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We present an alternative approach to analyze atomic behavior when an external field perturbation is not
sudden for a number of states of the field-free system. It is shown that the probability amplitudes for the system
to be in these states can be accurately estimated from the closed set of their integral equations. Numerical
examples for an electron in a one-dimensional Coulomb potential interacting with �i� laser and �ii� half-cycle
pulses are provided. Comparison with exact calculations indicates the strength of the approach.
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I. INTRODUCTION

In many physical processes of practical importance com-
pound quantum systems undergo pulsed perturbations. For
example, such situations occur when atomic particles are
subjected to external pulsed fields �1� or collide with each
other �2�. Generally, the time evolution of perturbed systems
cannot be derived analytically from first principles and nu-
merical solution is needed. This is often exceptionally chal-
lenging, consuming considerable computer time and memory
�1,3�, and often impossible without approximations.

Approximate solutions can be indispensable in guiding
costly numerical methods. To use approximations we need
criteria to separate important aspects of the problem from
those which can be neglected. If either the applied field mag-
nitude or the characteristic field magnitude in the initial sys-
tem is small with respect to the other the solution can be
expressed as a perturbation series �4,5�. Generally, no restric-
tion on the interaction time is required within such an ap-
proach.

The sudden perturbation approximation �SPA� was devel-
oped specifically for time-dependent processes of very short
duration, satisfying the inequality

� = ���� � 1, �1�

where � is the time of perturbation �we also call it the inter-
action time� and � is the eigenenergy of any of the essential
states. These are the unperturbed states populated with suffi-
ciently high probability during the interaction. We use atomic
units in Eq. �1� and throughout unless specified otherwise.

If condition �1� is met the perturbation is so sudden that
the system literally has no time to respond. Its evolution
during the interaction is mainly driven by the time-dependent

perturbation potential V̂. The contribution of the unperturbed

Hamiltonian Ĥ0 is of the first order of � and can be ne-
glected. One can do better by expanding the evolution opera-

tor Ŝ�t , t0� in a series over small parameter �. It leads to the
expression �6�

Ŝ�t,t0� = Ŝ0�t,t0�� Î + �
n=1

�

�̂n�t,t0�� , �2�

where Î is the identity operator and

Ŝ0�t,t0� = exp�− i	
t0

t

V̂�t��dt�� �3�

is the zeroth order approximation. The correction terms �̂n in

Eq. �2� depend on Ĥ0. The contribution of �̂n to the Ŝ opera-

tor is of the nth order in �. The potential V̂ is assumed to be
nonzero near t=0. Also, this operator has to commute with
itself at different instants of time. Truncating the series �2�
one gets the sudden-perturbation approximation of the Ŝ op-
erator to the nth order.

The SPA imposes no explicit restrictions on the field mag-
nitude. So, it works well in both perturbative and nonpertur-
bative regimes provided that no states violating inequality
�1� are excited. Calculations are simple and interpretations
are straightforward. For example, in the case of one active
electron, Eq. �3� yields

Ŝ0��,− �� = exp�ip · r� , �4�

where r is the electron position and p=−
−�
� E�t�dt is the total

drift momentum due to the applied field E. Expression �4� is
used to model the behavior of highly excited atoms whose
electrons are “kicked” by half-cycle pulses �7–10�.

For Rydberg atoms the zeroth approximation can be used
since all essential states satisfy requirement �1�. In particular,
neither the ground state nor the low-lying excited states are
involved. This is equally applicable to states with positive
energies whenever ��1 /�. Thus, Eq. �1� severely limits the
kind of systems that may be treated with the SPA.

Here we present an approach that does away with the
requirement that Eq. �1� is satisfied, while maintaining some
of the strengths of the SPA. We consider the more general
situation where the perturbation is not sudden for some es-
sential states. We need to take them exactly into consider-
ation and ensure their proper “communication” with the
states satisfying condition �1�.*A.Lugovskoy@curtin.edu.au
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The formal approach based on this idea is developed in
Sec. II. In what follows we will call it the almost-sudden-
perturbation approximation �ASPA�. It is tested in Sec. III for
the numerically solvable model. The outcomes are given in a
summary.

