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We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis
focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to
one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings
between the closed channels. We derive a general recursive expression that can be used to fit the experimental
data on multistate Feshbach resonances involving one continuum state and several bound states and present
numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach
resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold
atoms and molecules with external fields.
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I. INTRODUCTION

Following the paper of Tiesinga, Verhaar, and Stoof �1�,
Feshbach resonances have been used as an important tool for
controlling interactions of ultracold atoms �2�, the creation of
ultracold molecules �3–7�, and experimental studies of cor-
related phenomena in ultracold gases �8–10�. A Feshbach
resonance occurs when a scattering state of two colliding
particles interacts with a metastable bound state of the two-
particle system. The coupling between the scattering state
and the bound state leads to a resonant enhancement of the
scattering cross section as the energy of the scattering state
approaches the energy of the bound state. Collisions at ultra-
cold temperatures are entirely determined by single partial-
wave scattering: s-wave scattering for collisions of bosons or
distinct atoms and p-wave scattering for collisions of identi-
cal fermions. If the scattering state is coupled directly to a
bound state, Feshbach resonances in ultracold collisions can
be described by a two-state model where a single partial-
wave state interacts with an isolated bound state �see �3,11�
and references in �11��. Atomic and molecular systems with
anisotropic interactions may also exhibit resonances induced
by indirect couplings. For example, the magnetic dipole-
dipole interaction in collisions of chromium atoms �12� or
the second-order spin-orbit interaction in collisions of Cs or
Rb atoms �13,14� couple the s-wave scattering state with a
d-wave state and the d-wave state with a g-wave state, while
there is no direct coupling between s-wave and g-wave col-
lision channels. A resonance in the g-wave channel may af-
fect the s-wave scattering amplitude of ultracold atoms
through the sequence of two indirect couplings. Similar reso-
nances occur in collisions of distinct atoms in the presence of
electric fields �15�. Electric fields couple s-wave collision
channels with p-wave scattering states. The numerical calcu-
lations of Refs. �15,16� showed that the s-wave collision
cross section may undergo a resonant variation in the pres-
ence of electric fields if the corresponding p-wave collision
channel is coupled resonantly with a p-wave bound state.

Resonances induced by high-order couplings may also occur
in chemical dynamics of molecules �17� and electron-
molecule or positron-molecule scattering �18,19�. The sym-
metry of the interactions involving charged particles limits
the number of directly coupled scattering states and leads to
a sequence of indirect couplings.

Feshbach resonances induced by direct couplings and
three-state Feshbach resonances induced by second-order
couplings have been analyzed in numerous previous studies
�11�. The studies of multistate Feshbach resonances involv-
ing three or more bound states have been limited to pro-
cesses induced by the interaction of molecules or atoms with
laser light such as multiphoton ionization �20�. The proper-
ties of multistate Feshbach resonances in atomic and molecu-
lar collisions may however be different. Resonances induced
by a sequence of several indirect couplings may become par-
ticularly important as the studies of ultracold collision phys-
ics begin to focus on large polyatomic molecules �21�. One
proposed method of cooling polyatomic molecules to ultra-
cold temperatures is sympathetic cooling. In the absence of
reaction processes, molecules can potentially be cooled by
elastic collisions in a reservoir of ultracold atoms �22–24�.
The experimental realization of this method may, however,
be complicated by naturally occurring Feshbach resonances.
The density of molecular states near zero point energy is
very large in polyatomic molecules �25� and these bound
states may give rise to Feshbach resonances in collisions
between molecules and ultracold atoms. The probability of
three-body recombination and other loss processes in colli-
sions involving large polyatomic molecules may thus be en-
hanced. Not all of the bound states may, however, give rise
to Feshbach resonances. The interaction between an atom
and a large molecule usually probes only a limited number of
molecular states. The other molecular states can interact with
the atom-molecule scattering state by indirect couplings and
it is important to understand whether they can generate Fes-
hbach resonances with significant widths. A general descrip-
tion of multistate Feshbach resonances occurring in molecu-
lar collisions is necessary to understand the prospects for
controlling collisions of polyatomic molecules at low tem-
peratures with external electromagnetic fields.
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Two-state Feshbach resonances as well as resonances in-
duced by indirect couplings can be described using the pro-
jection operator method introduced by Feshbach �26,27�. The
approach is based on partitioning the Hilbert space of the
total Hamiltonian for the collision system into two orthogo-
nal subspaces of open and closed channels. For resonances
induced by indirect couplings, the closed channel subspace
contains more than one state and the solution of the
Schrödinger equation can be obtained by first diagonalizing
the closed part of the Hamiltonian and then considering the
coupling to the open subspace ��28�, p. 157�. This can be
done analytically for three-state resonances involving two
closed channels �28,29�. The procedure may, however, be
cumbersome for resonances induced by a sequence of more
than two indirect couplings. In the present paper, we use the
approach of Feshbach to derive a recursive expression de-
scribing Feshbach resonances induced by a sequence of in-
direct couplings through bound states and analyze the prop-
erties of such resonances. This analysis is a special case of
the multichannel collision problem considered by Feshbach
��28�, p. 157�. We show that the Feshbach formalism for
systems with tridiagonal Hamiltonians can be reduced to
finding the roots of recursive polynomials. Our derivation
provides a general form that can be used to fit the experi-
mental data on multistate Feshbach resonances involving one
continuum state and several bound states. We present the
numerical solutions for the roots of the recursive polynomi-
als for several model systems that represent atomic or mo-
lecular collisions with anisotropic interactions. Our analysis
elucidates general features of multistate Feshbach resonances
induced by high-order couplings and demonstrates the anal-
ogy with multistate quantum optics systems.

