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Two schemes of projection measurement are realized experimentally to demonstrate the de Broglie wave-
length of three photons without the need for a maximally entangled three-photon state �the NOON state�. The
first scheme is based on a proposal by �Wang and Kobayashi, Phys. Rev. A 71, 021802�R� �2005�� that utilizes
a couple of asymmetric beam splitters while the second one applies the general method of NOON-state
projection measurement to a three-photon case. Quantum interference of three photons is responsible for
projecting out the unwanted states, leaving only the NOON-state contribution in these schemes of projection
measurement. A detailed multimode analysis is made to account for imperfect situations in the experiments.
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I. INTRODUCTION

The photonic de Broglie wavelength of a multiphoton
state is the equivalent wavelength of the whole system when
all the photons in the system act as one entity. Early work by
Jacobson et al. �1� utilized a special beam splitter that sends
a whole incident coherent state to either one of the outputs
thus creating a Schrödinger-cat-like state. The equivalent de
Broglie wavelength in this case was shown to be � / �n� with
�n� as the average photon number of the coherent state. Such
a scheme can be used in precision phase measurement to
achieve the so-called Heisenberg limit �2–5� of 1 / �n� in
phase measurement uncertainty.

Perhaps, the easiest way to demonstrate the de Broglie
wavelength is to use a maximally entangled photon number
state or the so-called NOON state of the form �4–6�

�NOON� =
1
�2

��N�1�0�2 + �0�1�N�2� , �1�

where 1 and 2 denote two different modes of an optical field.
The N photons in this state stick together either all in mode 1
or all in mode 2. Indeed, if we recombine modes 1 and 2 and
make an N-photon coincidence measurement, the coinci-
dence rate is proportional to

RN � 1 + cos�2�N�/�� , �2�

where � is the path difference between the two modes and �
is the single-photon wavelength. Equation �2� shows an
equivalent de Broglie wavelength of � /N for N photons.

The NOON state of the form in Eq. �1� for the N=2 case
was realized with two photons from a parametric down-
conversion process, which led to the demonstrations of the
two-photon de Broglie wavelength �7,8�. For N�2, how-
ever, it is not easy to generate the NOON state. The difficulty
lies in the cancellation of all the unwanted terms of �k ,N
−k� with k�0,N in an arbitrary N-photon entangled state of

��N� = 	
k=0

N

ck�k,N − k� . �3�

A number of schemes have been proposed �9–11� and dem-
onstrated �12,13� which were based on some sort of multi-
photon interference scheme for the cancellation.

Without exceptions, the proposed and demonstrated
schemes �9–13� for NOON-state generation rely on multi-
photon coincidence measurement for revealing the phase-
dependent relation in Eq. �2�. Since coincidence measure-
ment is a projective measurement, it may not respond to all
the terms in Eq. �3�. Indeed, Wang and Kobayashi �14� ap-
plied this idea to a three-photon state and found that only the
NOON-state part of Eq. �3� contributes to a specially de-
signed coincidence measurement scheme with asymmetric
beam splitters. The coincidence rate shows the signature de-
pendence in the form of Eq. �2� on the path difference for the
three-photon de Broglie wavelength. Another projective
scheme was recently proposed by Sun et al. �15� and realized
experimentally by Sun et al. �16� for four photons and by
Resch et al. �17� for six photons. This scheme directly
projects an arbitrary N-photon state of the form in Eq. �3�
onto an N-photon NOON state and thus can be scaled up to
an arbitrary N-photon case.

In this paper, we will apply the two projective schemes to
the three-photon case. The three-photon state is produced
from two pairs of photons in parametric down-conversion by
gating on the detection of one photon among them �18�. We
find that because of the asymmetric beam splitters, the
scheme by Wang and Kabayashi �14� has some residual
single-photon effect under a less than perfect situation while
the NOON-state projection scheme cancels all lower-order
effects regardless the situation.

