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We theoretically study the possibility of reaching the antiferromagnetic phase of the Hubbard model by
starting from a normal gas of trapped fermionic atoms and adiabatically ramping up an optical lattice. Re-
quirements on the initial temperature and the number of atoms are determined for a three-dimensional square
lattice by evaluating the Néel state entropy, taking into account fluctuations around the mean-field solution. We
find that these fluctuations place important limitations on adiabatically reaching the Néel state.
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I. INTRODUCTION

An optical lattice is a regular periodic potential for neutral
cold atoms �1� which enables the controlled experimental
exploration of paradigmatic ideas and models from
condensed-matter physics. This is because cold atomic gases
generally allow for a great deal of experimental tunability.
For example, Feshbach scattering resonances allow for the
interaction strength to be experimentally varied over a con-
siderable range �2,3�. Other quantities that may be altered
include temperature, density, and strength and shape of the
trapping potential. In particular, an optical-lattice potential
plays the role of the ion-lattice potential encountered in elec-
tronic solid-state physics. The energy bands resulting from
this periodic potential lead to a quenching of the kinetic en-
ergy of the atoms with respect to their interaction energy,
enabling the exploration of strongly correlated phases that
play a significant role in condensed-matter physics.

An important model that can be studied experimentally
with cold atoms is the single-band Hubbard model, which
consists of interacting fermions in the tight-binding approxi-
mation. The Hubbard Hamiltonian is realized by cold atoms
in an optical lattice when the potential is strong enough so
that only the lowest-energy band is populated �4�. For
bosonic atoms one then commonly refers to this model as the
Bose-Hubbard model. The theoretically predicted Mott-
insulator-to-superfluid phase transition �5� for this model has
indeed been observed experimentally �6�.

The fermionic Hubbard model, referred to simply as the
Hubbard model, is important in the context of high-
temperature superconductivity �7,8� and has also been real-
ized with cold atoms �9�. At half filling, corresponding to one
particle per lattice site, the ground state of this model is
antiferromagnetic, i.e., a Néel-ordered state, for strong
enough on-site interactions. As the filling factor is reduced
by doping, the system is conjectured to undergo a quantum
phase transition to a d-wave superconducting state �10�. A
theoretical proof of the existence of d-wave superconductiv-
ity in the Hubbard model is still lacking and would be a
major step toward understanding the superconducting state
of the cuprates. With the recent experimental advances in the

field of ultracold atoms, an experimental exploration of this
issue is within reach.

In view of this motivation, a significant problem is deter-
mining how the Néel state of the Hubbard model can be
reached experimentally. In this paper, we study theoretically
the process of adiabatically turning on the optical lattice
�11,12�, with the goal of determining the conditions required
for an initially trapped balanced two-component Fermi gas
with repulsive interactions to reach the Néel state in the lat-
tice. Experimentally, the presence of antiferromagnetic order
in this cold-atom experiment can be subsequently detected
from shot-noise correlations in the density distribution
�13,14�.

Our results are summarized in Fig. 1. For initial tempera-
tures lower than TF, the Fermi temperature in the trap, the
entropy per particle in the trap depends linearly on tempera-
ture as is shown by the dashed line. The optical lattice is then
turned on adiabatically, and to determine the final tempera-
ture of the gas we need the entropy per atom in the lattice.
For a sufficiently smooth trapping potential such that the
tunneling does not become site-dependent, the only effect of
the trap is to place a restriction on the total number of par-
ticles which we discuss later and, other than this, we may
neglect the trap for calculations in the lattice. Since we con-
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FIG. 1. �Color online� The entropy per particle in the harmonic
trapping potential only �dashed line�, in a lattice of depth V0

