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The relativistic distorted-wave (RDW) procedures developed by Chen [Phys. Rev. A 53, 3227 (1996)] have
been extended to include pseudostates. The RDW procedures with pseudostates are applied to the calculation
of electron impact excitation (EIE) of Fe xvii. Pseudostates are shown to have a significant effect on the cross
sections for important transitions such as 3C (\=15.015 A) and 3D (A=15.262 A) of Fe xvi. The convergence
of the RDW calculations has been carefully investigated. The present RDW calculations of Fe xvi are further
compared with our previous close coupling results using the fully relativistic Dirac R-matrix (DRM) method,
where resonance and more complete channel coupling effects were included in addition to the background
direct excitations. The present RDW calculations are in good agreement to the background cross sections from
the DRM calculations. This agreement indicates the mutual confirmation of the validity of both the RDW and
the DRM calculations of the direct or background EIE cross sections.
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I. INTRODUCTION

In addition to the basic research interest, the study of
fundamental atomic processes such as electron impact exci-
tation (EIE), electron impact ionization, photoionization, and
photorecombination has long been driven by important ap-
plications to astrophysical, fusion, and laser-produced plas-
mas [ 1-4]. The calculations of these radiative and collisional
atomic processes are essential for theoretical modeling and
diagnostics of plasmas, such as the accurate determination of
element abundances and level population [5-8] in astro-
physical plasmas of photoionized equilibrium or collisionally
ionized equilibrium, appearing in solar and stellar coronae,
active galactic nuclei, supernovae, and black holes [9-11].

For highly charged ions (HCI) often showing up in high-
temperature hot plasmas, the relativistic distorted-wave
(RDW) method may be of some use to study EIE and other
atomic processes. The relativistic effects in both the atomic
structure and the collision dynamics may be significant for
EIE scattering processes in HCI. The RDW method with the
input of relativistic atomic structure is suitable to include
fully relativistic effects in target atomic structure and colli-
sion dynamics. There are several variants of the RDW
method, but as far as channel coupling is concerned, the
assumption is that the inclusion of the initial and final chan-
nels may be sufficient for the calculation of the scattering
matrix elements. The basic feature in the RDW method is
that within the framework of the Kohn variational principle
the coupling between scattering channels is weak [12]. This
approximation may reduce a set of integrodifferential (ID)
equations to a procedure of solving a single ID or mainly a
differential equation to allow for the distortion of the wave
function which describes the inelastically scattered electron.

Another important RDW feature is that RDW allows for
the distortion of the channel wave functions in the target
distortion potential from their asymptotic Coulomb form. We
will address below some approximations of the exchange
distortion potential used in RDW and the validity of RDW
for HCI. The general criterion for the validity of the RDW
method is that the absolute value of the reactance matrix
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element |K,»,-| <1, a condition that may be satisfied for HCI
since |Kj| scales as Z,=(Z—N)™! (Z is the nuclear charge
and N is the electron number in the target ion). For HCIL, the
RDW theory may be comparable to the relativistic Dirac
R-matrix (DRM) theory [13] or the Breit-Pauli R-matrix
(BPRM) theory [14], both of which have been used in our
previous investigation of EIE of Fe xvim and other ions
[6,15-18]. Both the DRM and the BPRM close-coupling
(CC) methods can be time consuming in computation, while
the RDW method stands out to be efficient in computation.
For HCI, the RDW method may be sufficiently accurate to
cross check the background or direct cross sections in DRM
or BPRM calculations. Some comparative study of the RDW
and DRM calculations of EIE of Ne IX has recently been
carried out in Ref. [17].

Since the 1980s, a number of RDW codes have been de-
veloped (e.g., Refs. [19-21]). These codes have been widely
used for EIE calculations of a range of atomic ions. I have
also developed an accurate and efficient RDW code [22] in
1996 to calculate EIE cross sections of HCI using the rela-
tivistic atomic structure code GRASP [23]. My RDW code
was then extended to use the relativistic atomic structure
code GRASP2 [24] as the target calculation input [25-27].
There are some elaborate procedures considered in my RDW
code such as the the accurate calculation of continuum elec-
tron wave functions. I have also investigated the effects of
different types of distortion potentials using my RDW code
[26,27]. We consider the RDW method as a two-state close
coupling (2CC) approximation [12], so our RDW method
may take into account the distortion of the incident and scat-
tered waves by different distortion potentials.