The paper is organized as follows: in Sec. II, we will
discuss the scheme by Wang and Kobayashi �14� and its
experimental realization. In Sec. III, we will investigate the
NOON-state projection scheme for the three-photon case and
implement it experimentally. In both sections, we will use a
more realistic multimode model to cover the imperfect situ-
ations. We conclude with a discussion.*zou@iupui.edu

PHYSICAL REVIEW A 77, 023815 �2008�

1050-2947/2008/77�2�/023815�8� ©2008 The American Physical Society023815-1

http://dx.doi.org/10.1103/PhysRevA.77.023815


II. PROJECTION BY ASYMMETRIC BEAM SPLITTERS

The first scheme for the three-photon case was proposed
by Wang and Kobayashi �14�, who used two asymmetric
beam splitters to cancel the unwanted �2,1� and �1,2� terms.
This is a generalization of the two-photon Hong-Ou-Mandel
interferometer �7,8,19�. But different from the two-photon
case, the state for phase sensing is not a three-photon NOON
state since only one unwanted term can be cancelled and
there is still another one left there. So a special arrangement
has to be made in the second beam splitter to cancel the
contribution from the other term. The following gives the
details of the scheme.

A. Principle of experiment

We start with a single-mode argument by Wang and
Kobayashi. The input state is a three-photon state of �2�a�1�b.
The three photons are incident on an asymmetric beam split-
ter �BS1� with T�R from two sides as shown in Fig. 1. The
output state can be easily found from the quantum theory of
a beam splitter as �20,21�

�BS1�out = �3T2R�3c,0d� + �3TR2�0c,3d� + �T�T − 2R��2c,1d�

+ �R�R − 2T��1c,2d� . �4�

When R=2T=2 /3, the �1c ,2d� term disappears from Eq. �4�
due to three-photon interference and Eq. �4� becomes

�BS1�out =
�2

3
�3c,0d� +

2

3
�0c,3d� −

�3

3
�2c,1d� . �5�

But unlike the two-photon case, the �2c ,1d� term is still in
Eq. �5� so that the output state is not a NOON state of the
form in Eq. �1�.

Now we can arrange a projection measurement to take out
the �2c ,1d� term in Eq. �5�. Let us combine c and d with
another beam splitter �BS2 in Fig. 1� that has the same trans-
missivity and reflectivity �R=2T=2 /3� as the first BS �BS1�.
Similar to the situation encountered in Eq. �5�, �2c ,1d� will
not contribute to the probability P3�1e ,2 f�. So only �3c ,0d�
and �0c ,3d� in Eq. �5� will contribute. The projection mea-
surement of P3�1e ,2 f� will cancel the unwanted middle terms
like �2c ,1d� from Eq. �5�. Although the coefficients of �3c ,0d�
and �0c ,3d� in Eq. �5� are not equal, their contributions to
P3�1e ,2 f� are the same after considering the unequal T and R
in BS2. So the projection measurement of P3�1e ,2 f� is re-
sponsive only to the three-photon NOON state. Use of an
asymmetric beam splitter for the cancellation of �2c ,1d� was

first discussed by Sanaka et al. in Fock-state filtering �18�.
The above argument can be confirmed by calculating the

three-photon coincidence rate P3�1e ,2 f� directly for the
scheme in Fig. 1, which is proportional to �22�

P3�1e,2 f� = �2a,1b�ê† f̂†2 f̂2ê�2a,1b� , �6�

with

ê = �ĉ + ei��2d̂�/�3, f̂ = �ei�d̂ − �2ĉ�/�3, �7�

where we introduce a phase � between c and d. But for the
first BS, we have

ĉ = �â + �2b̂�/�3, d̂ = �b̂ − �2â�/�3. �8�

Substituting Eq. �7� into Eq. �6� with Eq. �8�, we obtain

P3�1e,2 f� = �2a,1b�ê† f̂†2 f̂2ê�2a,1b� =
32

81
�1 + cos 3�� , �9�

which has a dependence on the path difference �=�� /2�
that is the same as in Eq. �2�, but with N=3.

