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We examine the effect of superluminal signal propagation through a birefringent crystal, where the effect is
not due to absorption or reflection, but to the filtration of a special polarization component. We first examine
the effect by a stationary phase analysis, with results consistent with those of an earlier analysis of the system.
We supplement this analysis by considering the transit of a Gaussian wave and find bounds for the validity of
the stationary phase result. The propagation of the Gaussian wave is illustrated by figures.
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I. INTRODUCTION

For wave propagation in a medium, group velocity is of-
ten regarded as being identical to signal velocity, i.e., the
velocity at which energy, and thereby information, is trans-
ferred. However, it has been known for a long time that
group velocity, as usually defined, can exceed the speed of
light without breaking causality �1–3�. In more recent years
such superluminal propagation has been in the focus of in-
terest, in particular since a series of different types of experi-
ments now have been performed to demonstrate the effect.
These experiments have been done in media with anomalous
dispersion and under conditions where superluminal tunnel-
ing times of single photons have been observed �4–7�.

Anomalous dispersion, and thereby superluminal group
velocity, is usually obtained in systems with absorption or
reflection. The relation between damping and group velocity
is seen most directly in linear systems, where the Kramers-
Kronig �KK� relations link the real part of the propagator to
the imaginary part. The peculiar fact is that the KK relations,
which on one hand reflect the condition of causality, on the
other hand show explicitly how superluminality arises in sys-
tems with anomalous dispersion.

Thus, even if group velocities in these systems may ex-
ceed the speed of light in vacuum, there is no conflict with
causality. The apparent paradox, superluminality without
breaking of causality, can be viewed as a consequence of the
definition of group velocity, vg=d� /dk. In systems with
anomalous dispersion vg typically varies rapidly with fre-
quency � in regions with large vg, and to interpret this as the
velocity of propagation therefore is meaningful only for sig-
nals that are sharply defined in frequency and therefore
slowly varying in space and time. A signal with a sharper
space profile will typically be rapidly deformed and damped
so that superluminal propagation speed cannot be obtained
over long distances. In fact for signals with a well-defined
front, the front velocity can never exceed the speed of light,
and this fact is also the essence of the KK relations.

Even if anomalous dispersion cannot occur in a transpar-
ent, passive medium, it is possible in an active medium with

gain-assisted wave propagation. This has been shown both
theoretically and experimentally �7,8�. In such a case the
signal is not damped, but the theoretical group velocity will
also here only in an approximate sense represent the real
speed of propagation for a signal with finite space extension.
Thus as discussed in �8,9� the signal propagation can be
viewed as a pulse reshaping process. In this process the sig-
nal peak may move faster than light, but only for a limited
time, since the signal front cannot be overtaken.

Some time ago Solli et al. showed that even in a passive
transparent medium anomalous dispersion can be achieved
by filtration of a component of a signal with normal disper-
sion �10,11�. They demonstrated this, theoretically and ex-
perimentally, for a strongly birefringent photonic crystal with
electromagnetic waves of centimeter wavelength. With an
incoming wave that decomposes equally in a fast and a slow
component, and with an outgoing wave that is filtered in the
same polarization direction as the incoming signal, a disper-
sion relation was found that under half waveplate conditions
could be interpreted as superluminal transit speed through
the crystal. This result is interesting, since on one hand the
anomalous dispersion of the filtered signal clearly is consis-
tent with the interpretation of a superluminal group velocity,
and on the other hand it is clear that in this case a faster-
than-light effect can only be apparent. Thus the signal is
created as a linear superposition of two waves, each of which
are transmitted with subluminal velocity through the crystal.
�Other related experiments have been reported in Refs.
�12,13�, where the results are discussed in the context of
“weak value” measurements, with the effect of the polariza-
tion filter seen as a “postselection” performed on the photon
state. In Ref. �13� a direct demonstration of superluminal
group velocity was reported and compared to the slower
front velocity.�

The results of Ref. �10� are the motivation for the present
work, where we examine how the derived group velocity is
related to the transit of wave packets through the crystal. In
the first part we consider the propagation of monochromatic
plane waves and reproduce the earlier results by use of a
stationary phase analysis. Whereas the analysis of Ref. �10�
is based on the Kramers-Kronig dispersion relations, we use
here instead an explicit description of the propagation
through the crystal. This approach we find to be convenient,
since it on one hand gives an introduction to the effect in
simple terms, and on the other hand gives a natural basis for
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the extension to wave packet propagation, which is discussed
in the second part of the paper. We there examine how a
signal of Gaussian shape is moving through the crystal and
find that the peak position of the outgoing signal agrees well
with the position determined from the stationary phase
analysis only when the width of the Gaussian is sufficiently
large. In particular we find that superluminal transit time
depends on the wave packet being much wider than the crys-
tal. Even if the peak of the signal in that case may be far
advanced, the filtered signal lies well within the envelopes of
the two subluminal components, corresponding to the fast
and slow wave components in the crystal.

II. PLANE WAVE PROPAGATION AND PEAK VELOCITY

The physical system we consider is sketched in Fig. 1. A
polarized electromagnetic wave is sent through a birefringent
crystal, which is oriented with the optical axis �z axis� or-
thogonal to the direction of propagation �x axis�. The bound-
ary planes of the crystal, where the wave enters and leaves
the crystal, are both assumed to be orthogonal to the direc-
tion of propagation. The outgoing wave passes a polarization
filter so that the registered signal corresponds to linear polar-
ization at a rotation angle � in the y ,z plane. We consider
here how the amplitude of the filtered signal depends on the
angle � and the wave number k of the incoming wave.

The crystal is assumed to be linear and nonabsorbing,
with a dielectric tensor that is frequency independent. Due to
the difference between index of refraction n1 outside and n2
inside the crystal, the reflection coefficient �14�

R = �n1 − n2

n1 + n2
�2

�1�

is slightly different from 0. In fact, since the index of refrac-
tion is different for the ordinary wave �n2=no�, with polar-
ization along the y axis, and the extraordinary wave �n2

=ne�, with polarization along the z axis, the reflection coef-
ficient for these two directions of polarization are not iden-
tical. However, for both directions we will consider the de-
viation from 0 to be sufficiently small so that the crystal can
be treated as nonreflecting. �In Ref. �11� the average index of
refraction is given as about 1.25 corresponding to a reflection
coefficient R�0.01.� We shall in the following assume that
�n�ne−no to be positive so that the ordinary wave is the

fast component and the extraordinary wave is the slow com-
ponent in the birefringent material.

The incoming wave is assumed to be linearly polarized,
with direction of polarization rotated 45° relative to the y
axis. This means that the wave, inside the crystal, has com-
ponents of ordinary and extraordinary waves of equal ampli-
tudes. Due to the different propagation velocity of the two
components in the crystal, the polarization will change to
elliptical polarization during the propagation. For a distance
corresponding to the half-waveplate condition the polariza-
tion is again linear, with the polarization direction orthogonal
to the polarization of the incoming wave. In the following we
assume the length d of the crystal in the direction of propa-
gation to be close to that determined by the half waveplate
condition �kd= �2N+1��, N�Z, with �k=ke−ko as the dif-
ference between the wave number of the extraordinary and
ordinary wave. This means that the wave which leaves the
crystal will be close to linearly polarized in the direction
orthogonal to that of the incoming wave. The filtered signal
for a polarization direction � close to that of the incoming
signal therefore picks out only a small component of the
outgoing wave, but this is the interesting one for the question
of fast propagation through the crystal.

To analyze the situation, we start with the expression for
the electric component of a monochromatic plane wave
propagating through the crystal,

E�x,t� =
E0

�2	ei�kx−�t��ŷ + ẑ� , x � 0,

ei�kox−�t�ŷ + ei�kex−�t�ẑ , 0 � x � d ,

ei�kx−�t��ei�ko−k�dŷ + ei�ke−k�dẑ� , d � x ,


�2�

where ŷ and ẑ are the unit vectors in the y and z directions.
The three intervals on the x axis correspond to the regions
where the wave is located before entering the crystal �x
�0�, when inside the crystal �0�x�d� and after leaving the
crystal �d�x�. The polarization filter at this point has not
been introduced. The wave numbers in the three regions are
related to the frequency by

k =
�

c
, ko =

�

c
no, ke =

�

c
ne, �3�

with no and ne as the indexes of refraction of the ordinary
and extraordinary waves, respectively.