II. THEORY

In this section we introduce an alternative approach for
the description of a quantum system under the action of a
pulsed perturbation. The interaction time is not supposed to
be short for all states involved in the process. These states

are eigenstates of the time-independent Hamiltonian Ĥ0.
Let the pulse arrive at t=0 and its action is complete at

t=�. We want to know how the system state �	�t�� evolves
from �	0� at t=0 and what the final state �	���� is. In this
paper we are looking for a nonrelativistic answer to our ques-
tion. It can be obtained from the Schrödinger equation

i
�

�t
�	�t�� = �Ĥ0 + V̂�t���	�t�� �5�

with the initial condition �	�t=0��= �	0�.
The solution of Eq. �5� can be written as an expansion

�	�t�� = �	
n

an�t��
n�e−i�nt �6�

in a complete set S= ��
n�
 of the unperturbed states indexed
with the list n of quantum numbers. The energy �n is an

eigenenergy of Ĥ0 corresponding to the eigenstate �
n�.
To tackle the problem we employ the approach similar to

that of Ref. �11�, where the Hilbert space is separated into
two orthogonal subspaces. We divide S into two subsets S1
and S2 with the use of criterion

�n = ��n�� � � 
 1, �7�

where � is some number which can be specified later. This
condition, rather than inequality �1�, gives us more flexibility
in calculations. Let the set S1 contain all states with energies
satisfying inequality �7�. The perturbation appears to be sud-
den to all these states. The second set S2 is defined as S2
=S−S1. The states of this subset require special consider-
ation.

Figure 1 shows in black the spectrum of atomic hydrogen.
It is positioned near �=5 a.u. The green �inner� and blue
�outer� areas are specified, respectively, with conditions ����
�� and �� �����1. The states with energies in the green
area belong to S1. The other states form S2. Note that both
subsets contain discrete and continuum states. So, generally,
S2 is never empty even when condition �7� is satisfied for all
negative-energy states.

Now we split �	� into two components

�	� = �	1� + �	2� , �8�

where

�	 j� = �	
n�Sj

an�t��
n�e−i�nt. �9�

Substituting Eqs. �8� and �9� in Eq. �5� one obtains

i
dam�t�

dt
= �	

n�S2

�
m�Ŵ�
n�an�t� + �
m�Ŵ��� , �10�

i
� ���
�t

= Q̂Ŵ�t����� + �	
n�S2

an�t��
n�� , �11�

where ���=exp�iĤ0t��	1�, Ŵ is the perturbation potential in
the interaction representation

Ŵ�t� = exp�iĤ0t�V̂�t�exp�− iĤ0t� , �12�

and Q̂ is a projection operator

Q̂ = 1 − �	
n�S2

�
n��
n� . �13�

In deriving Eq. �11� we took into account that Q̂ commutes

with Ĥ0. Subscript m in Eq. �10� labels the S2 state �
m�.
In line with the SPA one can replace exp�iĤ0t� and exp

�−iĤ0t� in Ŵ with their Taylor series over �� at t=0 when
these operators act on S1 states. It allows one to obtain the
series expansion for an and ���,

an = �
j=0

�

an
�j�� j , �14�

��� = �
j=0

�

�� j�� j . �15�

In the zero order one can derive from Eqs. �10� and �11�
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FIG. 1. �Color online� The spectrum of a hydrogen atom �black�
at the background of three areas defined by the conditions �����1
�white�, �� �����1 �blue�, and ������ �green�. �=0.5.
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i
dam

�0��t�
dt

= �	
n�S2

�
m�Ŵ�
n�an
�0��t� + �
m�V̂��0�ei�mt,

�16�

i
� ��0�

�t
= Q̂V̂�t����0� + �	

n�S2

an
�0��t��
n�e−i�nt� . �17�

Equations for higher-order corrections can also be obtained
which may be required if � is sufficiently close to unity.