=6.5ER �ER is the recoil energy� from single-site mean-field theory
�solid curve� and with fluctuations �dash-dotted curve�, where TF is
the Fermi temperature in the trap. The horizontal dotted lines illus-
trate cooling and heating into the Néel state at constant entropy by
starting in the harmonic trap and adiabatically turning on the lattice.
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sider balanced gases here, we will at sufficiently low tem-
peratures first enter the Mott phase with one particle per site,
and the subsequent evolution of the gas is then described by
the Heisenberg model for the spins alone. The result from the
usual mean-field theory is shown for a lattice depth of 6.5ER
�where ER is the recoil energy� by the black curve, and is
equal to kB ln�2� everywhere above the critical temperature
Tc. Since entropy is conserved in adiabatic processes, the
final temperature is simply the temperature at which the final
entropy in the lattice equals the initial entropy in the trap.
Two such processes are shown by the dotted lines for differ-
ent initial temperatures demonstrating that the gas is some-
times heated and not cooled by the lattice. Nevertheless,
mean-field theory leads to the intuitive result that as long as
the entropy per particle in the initial state is less than
kB ln�2�, which is the maximum entropy of the Heisenberg
model, the Néel state is always reached by adiabatically turn-
ing on the optical lattice.

The inclusion of fluctuations leads, however, to a more
restrictive condition. To probe the effect of fluctuations, we
present an improved mean-field theory which produces a
temperature-dependent entropy above Tc, as seen from the
inset of Fig. 2. Although this approach is exact at high tem-
peratures, it fails to account for spin waves present at low
temperatures and for critical phenomena near Tc. By further
extending the improved mean-field theory to reproduce the
correct critical and low temperature behavior due to fluctua-
tions, we are able to determine the entropy in the lattice for
all temperatures �red curve in Fig. 1�. In particular, we find
that fluctuations lower the entropy of the atoms in the square
lattice at Tc as

S�T = Tc� � NkB ln�2� −
3NJ2

32kBTc
2�3� − 1�

, �1�

where � is the critical exponent of the correlation length �.
For the case of three dimensions, �=0.63 �17�. As a result,
the initial temperature required to reach the Néel state is
more than 20% lower than that found from the usual mean-
field theory, but fortunately remains experimentally acces-

sible. For example, with 40K atoms and a final lattice depth
of 8ER the Néel state is achieved when the final temperature
in the lattice is 0.012TF, which can be obtained with an ini-
tial temperature of 0.059TF.

II. SINGLE-SITE MEAN-FIELD THEORY

The Hamiltonian for the Hubbard model is given by

H = − t�
�

�
�j j��

cj,�
† cj�,� + U�

j

cj,↑
† cj,↓

† cj,↓cj,↑, �2�

in terms of fermionic creation and annihilation operators,
denoted by cj,�

† and cj,�, respectively, where � labels the
two hyperfine spin states 	↑ � or 	↓ � of the atoms. In the first
term of this expression, the sum over lattice sites labeled by
indices j and j� is over nearest neighbors only and propor-
tional to the hopping amplitude given by

t =
4ER


�
� V0

ER�3/4
e−2
V0/ER

. �3�

Here, V0�0 is the depth of the optical lattice potential de-
fined by

V�x� = V0�cos2�2�x/�� + cos2�2�y/�� + cos2�2�z/��� ,

�4�

where � is the wavelength of the lattice lasers. The second
term in the Hamiltonian corresponds to an on-site interaction
of the strength given in the harmonic approximation by

U = 4�a
 �

�3�8V0
3

m
�1/4

, �5�

where a is the s-wave scattering length which is equal to
174a0 for 40K. It is well-known �15� that at half filling and in
the limit that U� t the ground state of the Hubbard model is
antiferromagnetic and that, for kBT�U, its low-lying exci-
tations are described by the effective Heisenberg Hamil-
tonian

H =
J

2�
�jk�

S j · Sk, �6�

with S being one-half times the vector of Pauli matrices. The
exchange constant J=4t2 /U arises from the superexchange
mechanism. That is, the system can lower its energy by vir-
tual nearest-neighbor hops only when there is antiferromag-
netic ordering.

Within the usual mean-field analysis of the effective
Hamiltonian in Eq. �6�, the total entropy for N atoms in the
optical lattice is given by

S = −
�FL��n��

�T
, �7�

where FL is the Landau free energy,

FL�n� = N
 zJ	n	2

2
− kBT ln�2 cosh� zJ	n	

kBT
��� , �8�

in terms of the staggered, or Néel, order parameter
n= �−� j�S j� for the phase transition to the antiferromagnetic
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FIG. 2. �Color online� The staggered magnetization �n� of the
single �solid curves� and two-site �dashed curves� mean-field theo-
ries, the latter of which shows depletion at T=0 and a lowering in
Tc. The entropy of both theories is plotted in the inset. Above Tc we
see that the entropy of the two-site theory is temperature dependent.
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state. In the expression for the free energy, z=6 is the num-
ber of nearest neighbors for a three-dimensional simple
square lattice on which we focus here, kBT is the thermal
energy, and �n� is the equilibrium value of the order param-
eter determined from

� �FL�n�
�n

�
n=�n�

= 0. �9�

It is nonzero below a critical temperature kBTc=Jz /4
= �3 /2�J. After solving Eq. �9� the entropy is determined us-
ing Eq. �7�. The results for S and �n� obtained in this way are
plotted as solid black curves in Figs. 1 and 2.