II. THEORY

We consider a scattering state coupled to a resonant bound
state by n−1 sequential couplings. The collision system is
described by the following set of coupled equations:

�E − H11��1� = V12�2� ,

�E − H22��2� = V21�1� + V32�3� ,

]

�E − Hnn��n+� = Vn−1,n�n − 1� , �1�

where channel n is open and contains the incident flux and
channels 1 through n−1 are closed. We assume that each
closed channel k contains a bound state ��k� satisfying the
Schrödinger equation ��k−Hkk���k�=0, and that each such
state is well separated from other states in its channel. We
adopt the procedure of Feshbach to repeatedly remove the
last closed channel �26,29�. After eliminating channels 1 and
2, we obtain the following equation for channel 3:

�E − H33 − V32G2�1�V23��3� = V34�4� , �2�

where we use Green’s operators of the form

G�����E� �
1

E − H�� − V��G��E�V��

. �3�

This notation can be extended to define general Green’s op-
erators that appear in solving the system �1�, such as that for
the pseudo-Hamiltonian on the left-hand side of Eq. �2�. If �k
with k=1 to n are channel indices,

G�n„�n−1�¯��1�¯�…�E�

�
1

E − H�n�n
− V�n,�n−1

G�n−1„�n−2�¯��1�¯�…�E�V�n−1�n

.

�4�

The inverse of the operator in Eq. �2� is denoted by
G3(2�1�)�E�. Repeating this process we obtain for channel n an
effective Schrödinger equation

�E − Hnn − Vn,n−1Gn−1„n−2�¯�1�¯�…Vn−1,n��n+� = 0, �5�

with the effective potential determined by

Veff�E� = Vnn + Vn,n−1Gn−1„n−2�¯�1�¯�…�E�Vn−1,n, �6�

where the operator Gn−1(n−2�¯�1�¯�)�E� is

Gn−1�n−2„¯�1�¯…��E� =
1

E − Hn−1,n−1 − Vn−1,n−2
1

E − Hn−2,n−2 − Vn−2,n−3
1

]

E − H22 − V21
1

E − H11
V12

Vn−3,n−2

Vn−2,n−1

. �7�

Using the isolated state approximation for k=1, . . . ,n−1, we obtain

Gk„k−1�¯�…�E� � ��k�	�k�
Pk−1�E�
Pk�E�

, �8�
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where Pk�E� are polynomials in E satisfying the recursion
relation

P0�E� = 1,

P1�E� = E − �1,

Pk�E� = �E − �k�Pk−1�E� − AkPk−2�E�, k � 2, �9�

where

Ak � �	�k�Vk,k−1��k−1��2. �10�

This gives the implicit equation for �n+�,

�n+� = ��n
+� + GnVn,n−1��n−1�	�n−1�Vn−1,n�n+�

Pn−2

Pn−1
, �11�

from which we can obtain the resonant contribution to the
T-matrix element for elastic scattering in the open channel,

Tnn
r = 	�n

−�Vn,n−1��n−1�	�n−1�Vn,n−1�n+�
Pn−2

Pn−1
. �12�

We evaluate the matrix element 	�n−1�Vn,n−1�n+� by multiply-
ing Eq. �11� on the left-hand side by 	�n−1�Vn−1,n,

	�n−1�Vn,n−1�n+� =
	�n−1�Vn−1,n��n

+�

1 − 	�n−1�Vn−1,nGnVn,n−1��n−1�
Pn−2

Pn−1

.