With the use of Eq. �16� one can derive from Eq. �17�

��0�t�� = Ŝ0�t,0�Q̂�	0�

− �	
n�S2

	
0

t

dt�e−i�nt�� Ŝ0�t,t��an�t��
�t�

�
n� .

�18�

Rather than substituting Eq. �18� directly in Eq. �16� to find
am

�0� we use the orthogonality property

�
m��0�t�� = 0 �19�

for any 
m from S2 and �0 being the linear combination of S1
functions. Substituting Eq. �18� in Eq. �19� we get

bm�t� =
�
m�Ŝ0�t,0��	0�

�
m�
m�

− i �	
n�S2

�n	
0

t �
m�Ŝ0�t,t���
n�
�
m�
m�

bn�t��dt�,

�20�

where bm�t�=am
�0��t�exp�−i�mt�.

One can see that Eq. �20� for all possible m form a set of
integral equations closed in respect to the probability ampli-
tudes bm �or am

�0�� only. Thus, the problem �5� is reduced to
solution of the coupled set of integral Eq. �20�. Once ampli-
tudes am

�0� are found ��0�t�� can also be calculated.
Equations �18� and �20� are the main result of this paper.

Their solution is an approximate solution of the Schrödinger
Eq. �5� for the case when some of the states involved in the
process violate the sudden-perturbation condition �7�. We
would like to emphasize that Eq. �20� can be derived from
Eqs. �16� and �17� only if S1 is not empty �see, e.g., that Eq.
�19� is meaningless otherwise�. As one can expect this solu-
tion converges to zero-order SPA

�	�t�� → Ŝ0�t,0��	0� �21�

as the interaction time � tends to zero.

III. RESULTS AND DISCUSSION

In this section our aim is to test the approach developed in
Sec. II.

A. Model system

Consider an electron in the one-dimensional soft-
Coulomb potential �12–15�

V̂0�x� = −
1

�x2 + 2
. �22�

This potential is able to bind the electron in states with nega-
tive energies �see Fig. 2�. The electron distribution densities
for some of them are also shown in the figure. There is no
analytical solution of the eigenstate problem with the Hamil-
tonian

Ĥ0 = −
1

2

d2

dt2 + V0�x� . �23�

So, we calculate eigenfunctions and eigenvalues of Ĥ0 nu-
merically.

The apparent difficulty which can arise when solving the
set �20� is accounting for the S2 continuum which is not
taken into account in the framework of the SPA �16�. To
estimate its contribution we adopt the continuum-
discretization technique developed for the theory of electron-
atom collisions �17�. In the framework of this approach the
target electron is described with the use of pseudo state ex-
pansion. In our case it is

�	N�t�� = �
n=1

N

bn
N�t��
n

N� , �24�

where bn
N�t�=an

N�t�exp�−i�n
Nt� are time-dependent coeffi-

cients, �
n
N� is a nth pseudostate characterized with its pseu-

doenergy �n
N. The number of pseudostates N is a variable

parameter.
Pseudostates are orthogonal to each other. They are ob-

tained upon diagonalization of the Hamiltonian Ĥ0 in some
truncated orthogonal basis of size N. That is, they satisfy

�
m
N�Ĥ0�
n

N� = �n
N�mn. �25�

Solving Eq. �25� one gets all pseudoenergies �n
N and pseudo-

wave-functions
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FIG. 2. �Color online� Soft Coulomb potential V̂0. The shaded
areas show electron density distributions ��n�x��2 for several bound
states. The bottom lines of these areas coincide with the energy
level positions of the corresponding states.
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n
N�x� � �x�
n

N� = �
k=1

N

Cnk�k�x� , �26�

where �k is the kth basis function. The subscript n in �n
N and


n
N is a quantum number which we shall use to label the

pseudostate. One can use different basis sets. In our case we
choose the Hermite basis with

�k�x� =� �

�1/22nn!
Hn��x�exp�−

��x�2

2
� , �27�

where � is an arbitrary parameter. Pseudostates �
n
N� mimic

true eigenstates �
n� of same energies �n=�n
N in the vicinity

of the attractive center. This is demonstrated in Figs. 3 and 4.