In this work, I extend the procedures in my RDW code to
include pseudostates. As a case study, my RDW code with
the inclusion of pseudostates is then used to calculate EIE
collision strengths of Fe xvi x-ray transitions 3C (A
=15.015 A, 2p°3d 'P0—2p®'S,) and 3D (A\=15.262 A,
2p°3d 3D(I’HZp6 1SO), important for applications to astro-
physics and EBIT (electron beam ion trap) science
[5,6,15,16,28]. There is currently a plethoric theoretical and
experimental study of Fe xvim atomic and spectral systems

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.77.022701

GUO-XIN CHEN

[28-31,15,16]. Because Fe xvu is a HCI with large fractional
abundance in a variety of plasmas, the 3C and 3D lines and
some other x-ray lines in the range of 10—17 A in Fe xvn are
prominent and may be used as fundamental spectral and
abundance diagnostics [5,6,15,16]. In this work, I carry out
some elaborate and consistent RDW calculations of EIE of
Fe xvii with and without pseudostates in order to demon-
strate the effects of pseudostates and the convergence of
RDW calculations. Furthermore, the present RDW calcula-
tions of 3C and 3D cross sections with and without pseu-
dostates are, respectively, compared with my previous DRM
results [15] also with and without pseudostates, in order to
cross check and mutually validate both calculations.

This paper is structured as follows. In Sec. II the RDW
method is outlined. The RDW computation modes for EIE of
Fe xvi are given in Sec. III. The results from the RDW cal-
culations of EIE of Fe xvi are presented in Sec. I'V. Finally,
in Sec. V a brief summary is given.

II. OUTLINE OF THE RDW METHOD

I outline the RDW method in this section in order to ex-
plicitly show the extension of the RDW procedures to the
inclusion of pseudostates. More details of the procedures
built in my RDW code, especially for the special techniques
on the solution and normalization of continuum wave func-
tions and for the top-up procedures of high-partial-wave col-
lision strengths, should be referred to our earlier separated
publications and references therein [22,25-27].

A. Relativistic bound and continuum wave function

We use the N- and (N+1)-electron Dirac-Coulomb (DC)
Hamiltonian to describe the target ion and the collisional
atomic system, respectively. The DC Hamiltonian in Ryd-
berg units for electrons i and j in a central field Z (atomic
number Z=26 for Fe xvi) can be written as

HPC =Y (a-pi/a+,8/a2—2—z+2 3), (2.1)

i=1 i =i i

where the quantities @ and S are the Dirac matrices in the
low-energy representation and a=1/137.036 is the fine-
structure constant. The total wave functions for a given sym-
metry JII (J is the total angular momentum in a jj-coupling
scheme and II is the parity) are constructed from bound
[bn.n(r)] and free [6,,,,(r)] Dirac four-component spinors

1{ Por)  Xen(r/T)

bl = rhpamy= | S0

], (2.2)

1 { Ped) Xon(rr)

Ben(r) = (rlexm) = rli Our) X_m(rlr)

| e
where P,, (P, and Q,, (Q) are the large- and small-
component of the bound (free) radial wave functions, respec-
tively. The function y,,, is the spinor spherical harmonic
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Xum (/1) = 2 <lm - 5%511%jm>Y§"_5(19, ©) ¢,

o=*

N =

(2.4)

where  {Im—58%8|13jm)=Clim— 81 8;jm) is a Clebsch-
Gordan coefficient; Y;”_‘s(ﬂ, ) is a spherical harmonic; ¢ is
a spinor basis function. The relativistic angular quantum
number k=—(j+1/2)a for [=j—1/2a (a= * 1), and the total
angular momentum of a single electron j=|x|-1/2. m and &
are the magnetic quantum numbers along some arbitrary pro-
jection axis for the orbital angular momentum / and the spin
of the bound or free electron, respectively. Because the
Hamiltonian HPC is invariant with respect to the rotational
reference frame, its N-electron eigenfunctions with the same
energy E and parity II can be used to construct a product
representation of the rotation group SO(3) which is usually
reducible. The set of states {n«xm|m=—j,—j+1,...,+]}
spans an irreducible four-spinor representation DY) of the
SO(3) group [32].

The bound electron wave functions and atomic structure
are calculated by the multi-configuration Dirac-Fock
(MCDF) method which is a self-consistent-field (SCF) pro-
cedure and both the orbitals and the configuration expansion
coefficients are variationally determined [23,24]. The GRASP2
code has been significantly modified as the input of the target
structure calculation to our RDW code [24]. In the linear
configuration expansion (CE) approach built within the
MCDF framework, the atomic state functions (ASF) W,
=|I'JM) are a linear combination of configuration state func-
tion (CSF) ®,=|yJM) sharing common values of the total
angular momentum J and M, and the parity IT,

nc
,‘l}m=ECim¢)i’ m=l,...,nA,

i=1

(2.5)

where C;, are the mixing coefficients; nc and n, are the
number of SCF and ASF, respectively. A CSF may be con-
structed from the products of one-electron spinors in a sys-
tem of N electrons (the Slater determinant). The major ex-
tension of the RDW procedures as presented in this work is
to include pseudostates in the linear configuration expansion
equation (2.5).