The entropy SFG of the initial normal state before ramping
up the optical lattice is the entropy of a trapped ideal Fermi
gas. It is most conveniently determined from the grand po-
tential

	�
,T� = − kBT�
0

�

d�
���ln�1 + e−��−
�/kBT� , �10�

where 
 is the chemical potential, and the effect of the har-
monic trapping potential with the effectively isotropic fre-
quency �= ��x�y�z�1/3 is incorporated via the density of
states 
���=�2 / ����3 of the atoms. The entropy at fixed
total particle number N�
�=−�	 /�
 is then given by
SFG= 	−�	 /�T	
�N�. At temperatures much lower than the
Fermi temperature in the trap, given by TF= �3N�1/3�� /kB,
we find in this manner that �16� SFG=NkB�2T /TF. Now, by
equating the final and initial entropies we calculate the tem-
perature of the Heisenberg spin system that results after adia-
batically turning on the optical lattice, in terms of the initial
temperature of the trapped Fermi gas.

From the expression for the free energy, Eq. �8�, we im-
mediately see that S=NkB ln�2� for all temperatures T�Tc,
as was shown in Fig. 1. Although this is the correct high-
temperature limit of the entropy, temperature dependence
will lower the entropy at Tc and therefore lower the initial
temperature required to achieve the Néel state. To obtain the
temperature dependence above Tc, we must thus go beyond
single-site mean-field theory to include fluctuations. The
simplest such model described below incorporates the inter-
action of a given site with one of its neighbors exactly and
treats interactions with the rest of the neighbors within mean-
field theory.

III. TWO-SITE MEAN-FIELD THEORY

The two-site Hamiltonian for neighboring sites labeled
“1” and “2” is given by

H = JS1 · S2 + J�z − 1�	n	�S1
z − S2

z� + J�z − 1�	n	2, �11�

where the last term is a correction to avoid double counting
of mean-field effects. Diagonalizing this Hamiltonian we ob-
tain the free energy

FL�n� = N
1

2
�z − 1�J	n	2 −

1

2�
ln�2e−�J/4

+ 2e�J/4 cosh��J

2

1 + 4�z − 1�2	n	2��� , �12�

and find the entropy from Eq. �7� with the condition Eq. �9�
as in the single-site model. The results are plotted in Fig. 2,
where we see that fluctuations lower the critical temperature
and also bring about a 2% depletion of the order parameter
which is now less than 0.5 near T=0.

The two-site result carries the exact 1 /T2 dependence of
the entropy of the Heisenberg model at high temperatures.
Near T=0, however, the entropy is still exponentially sup-
pressed reflecting the energy cost of flipping a spin. This
exponential suppression is an artifact of the mean-field ap-
proximation that ignores the Goldstone modes which are
present in the symmetry-broken phase. Furthermore, critical
behavior cannot be properly accounted for by a one-, two- or
higher-site model since, near the onset of Néel order, critical
fluctuations extend throughout the entire lattice so one
would, in principle, need to include all sites exactly. To over-
come these shortcomings, we extend our two-site model be-
low to all temperatures.

IV. FLUCTUATIONS

The two-site mean-field theory produces the correct
normal-state entropy behavior in the high-temperature limit,

S�T � Tc� = NkB�ln�2� −
3J2

64kB
2 T2� . �13�

In the low-temperature regime, the entropy is determined
from spin-wave fluctuations prevalent near T=0 which give
a black-body-like entropy,

S�T � Tc� = NkB
4�2

45 � kBT

2
3J�n�
�3

. �14�

The continuous interpolation between these two regimes has
the additional constraint that, near Tc, we should obtain the
correct critical behavior of the antiferromagnet, namely, the
correct universal ratio of the amplitudes above and below the
phase transition A+ /A− and correct critical exponent d�−1
where

S�T � Tc� = S�Tc� � A�	t	d�−1, t = �T − Tc�/Tc → 0�.

