
Zeros in the photoionization partial cross sections of H2
+

R. Della Picca, P. D. Fainstein,* and M. L. Martiarena
Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Avda E. Bustillo 9500, 8400 Bariloche, Argentina

A. Dubois
Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie, 11 rue Pierre et Marie Curie,

75231 Paris Cedex 05, France
�Received 25 November 2007; published 5 February 2008�

The partial cross sections for photoionization of H2
+ present structures which are usually called Cooper-like

minima. We analyze the physical origin of these features to determine if they are associated to the confinement
of the target electron, as recently proposed by Férnandez et al., or to zero absorption as suggested here. A
thorough analysis of the partial cross sections, the phase shifts, and the transition amplitude clearly shows that
the Cooper-like minima correspond to zero absorption. To demonstrate this we show that the phase shifts have
a maximum and the transition matrix is exactly zero at the electron momentum corresponding to where the
Cooper-like minima appear. Finally, we show that the existence of the Cooper-like minima survive when the
vibrational degree of freedom of the target is taken into account.
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I. INTRODUCTION

Very recently there has been a renewed interest in the
study of angular distributions in photoionization of H2

+

�1–4�. This system provides an ideal benchmark to test the-
oretical models to treat molecular photoionization. Particu-
larly, it allows us to compare results from exact calculations
�1–4� with theoretical models which employ perturbative ap-
proximations to the bound and continuum states �5,6�. The
same model system has also attracted the attention for the
study of photoionization by high-intensity ultrashort laser
pulses �7�.

In a recent paper �8� the photoionization of H2 and H2
+

molecules was investigated for photon wavelength such that
the de Broglie wavelength of the ejected electron is compa-
rable or smaller to the internuclear distance. For such case of
fast photoelectrons the angular distribution shows some very
interesting and unexpected features. Surprisingly, since the
electrons move rapidly away from the target, the angular
distribution shows a strong dependence on the vibrational
state of the residual target. Also, the integrated cross sections
as a function of photon energy for different partial waves
show distinct minima which occur approximately when the
relation keR= l� between the photoelectron momentum ke,
the internuclear distance R, and the partial wave l is verified.
It was found, however, that this only occurs for parallel
alignment of the molecular axis with respect to the polariza-
tion vector. As this formula describes momentum quantiza-
tion in a box of length R, the authors of Ref. �8� suggested
that the minima in the spectra can be related to electron
confinement at the given value of R. As a proof of this pro-
posal it was verified that the nodal structure of the continuum
wave function at the corresponding ke value reproduces that
of the initial state inside the internuclear region.

The existence of minima in the partial cross sections has
been reported already for photoionization of H2

+ �2�, H2 �9�,

and N2 �10,11�. It is a phenomena independent of the initial
and final vibrational state of the molecule and is usually
referred to as “Seaton-Cooper minima” for atomic targets
and “Cooper-like minima” for molecular targets, following
their discovery by Seaton �12� and Cooper �13� in the photo-
ionization spectra of atoms �14�. In all these previous works,
Cooper-like minima were found for fixed values of the inter-
nuclear distance corresponding to the equilibrium distance of
the molecules.

To analyze in more detail these features we present here a
thorough investigation of the partial cross sections in a wide
range of internuclear distances and electron momenta. For
simplicity we consider the case of a one-electron molecule
since this problem can be solved exactly and contains all the
physics. We consider the partial wave contribution to the
integrated cross section for parallel alignment of the molecu-
lar axis with respect to the linear polarization of the photon
field. Atomic units will be used except when otherwise
stated.