The filtered signal, with polarization at angle � relative to
the y axis is then described by the electric field

E� = E · e� =
E0

�2
ei�kx−�t�ei�ko−k�d�cos � + sin �ei�kd� , �4�

with �k=ke−ko. We focus the attention on the complex, rela-
tive amplitude

z =
1
�2

�cos � + sin �ei�kd� � �z�ei�, �5�

with absolute value and complex phase

�z� = ��1 + sin 2� cos��kd��/2,

z

y

x

C

F
D

d

β

FIG. 1. �Color online� Schematic illustration of the experimental
situation considered in the text. A plane polarized electromagnetic
wave is sent through a birefringent crystal C of width d. After
leaving the crystal the wave passes a polarization filter F with a
polarization angle � that can be varied, and the amplitude of the
filtered signal is registered in the detector D.
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� = arctan� sin��kd�
cos��kd� + cot �


 . �6�

The amplitude �z� vanishes at isolated points in the �k ,��
plane, determined by the conditions

�a� � = �/4�5�/4�, �kd = ��mod 2�� ,

�b� � = 3�/4�7�/4�, �kd = 0�mod 2�� , �7�

with �a� corresponding to the half waveplate condition. The
phase � rotates by 2� around each point of zero amplitude,
and the rapid variation close to this point is the reason for the
large value of the group velocity near the half waveplate
frequency. In Fig. 2 a graphic representation of the amplitude
z is shown as a function of k and � in the form of contour
plots for �z� and �.

The expression �6� for the phase � of the filtered plane
wave contains information not only about plane wave propa-
gation in the crystal, but also, in an approximate sense, about
propagation of wave packets, which in k space are strongly
localized around the wave number of the plane wave. Thus a
standard stationary phase analysis is based on the assumption
that the peak position of the wave in x space is determined
by the condition that the complex phase of the plane wave is
stationary with respect to variations in k.

For the filtered wave the time dependent position of the
peak is then given by

d

d�
�kx − �t + �ko − k�d + �� = 0 ⇒ x = ct + d − nod − c

d�

d�
.

�8�

Clearly the stationary phase argument identifies the group
velocity, defined in the usual way vgroup= d�

dk , as the velocity

of the peak of the signal. However, when we consider the
propagation of the wave after leaving the crystal there is no
change relative to the velocity of light in vacuum. More in-
terestingly, the expression gives the time delay �or time ad-
vance� relative to a wave that moves freely �without the pres-
ence of the crystal� �15�. The shift in time of the outgoing,
filtered signal relative to a freely propagating signal is

� =
d�

d�
+

�no − 1�d
c

, �9�

and with � given by Eq. �6� we find

� =
1 + cos��kd�cot �

1 + cot2 � + 2 cos��kd�cot �

d

c
�ne − no� +

�no − 1�d
c

=
d

c
�n̄ − 1 −

1

2

cos 2��n

1 + cos��kd�sin 2�
� , �10�

where in the last expression we have introduced
n̄= �ne+no� /2 and �n=ne−no.

Equation �9� shows that the time shift � becomes negative
when d�

d� is sufficiently large and negative,

d�

d�
� −

�no − 1�d
c

. �11�

This condition, which one may interpret as the condition for
superluminal transit through the crystal, can be satisfied for
parameter values close to the points of vanishing amplitude,
z=0, where the phase angle is rapidly varying. To be more
specific, we introduce new variables � and 	,

�kd = �2N + 1�� + �, � =
�

4
+ 	 , �12�

and assume these to be sufficiently close to the point �=	
=0 so that an expansion to first order in these variables is
sufficient,

�z� =
1

2
�4	2 + �2�1/2, � = arctan� �

2	

 +

�

2
. �13�

This gives for the derivative of the phase �,

d�

d�
= � 2	

4	2 + �2 +
1

2

 d�

d�
= � 2	

4	2 + �2 +
1

2

d

c
�n , �14�

and the corresponding expression for the time shift of the
peak, valid for small � and 	,