Figure 3 shows pseudoenergies of the Hamiltonian Ĥ0 calcu-
lated for different N. We see that the negative-energy levels
converge to some constant values. Our calculations indicate
that these values are equal to corresponding true eigenener-
gies. Positive pseudoenergies show no signs of convergence.
They get more dense near zero and span a wider energy
region for larger N.

Figure 4 shows how pseudo-wave-functions are related to
true eigenfunctions. Figure 4�a� presents the case of a local-
ized state. The broken blue and solid red lines show pseudo-
wave-functions 
4

N=20 and 
4
N=40, respectively. We compare

them with the true eigenfunction 
4 shown with the thick
light blue line. One can see that the true eigenstate can be
well reproduced when a sufficiently large basis is used.

For unbound states this can be done only for a limited
range of coordinate x as demonstrated in Fig. 4�b�. It shows
the true eigenfunction 
� �thick blue line� and corresponding
pseudo-wave-function 
15

N=40 �thin red line� of the states with
equal energies �=�14

N=40�0.4. The size of the region where
true eigenfunctions are well reproduced depends on the basis
size N and parameter � �in our calculations �=0.4 to ensure
the fastest convergence rate for the ground state�. All physi-
cal processes which we are able to describe with the pseu-
dostate approach have to occur within this region.

Finally, by replacing the uncountable set of true eigen-
states with a finite set of square-integrable pseudostates we
come to our model system. The system evolution in the pseu-
dostate representation is determined by the Schrödinger
equation

i
dam

N

dt
= �

n=1

N

�
m
N�Ŵ�
n

N�am
N . �28�

In what follows we use numerical solution of Eq. �28� for
comparison with the solution of Eq. �20�. One should note
that the diagonalization �25� selects the sets of pseudostates
which are different for different N. We will see that the
physically meaningful content of expansion �24� is almost
independent of N.

B. Laser pulse example

Let the system be perturbed by the field defined with its
vector potential

A�t� =
E0

�
sin��t��sin��t

�
��2

, �29�

where E0, �, and � are, respectively, the field intensity, car-
rier frequency, and pulse duration. Equation �29� is a theo-
retical form which is widely used for the description of ul-
trashort laser pulses.

For realistic pulses the net momentum change �p and
displacement �x of a free electron due to the electric field
E=−�A /�t have to be zero,

�p = − 	
−�

�

E�t�dt = 0, �30�

�x = 	
−�

�

A�t�dt = 0. �31�

Equation �30� is a general requirement. Equation �31� is al-
ways satisfied unless the laser medium is left polarized at the
end of the pulse �5�. The field �29� meets condition �30� for
any parameters. To satisfy Eq. �31� we put �=2�nosc /� with
integer nosc�2 being a number of field oscillations.
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FIG. 3. �Color online� Pseudoenergy spectra for different num-
ber of basis functions N.
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FIG. 4. �Color online� Eigenfunctions and corresponding pseud-
ofunctions for �a� the bound state n=4 ��4�−0.1� and �b� the con-
tinuum state of energy ��0.4. Note that �n=� at n=15 at N=40.
The functions marked with N=� are true eigenfunctions.
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First, we would like to demonstrate that Eq. �28� yields
results independent of the choice of the basis size N. To do it
we calculate the ionization probabilities

PN = �
�n

N�0

�an
N�2 = 1 − �

�n
N�0

�an
N�2 �32�

for different N and compare them with each other. Figure 5
shows P20, P30, and P40 with the dotted green, dashed blue,
and solid red curves, respectively. The pulse parameters used
in the calculation were nosc=2 and �=5 a.u. The initial state
is the ground state with energy �1=−0.5. For this case con-
dition �1� is violated ��1=�1�=2.5� and the SPA is not appli-
cable.

Figure 5 demonstrates that PN is independent of N for
E0�2. For stronger fields �E0�2� probabilities P20, P30, and
P40 are different. Their E0 dependences have similar reso-
nantlike structures in this region shifted relatively to each
other. We see that the larger N is, the bigger is the region
where PN can be approximated with P�3.2�10−4E0

2 �gray
line�.