We determine the Dirac free spinor 6,,,, (distorted-wave)
for a free electron in the distortion potential V(r) (which is a
spherically symmetric central potential) due to the target ion.
The large and small components P, and Q. of the con-
tinuum electron orbital satisfy the coupled Dirac equations

[%‘ + §:|P€K(r) = g[e_ V(V) + 4/a2]QEK(r)’

|:i_ £:|QEK(r)=_C_¥[6_ V(r)]PEK(r)’ (26)
dr r 2

where the kinetic energy of the free electron € (in Ry) is
positive. The solution of the free electron orbitals play a key
role in the RDW framework. Some special recipes on the
solution of continuum wave functions and continuum
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asymptotic normalization in my RDW code should be re-
ferred to my earlier paper [22]. The relation between the
relativistic wave quantum number k of the impact electron
and its relativistic momentum p and kinetic energy € (in Ry)
of the impact electron is given by

22 2
a o
kzzu=e<l+—e>,

5 1 (2.7)

where a is the Bohr radius. The radial functions for bound
and continuum orbitals satisfy the following orthonormality
conditions:

f dr[PnK(r)Pn’K(r) + an(r)Qn’K(r)] = 5nn’7 (28)
0
f dr[PEK(r)PE’K(r) + Qex(r)Qe’K(r)] = 775(6_ 6,),
0
(2.9)

where &,/ is a Kronecker delta.

B. Relativistic distortion potential

The RDW distortion potential V(r) is used to distort the
wave function of the free electron. It is important to choose
carefully a suitable distortion potential so that the main fea-
ture in an EIE process can be reflected in the free electron
wave function, e.g., the relativistic dynamics of free elec-
trons and the coupling between the free electron and the
target bound electrons. The distortion potential V(r) may be
divided into the direct distortion potential V¥(r) and the ex-
change distortion potential V*(r),

V(r) = Vi(r) + V(r), (2.10)

Vi) = 27(r)

+V,(r). (2.11)
Finite nuclear charge Z(r), which differs from ordinary Z
only for small r, is chosen to be the Fermi charge distribu-
tion. Z(r) as a function of r can be obtained from the GRASP2
code [23,24].

The residual potential U(r) given below,

N
vn=-Z0 .3 2y
i=1 |"—ri|
2
= | ~[V.(r) + VE(r)], (2.12)
1 r=rf

i=

is used as a perturbation potential for the subsequent RDW
calculation of the transition matrix T in Eq. (2.15) or the
reactance matrix K in Eq. (2.17). r; (i=1,...,N) are the radii
of the N bound electrons.

The direct distortion potential V¥(r) is the spherical aver-
age of the electron-electron interactions in an (N+ 1)-electron
ion. V,(r) is the spherically averaged classical potential for
the free electron in the field of all NV electrons of the ion. The
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exchange distortion potential V¢(r) used for solving free
electron orbitals is chosen to be one of the four types of
exchange distortion potentials as given in Refs. [26,33]
based upon the free-electron gas model: namely, the semi-
classical exchange (SCE) potential, the second-order free
electron gas exchange (SOFEGE) potential, the asymptoti-
cally adjusted free electron gas exchange (AAFEGE) poten-
tial, and the Dirac-Fock-Slater (DFS) potential. We have in-
vestigated the effects of these four different exchange
distortion potentials on RDW calculations of EIE of B 1 in
Ref. [26].

In the present work, we also investigate the effects of the
four different exchange distortion potentials on the RDW
calculations of EIE of Fe xvi. However, only the SCE po-
tential is chosen in the further RDW calculations for com-
parisons either between the present different RDW modes or
with previous DRM results. The SCE potential depends on
the free electron energy so it might be more appropriately
used to describe the dynamical EIE process. The DFS poten-
tial does not depends on the energy of free electron and it is
widely used in previous RDW calculations [20]. It is some-
how more convenient to construct a common DFS potential
under which the continuum orbitals may be solved to be
orthogonal automatically with each other and with the bound
electron orbitals.

In my RDW procedures, MCDF potentials from the
GRASP2 code are used for bound four-spinor calculations. In
this work, we consider the SCE potential physically more
plausible, so unless otherwise stated, the SCE potential is
used in our RDW calculations of free electron radial orbitals
throughout this paper. Since the MCDF and SCE potentials
used in the calculations of the bound and free orbitals are
different, the free electron orbitals are not orthogonal to
those of the bound electrons. More discussions were given in
my earlier paper [27], regarding the approximations we have
made (due to the fact that the two potentials MCDF and SCE
are different), for the calculations of reactance matrix
elements.