� =
d

c
�n̄ − 1 +

2	

4	2 + �2�n
 . �15�

The expression shows that for negative 	 and for sufficiently
small 	2 and �2, the time shift � may become negative. In
fact, close to the singular point of the phase � the time shift
may become arbitrarily large and negative. Thus the transit
time may not only correspond to a superluminal propagation,
but to a situation where the peak of the outgoing, filtered
signal appears before the peak of the incoming signal has
entered the crystal. Even if this situation may appear para-
doxical, there is in reality no conflict with causality. The
explanation is simply that the outgoing signal is being pro-
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β

FIG. 2. �Color online� Amplitude and phase of the filtered
monochromatic plane wave as functions of the polarization angle �
and the wave number k. Three singular points with vanishing am-
plitude are shown, where the lower one corresponds to the half
waveplate condition. The curves that circulate the singular points
are contour lines of constant amplitude and the lines that intercon-
nect these points are contour lines of constant phase. The numbers
along the horizontal axis gives �kd measured from the closest point
with an integer number of wavelengths �2�N�.
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duced by the advanced tail of a sufficiently broad incoming
wave.

The condition for superluminality �11� for small 	 and �
reduces to the condition

�	 + a�2

a2 +
�2

4a2 � 1, a �
�n

4�n̄ − 1�
. �16�

In Fig. 3 the contour lines of constant time shift � are shown
around the point 	=�=0. The time shift is positive for �

� /4�	
0� and negative for ��� /4�	�0�, with largest
absolute values of � close to the singular point 	=�=0. In
the figure the region of superluminality is indicated by the
shaded area for parameter value a=0.15.

The results discussed so far are in full agreement with
those discussed in Ref. �10�. However, these results are
based on the use of the stationary phase argument, which can
only be trusted for a signal that is narrow in k space and
therefore wide in x space. In the next section we shall there-
fore supplement this discussion by examining the propaga-
tion through the crystal of Gaussian shaped electromagnetic
waves of different widths.

III. PROPAGATION OF GAUSSIAN SHAPED WAVE
PACKETS

We introduce a wave packet with a Gaussian envelope in
the direction of propagation by the following expression:

E�x,t� =� �

4�
� d�e−��� − �0�2/4E��;x,t� , �17�

where E�� ;x , t� now denotes the monochromatic plane wave
of Eq. �2�. The integral over frequencies is easily evaluated
for each of the regions of propagation, and the expression for
the � component of the electric field is

E��x,t� =
E0

�2
e−�x − ct�2/�c2

ei�0�x−ct�/c�cos � + sin ��, x � 0,

E��x,t� =
E0

�2
�cos �e−�nox−ct�2/�c2

ei�0�no�x−ct�/c

+ sin �e−�nex−ct�2/�c2
ei�0�nex−ct�/c�, 0 � x � d ,

E��x,t� =
E0

�2
�cos �e−�x−ct−�1−no�d�2/�c2

ei�0�x−ct−�1−no�d�/c

+ sin �e−�x−ct−�1−ne�d�2/�c2
ei�0�x−ct−�1−ne�d�/c�,

d � x . �18�

Even if this component is filtered out only after the signal
has left the crystal, it is instructive to study its propagation in
all three regions, and we show a plot of the shape of this
component for a particular choice of parameter values below.

We first make a comparison between the peak position of
the filtered Gaussian signal and the corresponding position
determined by the stationary phase argument. It is conve-
nient to change to dimensionless variables by measuring
length in units of the crystal width d, and as a coordinate in
the direction of propagation we choose

� =
x − ct

d
+ �n̄ − 1� , �19�

so that outside the crystal the propagating waves are station-
ary in this coordinate. �=0 corresponds to the position mid-
way between the Gaussians of the ordinary and extraordinary
waves after leaving the crystal, while the incoming Gaussian
wave has the peak position

�0 = n̄ − 1. �20�

The peak position of the filtered signal, determined by the
stationary phase argument, is under half waveplate
conditions,

�1 = −
c

d
� + �n̄ − 1� =

1

2
�n

cos � + sin �

cos � − sin �
, �21�

and the condition for superluminality, as discussed earlier, is
then expressed as �1
�0.