To understand this behavior we need to recall that Eq.
�24� is able to approximate the true wave function if the
electron stays sufficiently close to the “nucleus” during the
interaction �see our discussion of Fig. 4�. The electron dis-
placement �E0 and, hence, Eq. �24� works for relatively
weak fields. A stronger field drags the electron too far where
different pseudostate sets describe the process differently.

Now we are ready to solve Eq. �20� numerically and com-
pare the results with the numerical solution of Eq. �28�. Let
the system be initially in the ground state. The laser param-
eters are the same as in the caption of Fig. 5, that is, �=5 and
nosc=2. Also, to be sure that our calculations are independent
of the basis set we take E0=1.

Figure 6 presents the probability p=1− �a1�t��2 for the
electron to be out of the initial state during the interaction. It
was obtained from the solution of Eq. �28� for N=40 �thick
green curve�. The broken-blue line shows the ASPA result
calculated with the use of Eqs. �20� with S2
= ��
1

40� , �
2
40� , �
3

40�
. These states violate Eq. �7� where �
=0.5.

We see that the ASPA solution is in good quantitative
agreement with the reference result almost everywhere ex-

cept a small interval where t�4.5. This can be anticipated if
we take into account the fact that the electron quiver energy
�osc��E0 /��2 /2=0.058 is in the energy range of the S1 sub-
set defined by Eq. �7� with �=0.5 used. Nevertheless, we see
that enlargement of S2 with several positive-energy states
with n from 10 to 16 fixes the small discrepancy �red line�.

Note that the frequency � used in this calculation is about
2.5 a.u. So, for the system being initially in the ground state,
one could expect that the states with energies around �−�1
�2 to be predominantly excited. However, our calculations
indicate that contributions of these states are insignificant.

To understand why this is the case we show, in Fig. 7�a�,
how electrons are distributed over energy at the end of the
pulse. The filled �red� and empty �black� circles correspond
to pn= �an�2 calculated with the use of Eq. �28� for the states
with even and odd n, respectively. Also shown with empty
�blue� squares are estimations of pn calculated with the use
of the first-order perturbation theory �4�

pn � �E��ni��2�dni�2, �33�

where

E��� = 	
−�

�

E�t�exp�i�t�dt �34�

is the Fourier transform of the laser field strength, �ni=�n
−�i is the transition frequency, and dni= �
n�x�
i� is the di-
pole matrix element. The latter satisfies the selection rule
dni�0 for states with odd n+ i.

Indeed, we see from Fig. 7�a� that the energy distribution
is peaked at �=�16

40. Also, the exact results for the states with
even n can be described reasonably well with the first-order
perturbation theory. As follows from Eq. �33�, the shape of
the electron distribution depends on �E��−�1��2 and dn1.
These quantities are shown in Fig. 7�b�. The exponentially
decaying dipole matrix elements deform and shift the peak in
the energy dependence of �E��−�1��2 from 2.5 a.u. to
�0.5 a.u. Note that E��� is related to the Fourier image A���
of the vector potential A�t� by E���=�A��� which results in
different positions of their extrema.
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FIG. 5. �Color online� The ionization probability PN versus the
field strength E0 calculated for three different N. The key is given in
the figure. The system is initially in the ground state. The laser
parameters are �=5 a.u. and nosc=2.
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FIG. 6. �Color online� Probability p=1− �a1�2 of electron to
leave initial state n=1 versus time. The green curve shows the exact
probability p. The red and dotted-blue lines correspond to the ASPA
results calculated with the different numbers of pseudostates �see
text for details�.
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C. Half-cycle pulse example

Now we consider another example where the pulse effect
on the system final state is not weak. Let the electric field be

E�t� = E0�at3 exp�− 8t/�s�
�s

3 −
bt5 exp�− t/�s�

�s
5 � , �35�

where a�3.81�102 and b=4.6�10−3. Equation �35� is
similar to the one used by �18� for a half-cycle pulse �HCP�.
We modify their expression to ensure that condition �30� is
satisfied.