�13�

Using this result, Eq. �12� yields

Tnn
r �E� =

	�n
−�Vn,n−1��n−1�	�n−1�Vn−1,n��n

+�Pn−1�E�
Pn−1�E� − 	�n−1�Vn−1,nGn�E�Vn,n−1��n−1�Pn−2�E�

=
	�E�Pn−1�E�
2
Qn−1�E�

, �14�

with Qn−1�E� defined by

Qn−1�E� = Pn−1�E� − 
��E� −
i	�E�

2
�Pn−2�E� , �15�

where

��E� −
i	�E�

2
� 	�n−1�Vn−1,nGn

+�E�Vn,n−1��n−1� . �16�

Resonances are associated with the roots of the equation
Qn−1�E�=0, which correspond to poles of the S matrix. The
root which approaches �k �or �n−1+���n−1�, when k=n−1�
when the coupling strengths tend to zero is Ek. The real part
of the root gives the resonance energy, and the resonance
width is −2 Im Ek. A real root of Qn−1, for example, when
one of the couplings Ak=0, must be a root of both Pn−1 and
Pn−2, and by Eq. �14� does not give rise to a pole in Tnn

r .
Physically, the resonance width approaches zero as the root
approaches the real axis. A factorization

Qn−1�E� = �
k=1

n−1

E − Ek�E� +
i	k�E�

2
�17�

exists, where Ek�E� and 	k�E� are real for real E, Ek

=Ek�Ek�−
i	k�Ek�

2 , and



k=1

n−1 
Ek�E� −
i	k�E�

2
� = ��E� −

i	�E�
2

+ 

k=1

n−1

�k. �18�

III. NUMERICAL ANALYSIS

In order to elucidate the properties of resonances induced
by indirect couplings, we consider several model problems
and analyze the roots of the polynomials giving rise to mul-
tistate Feshbach resonances �14�. The parameters � and 	
are assumed to be independent of energy. Qn−1�E� is then a
polynomial in E and may be solved numerically. Ek− i	k /2
=Ek in Eqs. �17� and �18� implies that the roots of Qn−1�E�
sum to �− i	 /2+
�k.

Model (i). All couplings Ak have the same magnitude A
and the energies of the bound states �k are closely and regu-
larly spaced,

�k = ���n − 1 − k�, k 
 n − 2,

�n−1 + � = 0, �19�

where �� is the spacing between levels. Figure 1 illustrates
the trajectories of the roots of an eighth-degree polynomial
Q8�E� in the complex energy plane as A increases. For all
roots, Im Ek�0 when A�0, and Im Ek approaches a con-
stant as A→�. We have found that these are generic prop-
erties, observed in all models, and that they are independent
of the order of the bound states, the number of bound states
and the regularity and the magnitude of their spacing. Reso-
nances correspond to poles of the S matrix typically below
the positive real axis in the complex E plane ��30�, p. 240�,
and we expect the roots to lie in the half-plane Im E
0. This
would imply that the resonance widths sum to 	 and every
resonance must have width less than 	. For the polynomials
Qn−1�E� with 	 and � constant, it can be proven that a real
root can only occur when at least one Ak=0, and hence each
root must remain on one side of the real axis when all Ak

FIG. 1. Trajectories of the roots of an eighth-degree polynomial
Q8�E� for a model �i� system in the complex E plane as A increases.
Calculations are performed with all Ak=A and �k given by Eq. �19�
with �� /	=0.1, on a fine grid of A /	 values. Symbols indicate the
points corresponding to A /	=0, 0.1, 1, and 10.
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�0. From Eq. �15�, a real root of Qn−1 must be a root of both
Pn−1 and Pn−2. From Eq. �9�, AkPk−2= �E−�k�Pk−1− Pk for k
�2, hence if every Ak�0, a common root of Pn−1 and Pn−2
must be a root of all Pk, k
n−1, including P0. However,
this would imply that P0 has a root, which is not possible
since P0=1. We conclude that in a solution of Eq. �9� with all
Ak�0, no two consecutive Pk may have a common root. As
a consequence, there can be no real roots of Qn−1 unless a
coupling Ak=0. An analysis of the resonance widths shows
that the width of the resonance associated with the root E1,
which for weak coupling strengths is primarily due to the last
bound state ��1�, decreases rapidly as the number of interme-
diate bound states increases �Fig. 2�.