II. THEORY

We consider the photoionization of a one-electron di-
atomic molecule. The nuclei of the molecule have charge Za
and Zb and are fixed at the internuclear distance R. Using
standard methods we calculate exactly the initial ground �15�
and final continuum �16,17� states of the molecule. Within
the dipole approximation we calculate the partial cross sec-
tions �18� which are given by

�lm =
4�2��

3
�Mlm�2, �1�

where � is the fine structure constant, �� is the photon en-
ergy, and the transition amplitude is given by

Mlm = ��mq
�−��ke,r���̂ · D��i�r�� �2�

with ke�	ke ,�e ,	e
 the ejected electron momentum in the
molecular frame and Ee=ke

2 /2 the corresponding photoelec-*pablof@cab.cnea.gov.ar
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tron energy. The dipole operator D in Eq. �2� is given by
D=� /� or D=r in the velocity and length gauges, respec-
tively. We calculate the partial cross sections in both gauges
to check the numerical accuracy of the different integration
schemes and find in all cases perfect agreement. The partial
wave �mq

�−� describes an electron with momentum ke moving
in the two-center continuum and can be represented in sphe-
roidal coordinates �
 ,� ,�� as the product �19�:

�mq
�−��ke,r� = �2��−1/2eim��mq�c,a;
��mq�c,b;�� , �3�

where m=0,1 ,2 , . . . is the magnetic quantum number, q
=0,1 ,2 , . . . is the number of zeros of the quasiangular sphe-
roidal function �mq�c ,b ;�� in the interval �� �−1,1�, l=q
+m, c=keR /2, a=R�Za+Zb�, and b=R�Za−Zb�. The quasira-
dial spheroidal function �mq�c ,a ;
� has the appropriate
asymptotic conditions:

�mq�c,a;
� = �c
�−1Nmq�c,a,b�sin

��c
 +
a

2c
ln 2c
 −

�l

2
+ �mq� + O��c
�−2� �4�

with 
� �1, +��. �mq=�mq�ke ,R� is the phase shift of the
two-center problem and Nmq= �2ke /��1/2 is the normalization
coefficient. The phase shift is normalized using the condition
�mq�ke ,0�=�l�ke�, where �l�ke� is the phase shift corre-
sponding to a Coulomb potential with nuclear charge Z=Za
+Zb and angular momentum l. We can thus define

�mq�ke,R� = �mq�ke,0� + �mq�ke,R� , �5�

where �mq�ke ,0� is the asymptotic Coulomb phase shift and
�mq�ke ,R� is the additional phase shift which provides all the
information about the interaction with the two-center poten-
tial. The properly normalized 1s�g initial ground state �i�r�
can also be written in spheroidal coordinates as �15�

�i�r� = �2��−1/2��
�M��� . �6�

Performing the integration over the azimuthal angle �, the
transition matrix �2� can be cast into the form

Mlm =
��̂ · ẑ�

�
�m0Ml0 +  ��̂ · x̂� − i��̂ · ŷ�

2�
�m1

+
��̂ · x̂� + i��̂ · ŷ�

2�
�m−1�Ml1, �7�

where Mlm are reduced matrix elements which only involve
the integration over the quasiangular ��� and quasiradial co-
ordinates �
�. The coordinates �x̂ , ŷ , ẑ� represent a reference
frame fixed on the molecular center of mass with the ẑ di-
rection oriented along the internuclear axis �see Fig. 1 in Ref.
�2��.

Due to the symmetries of the initial ground state and the
dipolar operator, the projection of the angular momentum
operator m can only take the values 0 ��→�� and 1
��→��. Moreover, for parallel alignment between the inter-
nuclear distance and the polarization vector only �→� tran-
sitions can occur, while for the perpendicular arrangement
only �→� transitions are allowed. The partial cross sections
for these transitions are determined by the reduced matrix

elements Ml0 and Ml1, respectively �see Eq. �7��. For
homonuclear molecules, like H2

+, the angular momentum
quantum number l can only take odd values.

