the density
operator �F of the two cavity modes:

�11 = 2g1
2
2��1�2��2�2	4�p2

* + 4i�b���2�2

+ p1
*�4��1�2 + p1�p1 + p2

*��
/�p3p4� , �A1�


11 = − 2g1
2
4��1�2��2�2	4p1��2�2 + p2

*�4��1�2

+ p1�p1 + p2
*��
/�p3p4� , �A2�

�12 = − 2g1g2
2�1�2��1�2	4p1��1�2

+ p1
2�p1 + p2

*� − 4��2�2�2p1 + p2
*�
/�p3p4� , �A3�


12 = − 2g1g2
4�1�2��2�2��p1 + p2
*��p2�2 + 4��2�2p2

+ 4��1�2�p1 − 4i�a��/�p3p4� , �A4�

�22 = 2g2
2
4��1�2��2�2	4�p1

* + 4i�a���1�2

+ p2
*�4��2�2 + p2�p2 + p1

*��
/�p3p5� , �A5�


22 = − 2g2
2
2��1�2��2�2	4p2��1�2 + p1

*�4��2�2

+ p2�p2 + p1
*��
/�p3p5� , �A6�

�21 = − 2g1g2
4�1�2��2�2	4p2��2�2 + p2
2�p2 + p1

*�

− 4��1�2�2p2 + p1
*�
/�p3p5� , �A7�


21 = − 2g1g2
2�1�2��2�2��p2 + p1
*��p1�2 + 4��1�2p1

+ 4��2�2�p2 − 4i�b��/�p3p5� , �A8�

The parameters p1, p2, p3, p4, and p5 in Eqs. �A1�–�A8� are
defined as

p1 = 
3 + 
4 + 2i�b, �A9�

p2 = 
1 + 
2 + 2i�a, �A10�

p3 = 
2�p1�2��1�2 + 
4�p2�2��2�2 + 8��1�2��2�2�
2 + 
4� ,

�A11�

p4 = 4���1�2 − ��2�2�2 + p1�p1 + p2
*���1�2 + p2

*�p1 + p2
*���2�2,

�A12�

p5 = 4���1�2 − ��2�2�2 + p1
*�p2 + p1

*���1�2 + p2�p2 + p1
*���2�2.

�A13�
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