The true peak position of the time evolved Gaussian sig-
nal can now be determined by use of Eq. �18�. For this signal
we assume the central frequency �0 to satisfy the half wave-
plate condition

�0

c
�nd = �2N + 1�� . �22�

We consider the squared relative amplitude f = ��E�� /E0�2 of
the outgoing wave, which written as a function of � has the
form

f��� =
1

2
�cos � exp�− 
2�� −

1

2
�n
2�

− sin � exp�− 
2�� +
1

2
�n
2��2

. �23�

The maxima �and minima� of f��� are determined by the
equation

2 2.5 3 3.5 4 4.5
0

0.25

0.5

0.75
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1.5

�k d

β

FIG. 3. �Color online� Lines of constant time shift for the out-
going signal in the �, k plane. The lower �red� curves correspond to
advanced signals and the upper �blue� curves correspond to retarded
signals. Close to the point of vanishing amplitude the time shift
increases without bound. The region of superluminal transit, for
parameter values given in the text, is indicated by shaded red.
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cos ��� −
1

2
�n
e
2��n − sin ��� +

1

2
�n
e−
2��n = 0,

�24�

with


 =
d

�
, � = ��c2, �25�

where � measures the width of the incoming Gaussian wave.
We note that Eq. �24� reproduces the solution �=�1 in the

limit 
2��n→0. This means that the inequality 
2��n�1
has to be satisfied if the position determined by the stationary
phase argument should be a good approximation to the real
peak position of the outgoing signal. If we combine this con-
dition with the condition for superluminality, �1
�0, we
have the constraints

� ��cos � + sin �

cos � − sin �
�nd 
 �2�n�n̄ − 1�d . �26�

Thus the width � of the signal has to be comparable to or
larger than the width d of the crystal in order for the time
shift determined by the stationary phase argument to give a
good approximation to the true time shift of the peak of the
signal. Equation �26� also shows that the closer � is to the
value � /4, the larger the width � has to be. We further note
from Eq. �23� that the amplitude of the filtered signal de-
creases exponentially with �1 and therefore with the forward
time shift � of the signal.

In reality f��� has two peaks rather than one, as follows
from Eq. �23�, since the function is defined by the partial
cancellation of two shifted Gaussians of opposite signs. This
cancellation produces one advanced and one retarded peak.
In Fig. 4 this is shown for �=� /4. For a wave with a sharply
defined value of k, this value of � corresponds to the situa-
tion where the � component of the field vanishes. However,
for a wave with a finite width in k space there is only a
partial cancellation between the fast �ordinary� and the slow

�extraordinary� components. The resulting wave is symmet-
ric with respect to the advanced and the retarded peaks, as
shown in the figure. For values of � smaller than � /4, there
are still two peaks, but now there is an asymmetry, with the
advanced peak dominating the retarded one.

In Fig. 5 this situation is illustrated by plots of the func-
tion f��� for the value �=0.21� and for three different val-
ues of the width � of the Gaussian, one larger and two
smaller than d. For the signal with the smallest width the
advanced and the retarded peaks are both clearly seen, how-
ever, the amplitude of the retarded peak rapidly decreases
with increasing width. One also notes that the forward shift
of the advanced peak is close to the value �1 for the broad
signal with �
d, but is reduced below this value for the
Gaussians of smaller widths.

Finally, in Fig. 6 we show the time evolution of the �
component of the electric field, as the wave propagates
through the crystal, in a case where the Gaussian is suffi-
ciently wide for the inequalities �26� to be satisfied. The
width of the Gaussian in this case is �=4d, and value of the
polarization angle is �=0.21�. To enhance the time shift � in
this plot, the degree of birefringence is increased to �n
=0.5. The plot shows how the � component is suppressed
under the propagation in the crystal, so that only a small
component survives and appears as the outgoing signal. The
position of the peak of this signal can be seen to be advanced
relative to a Gaussian signal that propagates with the speed
of light through the crystal.