Figure 8 shows the electric field E and its vector potential
A for �s=1 a.u. The field E consists of a very short main
half-cycle of duration ��s. This part is followed by a long
low-amplitude half-cycle pulse of opposite polarity. Usually,
�s is considered to be small in comparison with the Kepler
period Ti of an electron in the initial state �
i�. The duration
of the long part �l is typically larger than Ti. In this case the
HCP action is attributed to delivering nonzero momentum
pHCP to the electron by the first half cycle. The influence of
the longer part on the system is usually ignored. If �=�s
+�l�Ti both parts have to be taken into account. In this case
the net change in electron momentum due to the field is zero
and the atom is more stable against destruction �19�.

First, we consider the case where the whole pulse duration
� is much smaller than the oscillation period Ti which is

Ti � 2	
−xi

xi dx
�2��i − V�x��

, �36�

where xi is the classical turning point for the electron with
energy �i in the potential �22�. Equation �36� yields T1
�15.8, T2�43.2, and T3�93 for the states with n from 1 to
3, respectively. To be sure that inequality ��Ti is well sat-
isfied we put the initial state to be �
3

N� and �s=0.2 a.u. The
duration of the longer part �l is one order of magnitude larger
than �s. So, the total pulse duration �=�s+�l�2.

Figure 9 shows the probability �a3�2 for the system to be in
the initial state during the interaction with the HCP of
strength E0=5. The reference result is shown with a thick
light green line. The broken blue and solid red lines corre-
spond to the ASPA results with S2 consisting, respectively, of
three states with n=1 to 3 and nine states with n=1 to 3 and
n=8 to 13. In Fig. 9 we also show the ionization probability
P40 calculated with the use of Eqs. �32� and �28� �dotted
brown line�.

The momentum pHCP received by the electron from the
first half-cycle is 0.55 which corresponds to the displacement
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FIG. 7. �Color online� �a� Electron energy distribution at the end
of the pulse. The filled red �empty black� circles correspond to
probabilities pn= �an�2 with even �odd� n. Empty squares shows
probabilities pn calculated with the use of the perturbation theory.
The lines are provided to guide the eye. �b� �E��−�1��2 as a function
of energy � �red line�. Also shown with empty �blue� squares are
�dn1�2 positioned at �=�n

40 for all even n.
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FIG. 8. �Color online� The field E of Eq. �35� and its vector
potential A versus time for �s=1.
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FIG. 9. �Color online� Probability �a3�2 to find the system in the
initial state n=3 versus time. The thick light green line corresponds
to �a3�2 found with Eq. �28�. Two ASPA results calculated for two
different sets of states �see text� are shown, respectively, with the
broken blue and solid red lines. The dotted brown line corresponds
to the ionization probability. The HCP parameters are �s=0.2 ��
�2� and E0=5.
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�xHCP= pHCP�s�0.11. Thus, the electron stays in the region
where Eq. �24� is applicable during the interaction. The field
E is sufficiently strong to bring the electron to the con-
tinuum. We see that it can be found there with high probabil-
ity when 0.2� t�1.2. However, when the pulse action is
finished the system state is almost completely recovered, in
qualitative agreement with the observations �19�. The ioniza-
tion probability is very small. This behavior can be quantita-
tively described by the ASPA with only three negative-
energy states in S2. A small correction is still needed. By
enlarging S2 with several positive-energy states we get better
agreement.

Let us now examine the case where � is of the same order
of magnitude as Ti. We take �s=1 and, hence, ��10. This is
comparable with T1=15.8. So, �
1

40� is assumed to be the
initial state. Figure 10 shows the probabilities �a1�2 and �a2�2.
They are well separated in the figure. So we use the same
line styles as those of Fig. 9. Again, the ASPA probabilities
were calculated with two different sets S2 which include,
respectively, negative-energy states only �n is from 1 to 6�
�broken blue line� and both negative- and positive-energy
states �n is from 1 to 6 and from 9 to 16� �solid red line�.