III. RESULTS AND DISCUSSION

A. Cooper-like minima in the partial cross sections

We calculate the partial cross sections for parallel align-
ment between the internuclear axis and the polarization vec-
tor ��l0�, for different values l=1, 3, 5, and 7 in a wide range
of ke and R values. In Fig. 1 we present �l0 for l=1,3 ,5 ,7 as
a function of ke for R=1,2 ,3 a.u. For R=2 a.u. we include
in the figure the results from Ref. �18� which coincide ex-
actly with our results. From the figure it results that all the
partial cross sections present Cooper-like minima. For a
fixed value of R the minima appear at higher values of ke as
l increases, in agreement with the empirical formula keR
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FIG. 1. �Color online� Partial cross section �l0 as a function of
photoelectron momentum ke for internuclear distance R=1, 2, and 3
a.u. Solid line, l=1; dashed line, l=3; dot-dashed line, l=5; double-
dot dashed line, l=7; ���, from Ref. �18�.
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= l� of Ref. �8�. Also, for a fixed value of l the Cooper-like
minima shift to lower values of ke as R increases. Let us
consider, in particular, the l=1 minima. It can be found at
ke�3 a.u. for R=1 a.u. When R increases up to 2 a.u. it
seems to be at the threshold energy and then it disappears for
higher internuclear distances. This result explains the nondi-
polar behavior of the angular distribution at low energies for
molecules like H2

+ and N2, which have an equilibrium inter-
nuclear distance close to 2 a.u. �3�. It is interesting that for
R=3 a.u. this partial cross section rises close to threshold
instead of falling. Following the arguments of Connerade
�see p. 115 in Ref. �14��, the reason could be that due to the
continuity between excitation and ionization the Cooper-like
minima move below threshold and would thus appear as a
minimum in the photoabsorption cross section.

In Fig. 2 we summarize all the results of the present cal-
culation plotting in three dimensions the partial cross sec-
tions for l=1,3 ,5 as a function of ke and R in a much ex-
tended range. We vary R from 0.3 up to 6 a.u. with step
�R=0.1 a.u. The minima now form a considerable structure
that varies continuously and seems to follow the relation
keR= l�. To verify this quantitatively we plot in Fig. 3 the
position of the minima in the keR plane and compare with the
relation keR= l�. We use a logarithmic scale to better visual-
ize the similarities and discrepancies. For each partial wave

we note a good agreement at high values of ke and large
discrepancies as ke becomes smaller than a few atomic units.
For l=1 we notice that as R increases the curve tends to
saturate at R�2 a.u. This means that for larger values of R
the p-partial cross section has no Cooper-like minima and it
is thus a monotonic decreasing function of ke �see, for ex-
ample, Fig. 1�c��. As discussed in the previous paragraph this
means that the Cooper-like minima has moved below thresh-
old. In fact, the same happens with the higher partial waves,
as can be seen in the figure for l=3, but for much larger
values of R.

We conclude therefore that the Cooper-like minima are a
general feature of all partial waves. As proposed in Ref. �8�
their positions in the spectra follow approximately the rela-
tion keR= l� which we show to be valid only for high enough
photoelectron energy.

B. Electron confinement

In their paper, Fernández et al. �8� introduced the notion
of electron confinement associated to the minima in the par-
tial cross sections for polarization parallel to the internuclear
vector. In that case the authors discuss the fact that electron
emission does not follow the direction of polarization since it
is suppressed by the confinement of the electrons along the
internuclear distance.

In the previous section we have shown that the suppres-
sion of electron emission can also be attributed to the appear-
ance of Cooper-like minima. For atomic targets, it is well
known that the Seaton-Cooper minima arise when the tran-
sition matrix vanishes exactly corresponding therefore to
zero absorption at the particular photon energy �14�. The
ideas of confinement and no absorption are indeed mutually
exclusive since the first simply addresses a tendency, a pro-
pensity, while the second is a strict criterion. We therefore
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FIG. 2. �Color online� Partial cross section �l0 as a function of
the photoelectron momentum ke and the internuclear distance R, for
l=1,3 ,5.
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FIG. 3. �Color online� Photoelectron momentum corresponding
to the Cooper-like minima as a function of the internuclear distance
R, for l=1,3 ,5 ,7.
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propose to find out which one really explains the data for
molecular targets. For atomic targets the Seaton-Cooper
minima appear for l→ l+1 transitions provided that the ra-
dial wave function of the initial state has at least one node.
Since the ground state of H2

+ does not have a node, the
Cooper-like minima were explained as being due to the non-
spherical shape of the molecular potential �9�.