IV. CONCLUSION

We have in this paper examined the phenomenon of su-
perluminal propagation of electromagnetic waves through a
birefringent crystal, an effect earlier discussed in Ref. �10�.
The effect can be viewed as a two step process, where at the

-1.5 -1 -0.5 0.5 1 1.5
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FIG. 4. �Color online� Advanced and retarded signals. The fig-
ure shows the Gaussian envelopes �the squared relative amplitudes
f� of the fast component �green curve to the right� and slow com-
ponent �blue curve to the left� after leaving the crystal. The �red�
two-peaked curve shows the filtered signal for polarization angle
�=� /4. For this angle destructive interference between the fast and
slow components gives rise to a symmetric signal with an advanced
and a retarded maximum.
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FIG. 5. �Color online� Outgoing signals for Gaussian input sig-
nals of different widths. The three curves show the squared ampli-
tude f as a function of the dimensionless x-coordinate � for polar-
ization angle �=0.21�. For the �blue� curve with the highest peak
the width � of the Gaussian is given by d /�=2.6, with d as the
width of the crystal. The corresponding values are d /�=1.6 for the
�green� curve of medium height and d /�=0.6 for the broadest �red�
curve. The position �0 indicates where the peak position would be if
the Gaussian signal moved with the speed of light, and �1 if the
signal moved with the speed determined by the stationary phase
argument. These positions depend on the indexes of refraction
which have here been chosen as n̄=1.30 and �n=0.15.
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first step the crystal modifies the polarization of the propa-
gating wave, due to different velocities of the ordinary and
extraordinary components, but since there is no damping or
reflection, the signal travels with subluminal velocity
through the crystal. However, at the next step, when the sig-
nal is sent through a polarization filter, the effect of the filter
is to suppress the signal in such a way that the peak of the
outgoing signal will appear as being shifted forward in time.

The amplitude of the filtered signal has been examined
here as a function of the frequency and polarization angle for
an incoming monochromatic plane wave. Close to half wave-
plate condition, a stationary phase analysis indicates that the
filtered signal may be substantially shifted forward in time,
in agreement with a similar analysis in Ref. �10�. The impli-
cation for a modulated wave is that, for certain parameter

values, the position of the peak of the filtered component will
be shifted to an advanced position relative to a freely propa-
gating wave. This is what in �10� is interpreted as a superlu-
minal transit of the signal through the crystal.

To examine this effect further we have considered incom-
ing waves with Gaussian envelopes of varying widths. The
effect of the polarization filter will in general be to reduce
the output signal in such a way that a two-peaked signal will
appear, with an advanced and a retarded part. For parameter
values corresponding to superluminal transit time the ad-
vanced peak will be the dominating one. However, a good
agreement between the stationary phase analysis of the peak
position and the true peak position of the Gaussian signal
depends on a sufficiently broad Gaussian envelope in the
direction of propagation. We find that if the width of the
signal is small compared to the width of the crystal, the peak
will be located behind the position determined from station-
ary phase analysis and the filtered wave in this case will also
show both the advanced and retarded peaks. If instead the
width of the Gaussian is much larger than the crystal width,
the peak position will be close to that determined from the
stationary phase and it may be substantially advanced rela-
tive to a signal moving with the speed of light. However, the
broadness of the signal means that it is not strongly located
around this position.

The stationary phase analysis shows that the situation dis-
cussed here is similar to other cases, where reduced transit
time can be seen as a consequence of the anomalous disper-
sion of the transmitted signal. A particular such case is quan-
tum tunneling, where the outgoing wave may appear with
reduced amplitude but advanced position �16–18�. However,
the present case is, in a sense, more transparent than the
other cases due to the separation of the effect into two parts.
Thus, at the first step, when the wave propagates through the
crystal, there is no faster-than-light propagation, but only a
change of polarization. At the next step, the polarization filter
produces the advanced signal by separating out a special su-
perposition of the two subluminal waves. That means that the
superluminal effect, in the present case, can be viewed as due
to fast transit of interference patterns through the crystal.
Viewed in this way the effect seems close to other cases
where velocities larger than c can be obtained by interfer-
ence. A particular case is the superluminal X wave in free
Maxwell theory, which is created by interference between
monochromatic plane waves �19,20�.
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