Model (ii). The couplings A2�A3� ¯ �An−1 form the
arithmetic series Ak=A2+ �k−2��A and the energies �k are
regularly spaced in the sequence order. This is a generaliza-
tion of model �i�. We find that, in general, the widths of all
resonances tend to constants as �A becomes large. The lim-
iting values of Im Ek are close to each other, however one or
two resonances in the middle of the energy range typically
approach smaller limiting values separated from the others.
These general trends do not change when the energies of the
�k are randomly permuted.

Figure 3 presents a characteristic dependence of the reso-
nance widths on the number of intermediate states in the
coupling scheme for several values of �A. Interestingly, the
width of the resonance is a slowly varying function of the
number of intermediate states for large �A and decreases

rapidly with the number of intermediate states �or the order
of coupling� when �A is small.

Model (iii). The couplings A2�A3� ¯ �An−1 form the
geometric series Ak=rk−2A2 and the energies �k are regularly
spaced in the sequence order. The widths of the resonances
with this coupling scheme depend on the magnitude of A2.
Figure 4 presents the dependence of the resonance widths on
r for A2=0.1 /	. The results are qualitatively the same for
any A2�0.1 /	. Surprisingly, the widths of most resonances
tend to zero as r increases. The widths of two resonances
�k=1 and k=7� tend to the same nonzero constant. The
bound state k=1 is the last and the bound state k=7 is the
second in the sequence of the indirectly coupled bound
states. The dependence of the resonance widths on the cou-
pling order �Fig. 5� is thus very simple in the limit of strong
couplings. This implies that the number of Feshbach reso-
nances with significant widths in a system with strong indi-
rect couplings should be much smaller than the density of the
bound states as certain bound states will not give rise to
Feshbach resonances.

Figure 6 presents the resonance widths calculated with
A2=0.001 /	. The dependence of the resonance widths on r
is qualitatively the same but the resonance corresponding to
k=1 is no longer dominant. Many of the intermediate reso-
nances vanish as the coupling strength becomes large.

To understand the influence of the resonance positions on
the resonance widths, we repeated the calculation of Fig. 5
with the following order of the bound state energies: �5
��3��8��1��9��2��10��6��4��7. The widths of the
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FIG. 2. Width of the E1 resonance for a model �i� system with
n−1 bound states calculated with all Ak=A and �k given by Eq. �19�
with �� /	=0.1.
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FIG. 3. Width of the E1 resonance for a model �ii� system with
n−1 bound states calculated with A2 /	=0.1 and �k given by Eq.
�19� with �� /	=0.1.
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�� /	=0.1. Numbers indicate the index k of the root Ek.
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resonances with this order of the bound state energies display
qualitatively the same dependence on r as in Fig. 4. How-
ever, the resonance k=7 is now dominant in the limit of large
r. The resonances k=10 and k=4 become wide and the reso-
nances k=1, k=2, and k=3 become very narrow. We con-
clude that the width of a resonance depends both on the
index k �i.e., the coupling scheme� and the position of the
bound state energy �k relative to energies of other bound
states.

Model (iv). The couplings A2=A3= ¯ =An−2=A�An−1
and the energies �k are regularly spaced in the sequence or-
der. Figure 7 demonstrates the dependence of the resonance
widths on the coupling strength A for the different reso-
nances. It is interesting to note that the width of resonance
k=1 decreases with increasing An−1, once n reaches a certain
value. Generally, there are two wide resonances and the

widths of the other resonances decrease as An−1 becomes
large. This behavior is qualitatively the same for different
orders of the bound state positions.

Model (v). The couplings A5�Ak�5=A. This model rep-
resents a system with a bottleneck coupling A5, i.e., the cou-
pling between the bound states with the energies �4 and �5.
As A5 vanishes, some resonances become very narrow, while
others remain wide �see Fig. 8�. These calculations were per-
formed with the energies �k in the sequential order, and with
them randomly ordered. The Ak couplings lead to mixing of
the bound states ��k�, and hence the resonances that vanish
are not necessarily E1 through E4. For small A, resonances
with lower k are more likely to vanish.

IV. CONCLUSION

We have presented a formal analysis of multichannel Fes-
hbach resonances mediated by second- and higher-order cou-
plings, i.e., scattering resonances induced by the interaction
with a bound state that is not directly coupled to the initial
scattering state. Our analysis focuses on a system with one
open scattering state and multiple closed channels. Only one
of the closed channels is coupled directly to the scattering
state. Multiple Feshbach resonances arise due to the cou-
plings between the closed channels. Such resonances may
occur in collisions involving complex molecules with mul-
tiple degrees of freedom, chemical reaction dynamics, and
electron-molecule and electron-positron scattering. Poly-
atomic molecules can potentially be cooled to ultracold tem-
peratures by elastic collisions in a reservoir of ultracold at-
oms �22–24�. The experimental realization of this method
may be complicated by naturally occurring Feshbach reso-
nances. The energy spectrum of polyatomic molecules is
usually dense and collisions of large molecules with ultra-
cold atoms may lead to long-lived Feshbach resonances that
would complicate translational energy exchange and result in
sticking of atoms to molecules and the formation of clusters.
It is therefore very important to understand the mechanisms
of Feshbach resonances in collisions of polyatomic mol-
ecules with atoms.