B. Experiment

Experimentally, asymmetric beam splitters are realized
via polarization projections as shown in Fig. 2 and its inset
�a�, where a three-photon state of �2H ,1V� is incident on a
combination of two half-wave plates �HWP1, HWP2� and a
phase shifter �PS�. The first half-wave plate �HWP1� rotates
the polarizations of the state �2H ,1V� by an angle � to �2a ,1b�
with

âH = â cos � + b̂ sin �, âV = b̂ cos � − â sin � , �10�

where cos �=�T=1 /�3 is the amplitude transmissivity of
the asymmetric beam splitter. Equations �10� are equivalent
to Eqs. �8�. The PS, made of birefringent quartz crystals,
introduces the phase shift � between the H and V polariza-
tions. The second half-wave plate �HWP2� makes another
rotation of the same angle � for the two phase-shifted polar-
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FIG. 1. Arrangement of asymmetric beam splitters of a three-
photon interferometer for the demonstration of the three-photon de
Broglie wavelength.
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FIG. 2. �Color online� Experimental setup. HWP1 and HWP2
are half-wave plates and are set for different measurements. PS is a
phase shifter to introduce phase difference between H and V pho-
tons. IF is an interference filter. �TH is the delay between the two H
photons, and �TV is the delay between the H photons and the V
photon. Insets: �a� arrangement with asymmetric beam splitters by
polarization beam splitter �PBS� and �b� the three-photon NOON-
state projection.

LIU et al. PHYSICAL REVIEW A 77, 023815 �2008�

023815-2



izations and the polarization beam splitter �PBS� in the inset
�a� of Fig. 2 finishes the projection required by Eqs. �7�.

The three-photon polarization state of �2H ,1V� is prepared
by using two type-II parametric down-conversion processes
shown in Fig. 2. This scheme was first constructed by Liu et
al. �23� to demonstrate controllable temporal distinguishabil-
ity of three photons. When the delay between the two H
photons is zero, we have the state of �2H ,1V�. Specifically in
this scheme, two 2-mm-long 	 barium borate �BBO� crystals
are pumped by two UV pulses from a common source of a
frequency-doubled Ti:sapphire laser. The mode-locked
Ti:sapphire laser is operating at 780 nm and has a pulse
duration of 150 fs. The UV pump pulses at 390 nm after
frequency doubling have a bandwidth of 3 nm, a repetition
rate of 76 MHz, and an average power of 200 mW at BBO1
and 100 mW at BBO2. The pump fields are mildly focused
with a beam size of 0.5 mm at the crystals. The two BBO
crystals are cut for type-II parametric down-conversion �

=42.62° , �=30°� at degenerate frequency. The 
 angle is
slightly adjusted so that the two down-converted fields at 780
nm are beam-like �24�. This geometry will ensure an opti-
mum down-conversion rate in a certain direction.

The H photon from BBO1 is coupled to the H polarization
mode of BBO2 while the other V photon is detected by de-
tector D and serves as a trigger. Although it is not crucial, the
alignment of the H photon from BBO1 to the H polarization
mode of BBO2 will increase the production rate of the state
�2H ,1V�. To achieve a good mode match, the H photon from
BBO1 is first coupled into a single-mode polarization-
preserving fiber. The output of the fiber is collimated and
then mildly focused so that it has the same spot size as the
pump field at BBO2. The alignment of H photon from BBO1
to BBO2 is achieved by coupling the H photons from both
BBO1 and BBO2 into a common single-mode polarization
preserving fiber. The V photon from BBO2 is coupled to
another single-mode polarization-preserving fiber. The out-
puts of the two fibers, after collimation, are then combined
by a polarization beam splitter �PBS1�. The combined fields
pass through an interference filter �IF� with 3 nm bandwidth
and then go through an assembly of HWP1, PS, and HWP2
to form a three-photon polarization interferometer. There are
two schemes of projection measurement. In this section, we
deal with the first scheme in inset �a� of Fig. 2, which con-
sists of a PBS for projection and three detectors �A, B, C,
EG&G SPCM-AQR-15� for measuring the quantity
P3�1e ,2 f� in Eq. �6� by three-photon coincidence �EG&G
ORTEC CO4020�. To realize the transformation in Eqs. �7�
and �8�, HWP1 and HWP2 are set to rotate the polarization
by �=cos−1�1 /�3�=54.7°. In order to obtain an input state of
�2H ,1V� to the interferometer, we need to gate the three-
photon coincidence measurement on the detection at detector
D. In this way, we ensure that the two H photons come from
two crystals separately. Otherwise, we will have an input
state of �2H ,2V�. The delay ��TH in Fig. 2� between the two
H photons from BBO1 and BBO2 and the delay ��TV in Fig.
2� between the H and V photons are adjusted to ensure that
the three photons are indistinguishable in time. This is con-
firmed by the photon-bunching effect of the two H photons
�23� and a generalized Hong-Ou-Mandel effect for three pho-
tons �18�.