�15�

This follows from the fact that the singular part of the free
energy density behaves as F� /�d, where the correlation
length diverges like ��	t	−� as t→0. Explicit expressions for
the entropy embodying the correct behavior in the low-,
high-, and critical-temperature regimes are presented in the
Appendix and plotted as the red curve in Fig. 1 for d=3
using A+ /A−�0.54 and �=0.63 �17� and the Néel tempera-
ture of Tc=0.957kB /J �18�. Their value at Tc leads to the
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central result of this paper, namely, Eq. �1� which specifies
the initial entropy required to reach the Néel state.

V. DISCUSSION AND CONCLUSIONS

As briefly mentioned earlier, there is a limit on the total
number of atoms in the trap, beyond which at low tempera-
tures it is energetically more favorable to doubly occupy
sites in the center of the trap, thereby destroying the antifer-
romagnetic state, rather than singly occupying outlying sites
where the trap potential is larger than U. Thus, insisting that
the system end up in the Mott-insulator state with one
particle per site entails the upper bound, N�Nmax
= �4� /3��8U /m�2�2�3/2, where m is the mass of the atoms
and � is the wavelength of the lattice lasers. For 40K atoms in
a lattice with a wavelength �=755 nm and depth 8ER,
and with a harmonic trap frequency � /2�=50 Hz,
Nmax�2�106 which is well above the typical number of
atoms in experiments.

We have also attempted to determine the effect that fluc-
tuations have on the entropy in a more microscopic manner
by studying Gaussian fluctuations about the mean-field �n�
for the single-site mean-field theory in the low-temperature
regime; but such a random-phase approximation has severe
complications related to the fact that �n� enters in the mag-
non dispersion as �k

M� �	n	�	k	. Hence, as can be already
seen from Eq. �14�, the contribution of the magnons to the
entropy diverges when �n�→0 near Tc. One way to poten-
tially resolve this issue is to start from the Hubbard Hamil-
tonian Eq. �2� directly but such an analysis is involved �19�
and has yet to be carried out.

In the above, we have focused on the d=3 case. While our
results can easily be extended to the d=2 case, a more per-
tinent way to reach the two-dimensional antiferromagnet
most relevant to high-temperature superconductors would be
to adiabatically prepare a three-dimensional Néel state, as
explained in this paper, and then decrease the tunneling in
one direction by changing the intensity of one of the lattice
lasers. In this way, the three-dimensional system is changed
into a stack of pancakes of atoms in the two-dimensional
Néel state. Furthermore, studying doped optical lattices made
by introducing a small imbalance in the initial state may
shed some light on the physics of high-temperature super-
conductors and would be an exciting direction for future
research.
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APPENDIX: ENTROPY FORMULAS

For temperatures above Tc we use

S�T � Tc�
NkB

� �1��T − Tc

T
��

− 1 +
�Tc

T
� + ln�2� ,

with �1=3J2 /32���−1�kB
2 Tc

2 and �=3�−1�0.89 �17�. The
first term embodies the correct critical behavior whereas the
remaining terms are present to recover the correct high-
temperature limit. Below Tc, however, we have

S�T � Tc�
NkB

= − �2��Tc − T

Tc
��

− 1 + �
T

Tc
−

��� − 1�
2

T2

Tc
2�

+ �0
T3

Tc
3 + �1

T4

Tc
4 ,

where

�2 =
6

�� − 1��� − 2��� − 3�

��4�2kB
3 Tc

3

135
3J3
− �1�� − 1� + �1 − ln�2��;

�0 =
�

�� − 3�� 4�2kB
3 Tc

3

45
3�J3
+ �1�� − 1� − �1 + ln�2�� ,

�1 = ln 2 − J26�A+/A− + 1� + ��� − 5�
64�kB

2 Tc
2A+/A− −

4�2kB
3 Tc

3

135
3J3
.

The first and last terms in S�T�Tc� embody the critical phe-
nomena and allow for the continuous interpolation with
S�T�Tc�, respectively, whereas the remaining terms are in-
cluded to retrieve the correct low-temperature behavior.
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