The concept of zero absorption in photoionization can be
related to that of no scattering in elastic collisions, as in the
Ramsauer-Townsend effect �20�. In the latter, a given partial
cross section �usually the s wave� shows a minima which is
related to a rapid variation of the phase shift. We plot there-
fore in Fig. 4 the partial cross sections, the phase shifts, and
the transition matrix given by Eqs. �1�, �5�, and �2�, respec-
tively, as a function of electron momentum. We consider the
equilibrium internuclear distance �R=2 a.u.� and the l
=1,3 ,5 partial waves. Interestingly, as can be seen from the
figure, we find that for l=3 and 5 the Cooper-like minima are

associated to a maximum in the corresponding phase shifts
and that the transition matrix is exactly zero at the particular
value of electron momentum. To see the reason for this be-
havior we plot in Fig. 5 the Coulomb �mq�ke ,0� and addi-
tional phase shifts �mq�ke ,R� for this case. The former is a
smooth function of electron momentum while the latter pre-
sents a maximum, showing therefore that the molecular po-
tential at short distances is responsible for the minima in the
partial cross sections. However, the positions of these
maxima do not coincide with the positions of the Cooper-like
minima. The latter are determined by the positions of the
maxima in the total phase shift �mq�ke ,R�. We conclude
therefore that the Cooper-like minima for the molecular tar-
get are due to the molecular potential and to the correspond-
ing phase shifts which present a maximum in the electron
momentum range where the minimum appears. Following
our hypothesis at the beginning of this paragraph this result
implies therefore that the minima are clearly associated to
zero absorption.

The following question that we wish to address is how the
variation of the phase shifts translates into a zero value of the
transition matrix. This is straightforward for elastic colli-
sions, but not so in the present case where the phase shifts do
not appear explicitly in the expression for the transition ma-
trix. We analyze therefore in detail the wave functions and
the transition matrix. Fernández et al. �8� noted that the elec-
tron continuum wave function reproduces the nodal structure
of the initial bound state for the electron momentum values
where the minima show up. In Fig. 6 we plot the initial
bound and final continuum states for R=2 a.u., l=3, and
ke=4,4.9,6 a.u., which correspond to values smaller, equal,
and larger to the ke value where the minima appear. In Fig. 6,
upper panel, we plot the wave functions as a function of the
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coordinate in the internuclear direction �z�. We can see that
indeed only for ke=4.9 a.u. the positions of the maxima of
the initial state coincide exactly with the main maxima and
minima of the final continuum state. The overlap between
these states is thus zero. However, this does not imply that
the transition matrix is zero since this plot just represents a
cut of the wave functions in a particular plane. Strictly
speaking, the overlap between the initial and all final con-
tinuum states should be zero as they are orthogonal. The
transition matrix involves the dipole operator and thus the
problem is far more complicated. In fact, from this figure one
could naively conclude that since the initial state is even, the
final continuum state odd, and the dipole operator odd, the
transition amplitude is never zero. Of course this is because
this plot just represents a part of the wave functions. In our
present calculations we employ spheroidal coordinates which
are particularly well suited for the two-center potential. In
Fig. 6 we also plot the quasiangular �middle panel� and qua-
siradial �lower panel� initial and final wave functions. In this

case, the plots correspond to the full wave functions and not
to a given cut. In the latter we can observe how as the elec-
tron momentum increases the continuum wave functions
penetrate more into the potential. Again, from these figures
we cannot determine why the transition matrix is zero just
for ke=4.9 a.u. To answer this we have to analyze in detail
the transition matrix.