The four-photon coincidence count among ABCD detec-
tors is measured as a function of the phase shift �. The raw
experimental data are shown in Fig. 3. The data are gathered
in 100 s for each point, and the error bars are one standard
deviation. However, there is a contribution from back-
grounds due to three pairs of photons. The three-pair contri-
bution can be estimated from the measured single and two-
photon rates at each point via the formula

P4�3-pair� = P2�AB�P1�C�P1�D� + P2�AC�P1�B�P1�D�

+ P2�AD�P1�C�P1�B� + P2�BC�P1�A�P1�D�

+ P2�BD�P1�C�P1�A� + P2�CD�P1�A�P1�B�

+ Ppair�P2�AB�P2�CD� + P2�AC�P2�BD�

+ P2�AD�P2�CB�� . �11�

This formula is based on the fact that pair generation in
parametric down-conversion is random so that the three-pair
probability is a product of the single-pair probabilities. Four-
photon coincidence is from simultaneous photon detection in
four detectors. So for three-pair contributions, the four detec-
tors may detect one pair and one from each of the other two
pairs or simply two pairs with the third pair undetected. For
the former case, there are six possible arrangements such as
P2�AB�P1�C�P1�D� in Eq. �11� with P2�AB� being two-
photon coincidence probability from detectors A and B and
P1�C� , P1�D� being the single-photon detection probability
from C and D, respectively. For the latter case, it is
�P2�AB�P2�CD�+ P2�AC�P2�BD�+ P2�AD�P2�CB��Ppair in
Eq. �11�. Ppair is the single-pair probability in each pulse and
is calculated as P1�D� /�D with �D as the overall efficiency
of detector D. Note that P1�C�P1�D�= P2

acc�CD� is also
known as the accidental two-photon probability from two
pairs of down-converted photons. Background contributions
are calculated using Eq. �11� for each data point and are
plotted in Fig. 4.

The experimental result after background subtraction and
power correction �monitored by counts from detector D� is
shown in Fig. 5, which clearly shows a cos 3� dependence
except the unbalanced minima and maxima, which indicates
an extra cos � dependence. Indeed, the data fit well to the
function

F
ou

r-
P

ho
to

n
C

oi
nc

id
en

ce
in

10
0s

Phase Shift (ϕ)

0

100

200

300

400

500

600

0 2πππ/2 3π/2

FIG. 3. �Color online� Raw experimental data for projection
measurement with asymmetric beam splitters.
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P4 = P40�1 + V3 cos 3� + V1 cos �� , �12�

with P40= �184�18� /100 s, V3= �85�12�%, and V1

= �5�1�%. The �2 of the fit is 30 and is comparable to the
number of data of 25, indicating a mostly statistical cause for
the error.

The appearance of the cos � term in Eq. �12� is an indi-
cation that the cancellation of the �2c ,1d� and �1c ,2d� terms is
not complete in Eqs. �4� and �9� and the residuals mix with
the �3c ,0d� and �0c ,3d� terms to produce the cos � term. This
imperfect cancellation is not a result of wrong T ,R values,
but is due to temporal-mode mismatch among the three pho-
tons in the input state of �2H ,1V�. To account for this mode
mismatch, we resort to a multimode model of the parametric
down-conversion process.