If the molecule is sufficiently large, the atom-molecule
scattering state of interest may not be directly coupled to all
molecular states in a collision. The atom-molecule interac-
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FIG. 6. Width of resonances versus r for a model �iii� system
with n−1=10 bound states, A2 /	=0.001 and �k given by Eq. �19�
with �� /	=0.1. Numbers indicate the index k of the root Ek.

FIG. 7. Logarithmic plot of width of the E1 resonance versus
An−1 /	 for a model �iv� system with Ak�n−1 /	=0.1 �upper plot� and
1 �lower plot�, and �k given by Eq. �19� with �� /	=0.1. From top to
bottom, the curves correspond to systems with n−1=3 to 13 �upper
plot� and n−1=3 to 15 �lower plot�.
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FIG. 8. Widths of resonances in a model �v� system with
Ak�5 /	=1, k�n−1, and �k given by Eq. �19� with �� /	=0.1.
Numbers indicate the index k of the root Ek.
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tion potential, however, induces couplings between different
states of the molecule, and the entire spectrum of molecular
states may be coupled to the atom-molecule scattering state
through a sequence of one continuum-bound and several
bound-bound couplings. The simplest example of this cou-
pling mechanism is a collision system of a structureless atom
and a diatomic molecule interacting through the long-range
dispersion interaction. The dispersion interaction couples the
ground rotational state N=0 of the molecule only with the
first and second rotationally excited states N=1 and N=2;
however, the bound states of the atom-molecule complex
corresponding asymptotically to N�2 may give rise to Fes-
hbach resonances in collisions of ground-state molecules
through a sequence of N�2−N=2 and N=2−N=0
couplings.

We have shown that the resonant variation of the T matrix
element can be represented by a general form given by Eq.
�14�. This equation can be used to fit the experimental data
on multistate Feshbach resonances involving one continuum
state and several bound states. The polynomials Pk in Eq.
�14� depend on the structure of the molecule and the atom-
molecule interaction potentials. They can be evaluated using
the recursive procedure described by Eqs. �9�. We have pre-
sented a numerical analysis of the polynomial roots for sev-
eral model systems that represent atomic or molecular colli-
sions with anisotropic interactions. The calculations are
performed for five different models: �i� a system with similar
couplings; �ii� a system with slowly increasing couplings;
�iii� a system with rapidly increasing couplings; �iv� a system
with one coupling much larger than all other couplings; and
�v� a system with a bottleneck coupling. Our discussion fo-
cuses on generic properties that are independent of the order
of the bound states, the number of bound states and the regu-
larity, and the magnitude of their spacing.

Our results demonstrate that Feshbach resonances may
occur even if the scattering state is separated from the reso-
nant bound state by a sequence of several indirectly coupled
bound states. The ladder character of the couplings ensures
that the scattering amplitude exhibits a pole near the energy
of the bound state. In the limit of strong couplings, some of
the intermediate Feshbach resonances may however vanish,
which is reminiscent of dark states in atomic spectroscopy.
This implies that the number of Feshbach resonances with
significant widths in a system with strong indirect couplings
should be much smaller than the density of the bound states
as certain bound states will not give rise to Feshbach reso-
nances. Our results suggest mechanisms for controlling inter-
actions of ultracold atoms or molecules with external fields.
For example, the “dark” states in Fig. 4 can be used to in-
duce or suppress photoassociation of ultracold atoms by ap-
plying laser light in resonance with a high-order bound-
bound transition. The results and discussion of Fig. 5 suggest
that shifting rotationally excited states of ultracold molecules
with electric or magnetic fields may dramatically modify the
scattering dynamics of ultracold molecules in the ground
state, even if the ground state is not affected by external
fields. This mechanism of external field control should be
particularly useful for quantum computation applications
based on ultracold molecules. Understanding mechanisms of
multistate Feshbach resonances is particularly important for
the analysis of energy transfer mechanisms in ultracold col-
lisions involving large complex molecules. Tuning multistate
Feshbach resonances such as described in this work may be
an approach to elucidating the role of ergodicity and multiple
encounters in reactions of complex molecules �31�.
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