We see that the system behaves reasonably. Its state
changes abruptly after the initial “kick.” Then the probabili-
ties experience significant variations during the long half-
cycle. In contrast to the previous case ��Ti the system is
unable to recover at the end of the pulse. The ionization
probability does not tend to zero. The ASPA reproduces all
these features precisely for �a1�2. Six negative-energy states
are enough. We also see good quantitative agreement for
�a2�2 when t�5.

The ASPA with negative-energy states only overestimates
�a2�2 for larger t. It can be corrected partly by accounting for
the positive-energy states. The inset of Fig. 10 shows the
momentum distribution of the emitted electron. One can see
that the correction comes from the states with n
14. The
populations of higher energy states are small and drop expo-
nentially as pn=��n increases. Accordingly, our calculations
show that the enlargement of S2 with states n�14 does not
improve the agreement. We also did calculations with S1
having only one state with n=7 or n=8. Interestingly, the

agreement was even worse. To explain the discrepancy we
recall that the accuracy of our calculations is controlled by
parameter � from Eq. �7�. It was rather large ��=0.5� to let
the error develop for sufficiently large time intervals.

Finally, we would like to compare the SPA and ASPA
results for the case presented in Figs. 10. We see from Fig.
11 that the zero-order SPA is in good agreement with the
exact result for sufficiently small t. However, for larger t the
condition �1� is violated and no agreement is observed. In the

considered case �p=0 and, hence, Ŝ0�� ,−��= Î. So, accord-
ing to the zero-order SPA, the system has to return to the
initial state after the pulse action is complete. In contrast the
ASPA is valid for all t.

IV. DISCUSSION

The prerequisite of the theory described in Sec. II is the
possibility to group the Hilbert space states by their physical
properties so that not individual states but the groups of
states are accounted for as a whole. This simplifies the con-
sideration significantly as demonstrated. The key point is to
find the correct criterion to group the states and correspond-
ing approximation suitable for the conditions of interest.

The strong field approximation �5� can be a logical choice
in the case of atoms interacting with very intense fields. It
was applied recently in a similar way in Ref. �20�. In that
case all excited states of the field-free system are embedded
into the continuum and the strong field dominates their dy-
namics.

We study another extreme specified by condition �7�. In
general, the ASPA is applicable for any field magnitude and
any pulse duration since all states of the Hilbert space are
taken into account. This is only subject to computer re-
sources. In addition, the ASPA can be used for description of
collision processes in the framework of the impact parameter
approximation.

To apply the ASPA fully one has to take properly into
consideration the system continuum. Our work reveals that
the SPA resolves this problem only partly, for the S1 con-
tinuum only. In the previous section we considered numeri-
cal examples where the maximum electron momentum varia-
tion due to the field is relatively small and so is the effect of
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FIG. 10. �Color online� Probabilities �a1�2 and �a2�2 versus time.
The initial state is �
1

40�. The HCP parameters are �s=1 and E0=1.
Inset: �an�2 plotted against pn=�2�n at t=18.
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FIG. 11. �Color online� Same as Fig. 10 but with broken blue
lines corresponding to �a1�2 and �a2�2 calculated with the use of the
zero-order SPA.
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the S2 continuum states. The good agreement between the
reference and ASPA results testifies that the contributions of
S1 states are accurately encoded in Eq. �20�. One could an-
ticipate that the S2 continuum is of greater importance for
stronger fields.

V. SUMMARY

An approach has been introduced to analyze how a pulsed
perturbation of arbitrary form affects a quantum system. For
some system states this perturbation is sufficiently short so
that their contributions in the total wave function are taken

into account with the sudden-perturbation approach. The
other states are accounted for exactly. The amplitudes of
these states can be found from the closed set of their integral
equations. Upon solution the whole wave function can be
reconstructed. The reported approach has been tested for nu-
merically solvable one-dimensional atomic model. Its appli-
cation to realistic problems �3D atom interacting with one
and two ultrashort pulses� is currently being implemented.
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