C. Multimode analysis of a three-photon interferometer with
asymmetric beam splitters

We start by finding a multimode description of the quan-
tum state from two parametric down-conversion processes.
Since the first one serves as the input to the second one, we
need the evolution operator for the process, which was first
dealt with by Ghosh et al. �25� and later by Ou �26� and by
Grice and Walmsley �27�. In general, the unitary evolution
operator for a weakly pumped type-II process is given by

Û = 1 + 
 d�1d�2���1,�2�âH
† ��1�âV

†��2� , �13�

where  is some parameter that is proportional to the pump
strength and nonlinear coupling. For simplicity without los-
ing generality, we assume that the two processes are identical
and are governed by the evolution operator in Eq. �13�. Fur-
thermore, we assume the symmetry relation ���1 ,�2�
=���2 ,�1�, which is in general not satisfied, but can be
achieved with some symmetrizing tricks �28,29�. So for the
first process, because the input is vacuum, we obtain the
output state as

��1� = Û�vac� = �vac� + 
 d�1d�2���1,�2�âH
† ��1�âV

†��2�

��vac� . �14�

The second crystal has the state of ��1� as its input. So after
the second crystal, the output state becomes

��2� = Û��1�

= ¯ + 2
 d�1d�2d�1�d�2�

����1,�2����1�,�2��âH
† ��1��âV

†��2��âH
† ��1�âV1

† ��2�

��vac� , �15�

where V1 and V denote the two nonoverlapping vertical po-
larization modes from the first and second crystals, respec-
tively. Here we only keep the four-photon term. Although
there are other four-photon terms in the ��2� state corre-
sponding to two-pair generation from one crystal alone, they
will not contribute to what we are going to calculate. So we
omit them in Eq. �15�.

The field operators at the four detectors are given by

ÊA�t� = �1ÊH�t� + �1ÊV�t� , �16�

ÊB�t� = ��2ÊV�t� + �2ÊH�t��/�2 + ¯ = ÊC�t� ,

with �1= �1−2ei�� /3, �2= �ei�−2� /3, and �1=−�2=�2�1
+ei�� /3. Here we used relations that are equivalent to Eqs.
�7� and �8� to establish the connection between the field op-

erators ÊA , ÊB , ÊC and ÊH , ÊV. For detector D, we have

ÊD�t� = ÊV1
�t� . �17�

Here

Êk�t� =
1

�2�

 d� âk���e−i�t �k = H,V,V1� . �18�

The four-photon coincidence rate of ABCD is propor-
tional to a time integral of the correlation function

��4��t1,t2,t3,t4� = ��2�ÊD
† �t4�ÊC

† �t3�ÊB
†�t2�ÊA

†�t1�ÊA�t1�ÊB�t2�

�ÊC�t3�ÊD�t4���2� . �19�

It is easy to first evaluate ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4�:
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FIG. 4. Background contributions from three-pair events. Each
point is calculated by Eq. �11� from the measured rates for one
detector and two detectors.
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ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4�

= ��HHV + HVH�D�1�2�2 + VHHD�1�2
2�/2 + ¯ ,

�20�

where H= ÊH, V= ÊV, and D= ÊD for short and we keep the
order of arguments t1t2t3t4. We also use an ellipsis �“¯”� to
represent the five terms that give zero result when they op-
erate on ��2�. It is now straightforward to calculate the quan-

tity ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4���2�, which has the form of

ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4���2�

=
2

2
��G�t1,t2,t3,t4� + G�t2,t1,t3,t4� + G�t1,t3,t2,t4�

+ G�t3,t1,t2,t4���1�2�2 + �G�t2,t3,t1,t4�

+ G�t3,t2,t1,t4���1�2
2��vac� , �21�

where

G�t1,t2,t3,t4� = g�t1,t3�g�t2,t4� , �22�

with

g�t,t�� 
1

2�

 d�1d�2���1,�2�e−i��1t+�2t��.