As noted in Sec. II the partial cross sections are deter-
mined by the reduced matrix elements. Since we are here
concerned with �→� transitions we analyze in detail Ml0
which in the velocity gauge and after some algebra is given
by

Ml0 = �R

2
�2

�A

l �ke,R�B�

l �ke,R� + B

l �ke,R�A�

l �ke,R�� , �8�

where

A

l �ke,R� = �

1

�

d
�
2 − 1��0l�c,a;
�
���
�

�

,

B

l �ke,R� = �

1

�

d
 
�0l�c,a;
���
� ,

A�
l �ke,R� = �

−1

1

d��1 − �2��0l�c,b;��
�M���

��
,

B�
l �ke,R� = �

−1

1

d� ��0l�c,b;��M��� .

These factors are obtained numerically, and plotted indepen-
dently in Fig. 7 as a function of the electron momentum, for
R=2 a.u. and l=3. The integrals B


l and B�
l are never zero,

as can be expected from the form of the quasiangular and
quasiradial wave functions shown in Fig. 6. On the contrary,
the integrals A


l and A�
l are both zero for values of ke close

but not equal to that corresponding to the Cooper-like mini-
mum. It is therefore the subtle combination of the four inte-
grals in Eq. �8� which cancels and makes zero the transition
matrix leading to a zero in the partial cross section. It is
interesting to note that in the atomic case, as the initial state
has a node, the integrals split into two contributions of op-
posite sign. The balance between this contribution cancels
for a particular value of the electron momentum correspond-
ing to the Seaton-Cooper minima �see p. 115 of Ref. �14��.

IV. VIBRATIONAL MOTION

The Cooper-like minima are structures which arise from
the properties of the electronic transition matrix. In experi-
ments it is, however, not possible to isolate the electronic
from the vibrational motion. As is well known the differen-
tial and total cross sections will depend on the vibrational
states of the target before and after the electron is emitted
�11,21�. While our study is mainly devoted to analyze the
origin of the Cooper-like minima it is also interesting to see
how these structures would appear in experiments. This kind
of study has already been performed for H2 �8,9� and N2
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�11�, to cite just a few examples. Following the work of Liu
et al. �11� we calculate the vibrational unresolved partial
cross section as

�lm =
4�2��

3 �
��

�Mlm
����2, �9�

where the transition matrix is given by

Mlm
��� =� dR���

�f��R�Mlm�R���
�i��R� �10�

with ��
�i� ��

��
�f�� the initial �final� vibrational state wave func-

tions and Mlm the electronic transition matrix given by Eq.
�2� which is a function of the internuclear distance R. This
calculation is of course valid within the Born-Oppenheimer
approximation which is assumed in the present work. We
assume that in the initial state only the vibrational ground
state ��=0� is populated and consider final vibrational states
with ��=0,1 ,2 ,3. The results of this calculation is presented
in Fig. 8 where we show the partial cross sections for differ-
ent values of l both with and without taking into account the

vibrational motion. In the latter case we consider that the
molecule is at the equilibrium internuclear distance R
=2 a.u. As in previous studies for H2 �9� we find that when
the vibrational motion is included, the sharp Cooper-like
minima for l=3 and 5, which correspond to a zero in the
partial cross section as shown in the present work, appear as
wide minima in the partial cross section. When all the partial
cross sections are summed the result is that the �-total cross
section �indicated by � in the figure� shows two humps and
nonmonotonic decreasing behavior. In summary we find that,
as was recently shown for N2 �11�, the Cooper-like minima
produce observable effects even in the total cross section.

V. CONCLUSIONS

In summary, we have shown that the minima in the partial
cross sections are Cooper-like minima which correspond to
zero absorption. The position of these minima are given by
the relation keR= l� only at high enough values of ke. Large
discrepancies appear for ke values smaller than a few atomic
units for the p- and f-partial cross section, which give the
main contribution to the total cross section in this energy
range.

A detailed study of the Cooper-like minima shows that
this large variation of the partial cross section occurs when
the corresponding phase shift goes through a maximum. At
this value of the electron momentum the transition amplitude
is exactly zero and thus there is no absorption. This effect
produces also a visible effect in the total cross section.
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