Substituting Eq. �21� into Eq. �19� and carrying out the time
integral, we obtain

P4 �
 dt1dt2dt3dt4��4��t1,t2,t3,t4�

=
��4

4

 d�1d�2d�1�d�2������1,�2����1�,�2��

+ ���1,�1�����2,�2�����1�2�2 + �1�2
2�

+ 2���1�,�2����1,�2���1�2�2�2. �23�

With �1, �1, �2, and �2 we can further reduce Eq. �23� to

P4 �
2��4�17A + 7E�

243
�1 + V3 cos 3� + V1 cos �� , �24�

where

V3 =
8�A + 2E�
17A + 7E

, V1 =
9�A − E�
17A + 7E

�25�

and

A =
 d�1d�2d�1�d�2�����1,�2����1�,�2���
2, �26�

E =
 d�1d�2d�1�d�2��
���1,�2�����1�,�2�����1�,�2�

����1,�2�� . �27�

In deducing Eqs. �23�–�27�, we used the symmetry relation
���1 ,�2�=���2 ,�1�.

Obviously, when A=E, Eq. �24� completely recovers to
Eq. �9�. In practice, we always have A�E by the Schwartz

inequality. When E�A, Eq. �24� has the same form as Eq.
�12�, indicating that the multimode analysis indeed correctly
predicts the imperfect cancellation of the �2H ,1V� and
�2V ,1H� terms in Eqs. �4� and �9�. If we use the experimen-
tally measured V3 and V1 in Eqs. �25�, we will obtain two
inconsistent values of E /A: �E /A�3=0.65 and �E /A�1=0.87.
This inconsistency is partly due to the slight mismatch of the
spatial modes between H and V polarizations in PBS1 �Fig.
2�. Indeed, we observed a visibility of v1

obs=0.98 in the
single-photon interference exhibited in the two-photon coin-
cidence between detectors A and D �although two-photon
coincidence is measured, it is really a single-photon interfer-
ence effect because detector D is used as a trigger�. With this
imperfection considered, Eqs. �25� are modified as

V3 = v1
38�A + 2E�

17A + 7E
, V1 = v1

9�A − E�
17A + 7E

, �28�

where v1 is the reduced visibility in single-photon interfer-
ence due to spatial-mode mismatch. With the extra parameter
v1 in Eqs. �28�, we obtain a consistent �E /A�=0.86 with v1

=0.96. Note that the deduced v1 is slightly smaller than the
observed v1

obs=0.98. This discrepancy may be a result of the
breakup of the symmetry relation of ���1 ,�2�=���2 ,�1�
for type-II parametric down-conversion, which is required
for the derivation of Eq. �24�. Although Eq. �21� covers the
case of ���1 ,�2�����2 ,�1�, the final result is much more
complicated than Eqs. �28� and will not be discussed here.

III. NOON-STATE PROJECTION MEASUREMENT

The projection measurement discussed in the previous
section relies on the cancellation of some specific terms and
therefore cannot be applied to an arbitrary photon number. In
the following, we will discuss another projection scheme that
can cancel all the unwanted terms at once and thus can be
scaled up.

A. Principle of experiment

The NOON-state projection measurement scheme was
first proposed by Sun et al. �15� and realized by Sun et al.
�16� for the four-photon case and by Resch et al. �17� for the
six-photon case. Since it is based on a multiphoton interfer-
ence effect, it was recently used to demonstrate the temporal
distinguishability of an N-photon state �30,31�. Here we will
apply it to a three-photon superposition state for the demon-
stration of three-photon de Broglie wavelength without the
NOON state.

The NOON-state projection measurement scheme for the
three-photon case is sketched in inset �b� of Fig. 2. In this
scheme, the input field is first divided into three equal parts.
Then each part passes through a phase retarder that intro-
duces a relative phase difference of 0 ,2� /3 and 4� /3, re-
spectively between the H and V polarizations. The phase-
shifted fields are then projected into the 135° direction by
polarizers before being detected by the A, B, and C detectors,
respectively. It was shown that the three-photon coincidence
rate is proportional to
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P3 �
1

18
��NOON3��3��2, �29�

where �NOON3�= ��3H ,0V�− �0H ,3V�� /�2 and ��3�
=c0�3H ,0V�+c1�2H ,1V�+c2�1H ,2V�+c3�0H ,3V�. Note that
since �2,1� and �1,2� are orthogonal to the NOON state, their
contributions to P3 are zero. Assuming that �c0�= �c3�=c and
there is a relative phase of � between H and V so that c0
=c , c3=cei3�, we obtain from Eq. �29�

P3 �
�c�2

18
�1 − cos 3�� , �30�

which is exactly in the form of Eq. �2� with N=3, showing
the three-photon de Broglie wavelength.

B. Experiment

From Sec. II B, we learned that a state of �2H ,1V� can be
produced with two parametric down-conversion processes.
This state will of course give no contribution to the NOON-
state projection since it is orthogonal to the NOON state. On
the other hand, we can rotate the polarizations by 45°. Then
the state becomes �20,21�

��3� =�3

8
��3H,0V� − �0H,3V�� +

1
�8

��2H,1V� − �1H,2V�� ,

�31�

which has the NOON-state component with c=�3 /8.
Experimentally, the three-photon state of �2H ,1V� is pre-

pared in the same way described in Sec. II B and shown in
Fig. 2. Different from Sec. II B, the polarizations of the pre-
pared state are rotated 45° by HWP1 to achieve the state in
Eq. �31�. The phase shifter �PS� then introduces a relative
phase difference � between the H and V polarizations and
HWP2 is set at zero before the NOON-state projection mea-
surement is performed �inset �b� of Fig. 2�. As before, a
four-photon coincidence measurement among ABCD detec-
tors is equivalent to a three-photon coincidence measurement
by ABC detectors gated on the detection at D, which is re-
quired for the production of �2H ,1V�.

The four-photon coincidence count among ABCD detec-
tors is registered in 200 s as a function of the phase � �PS�.

The raw data are plotted in Fig. 6. As before, the back-
grounds from three pairs must be subtracted from the raw
data in order to obtain the true contribution from two pairs of
down-conversion. The background is estimated in the same
way as in the experiment in Sec. II B and is plotted in Fig. 7.
The data after subtraction of background contribution and
power correction are plotted in Fig. 8. It clearly shows a
sinusoidal dependence on � with a period of 2� /3. The solid
curve is a �2 fit to the function of P4= P40�1+V3 cos 3��
+�0�� with P40= �103�14� /200 s and V3= �84�14�%. The
�2 of the fit is 24.3, which is comparable to a number of data
of 25, indicating a good fit with only statistical errors.

The less-than-unit visibility is a result of temporal distin-
guishability among the three photons produced from two
crystals. It can only be accounted for with a multimode
model of the state given in Sec. II C. Let us now apply it to
the current scheme.

C. Multimode analysis

The input state is the same as Eq. �15�. But the field
operators are changed to

ÊA�t� = �Ê+�t� − ei�Ê−�t��/�6 + ¯ ,

ÊB�t� = �Ê+�t� − ei�Ê−�t�ei2�/3�/�6 + ¯ ,
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FIG. 6. �Color online� Raw four-photon coincidence data in the
NOON-state projection measurement for the demonstration of
three-photon de Broglie wavelength.
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FIG. 7. Estimated background contribution from three pairs of
down-conversion photons to four-photon coincidence. Equation
�11� is used for the estimation.
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FIG. 8. �Color online� Experimental data after background sub-
traction for the NOON-state projection measurement. The data are
least-squares-fitted to P40�1+V3 cos 3�� with V3= �84�14�%.
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ÊC�t� = �Ê+�t� − ei�Ê−�t�ei4�/3�/�6 + ¯ , �32�

with

Ê+�t� = �ÊH�t� + ÊV�t��/�2,

Ê−�t� = �ÊH�t� − ÊV�t��/�2, �33�

where we omit the vacuum input fields and � is the phase
shift introduced by PS in Fig. 2. The field operator for de-
tector D is the same as Eq. �17�.

As in Sec. II C, the four-photon coincidence rate is related
to the correlation function in Eq. �19� and we can first evalu-

ate ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4�. With the field operators in Eq.
�32�, we obtained

ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4�

=
1

123/2 �HHVa1 + HVHa2 + VHHa3� + ¯ , �34�

with

a1 = 1 + ei3� + 2ei�2�+2�/3� + 2ei��+4�/3�,

a2 = 1 + ei3� + 2ei�2�+4�/3� + 2ei��+2�/3�,

a3 = 1 + ei3� + 2ei2� + 2ei�, �35�

where the notations are the same as in Eq. �20� and we used
the identity 1+ei2�/3+ei4�/3=0. As before, we do not write
explicitly the five terms that give zero result when they op-
erate on ��2�. Now we can calculate the quantity

ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4���2�, which has the form of

ÊA�t1�ÊB�t2�ÊC�t3�ÊD�t4���2�

=
2

�123
��G�t1,t2,t3,t4� + G�t2,t1,t3,t4��a1 + �G�t1,t3,t2,t4�

+ G�t3,t1,t2,t4��a2 + �G�t2,t3,t1,t4� + G�t3,t2,t1,t4��a3�

��vac� , �36�

where G�t1 , t2 , t3 , t4� is given in Eq. �22�. After the time in-
tegral, we obtain

P4�NOON� �
��4�2A + E�

72
�1 + V3 cos 3�� , �37�

with

V3�NOON� =
A + 2E
2A + E

, �38�

where A and E are given in Eqs. �26� and �27�. Note that the
terms such as cos 2� , cos � are absent in Eq. �38� even in the
nonideal case of E�A. This is because of the symmetry
among the three detectors A, B, and C involved in the three-
photon NOON-state projection measurement. When spatial-
mode mismatch is considered, the visibility is changed to

V3�NOON� = v1
3A + 2E
2A + E

. �39�

With v1 and the quantity E /A obtained in Sec. II C, we have
V3�NOON�=0.85, which is close to the observed value of
0.84�0.14 in Sec. III B.

IV. SUMMARY AND DISCUSSION

In summary, we demonstrate the three-photon de Broglie
wavelength by using two different schemes of projection
measurement without the need for a hard-to-produce NOON
state. Quantum interference is responsible for the cancella-
tion of the unwanted terms. The first scheme by asymmetric
beam splitters targets specific terms while the second one by
NOON-state projection cancels all the unwanted terms at
once. We use a multimode model to describe the nonideal
situation encountered in the experiment and find good agree-
ment with the experimental results.

Since the scheme by asymmetric beam splitters is only for
some specific terms, it cannot be easily scaled up to an arbi-
trary number of photons, although an extension to the four-
photon case is available �32�. The extension of the scheme
by NOON-state projection to an arbitrary number of photons
is straightforward. In fact, demonstrations with four and six
photons have been done with simpler states �16,17�.

On the other hand, the scheme of NOON-state projection
needs to divide the input fields into N equal parts while the
scheme with asymmetric beam splitters requires less parti-
tion. So the latter will have a higher coincidence rate than the
former. In fact, Figs. 3 and 4 show a ratio of 3.6 between P40.
This is consistent qualitatively with the ratio of 4.7 from Eqs.
�24� and �37� when E=A. The discrepancy may come from
the different collection efficiency resulting from the different
geometry in the experimental layouts.

The dependence of the visibility in Eqs. �28� and �38� on
the quantity E /A reflects the fact that the interference effect
depends on the temporal indistinguishability of the three
photons. From previous studies �15,23,33–35�, we learned
that the quantity E /A is a measure of the indistinguishability
between two pairs of photons in parametric down-
conversion. In our generation of the �2H ,1V� state, one of the
H photons is from another pair of down-converted photons.
So to form an indistinguishable three-photon state, we need
pair indistinguishability—i.e., E /A→1.
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