C. The partial wave expansion
It is often convenient to express the cross section o;/(€)
for a transition i — f in terms of collision strength (e,

2
a
o6 = kz—;n,-f(e),

iS5

(2.13)

where k; is the relativistic wave number of the impact elec-
tron and g;=[J;]=2J;+1 is the statistical weight of the initial
state of the N-electron target ion. For a target specified in
previous subsection, electron collision processes can be cal-
culated using a partial-wave (PW) expansion with radial
functions obtained from the (N+1)-electron DC Hamiltonian
in Eq. (2.1). Using the PW approach for the colliding elec-
tron, the total collision strength () is the sum of partial col-
lision strengths 2’ computed from the transition matrix T or
the reactance matrix K,

Q=3 Qo). (2.14)
J

022701-3



GUO-XIN CHEN

2 (2.15)

1

where [J]=2J+1, T(I'J;xJ;T' WJpk'J) are the transition ma-
trix elements; I'; and I'; refer to suppressed additional quan-
tum numbers required to specify the pure jj-coupled initial
and final states, respectively; J; and J refer to the total an-
gular momenta of the target ion in a certain transition; « and
k' refer to the total angular momenta of the continuum or-
bital. For HCI of interest here, we may express the T matrix
in terms of the reactance matrix K:
iI+K 2iK .

= I= =2iK,

T= -I=
iI-K 1-iK

(2.16)

where the final approximation gives nonunitarization cross
section. This is a weak coupling approximation and gives a
reasonable treatment for HCI for which the matrix elements
of K are small. The collision strength is then be expressed in
terms of the reaction matrix K,

Q=22 [J12 |K(T i ;T o ). (2.17)
J

’
KK

The RDW method may be considered as a two state close
coupling (2CC) approximation in the CC or DRM method,
so certain amount of direct channel coupling effects may be
included in the RDW method. Of course, the remaining
channel coupling effects (and interacting Rydberg series of
resonances) cannot be treated and are missing in the RDW
method. These effects may have to be calculated by the more
sophisticated CC or DRM method. However, if the direct
channel coupling effects dominate over the indirect channel
coupling effects, RDW may be adequately used to calculate
the direct or background cross sections.

III. CALCULATION

In this work, I carry out seven sets of RDW calculations
for EIE of Fe xvi. In these calculations, Fe xvi target wave
functions up to principal quantum number n=6 and relativ-
istic angular quantum number |«| up to 5 (or the total angular
momentum j up to 9/2) for the singly excited electron from
the 2s or 2p subshell are calculated using the MCDF method
[N-electron DC Hamiltonian in Eq. (2.1)]. The purpose of
these seven sets of RDW calculations is (a) to show the
influence of long-range collisional coupling and correlation
effects by the inclusion of pseudostates and (b) to demon-
strate the convergence of the present RDW calculations ei-
ther with or without the inclusion of pseudostates. Because
consistent calculations are carried out by the same RDW
code, we may make a more meaningful comparison either
between the present different computation modes or between
the present and previous RDW results. Furthermore, the
present RDW results may also be of some use to elucidate
previous similar calculations by different methods or codes.

In the first calculation (A) (referred to as mode n=3 be-
low), target states up to n=3 in 2s?2p°® and 2s°2p°31 (I
=s,p,d) are included. In the second calculation (B) (mode
n=4), in addition to (A), I include 2s'2p%3! (I=s,p,d), and
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FIG. 1. (Color online) Collision strengths ) as a function of
incident electron energy € for 3C [top panel (a)] and 3D [bottom
panel (b)] transitions of Fe xvi. For panel (a) from top to bottom:
black (mode n=3); green (mode n=4) (thin grey in black and white
printing); blue (mode n=35) (black); orange (mode n=6) (thin grey);
red (mode n=6+) (thick grey). The color is the same for bottom
panel.

25%2p341 and 2s5'2p°41 (I=s,p.d,f). In the third calculation
(C) (mode n=5), I add 2s*2p°51 (I=s,p.d,f,g) to (B). In the
fourth calculation (D) (mode n=6), I add 2s*2p°6l (I
=s,p,d,f,g) to (C). In the fifth calculation (E) (mode n=5
+), in addition to those states in (C), I include the configu-
ration 2s22p*3d” to reflect the pair excitation effects (or pair
correlation effects) from the ground configuration 2s22p®; 1
also include pseudo-orbitals with the relativistic angular
quantum number || =1-3 to incorporate the short-range ex-
change effects and the long-range correlation and collisional
coupling effects. To show the convergence of calculation (E),
I also carry out two further calculation modes (F) (mode n
=4+) and (G) (mode n=6+), adding the pair excitation con-
figuration and the pseudo-orbitals mentioned in (E) to (B)
and (D), respectively.

IV. RESULT
A. Convergence and pseudostate effects

To show the effects of pseudostates and the convergence
in my RDW calculations of EIE of Fe xvn, I present the
collision strengths () from five different computation modes
for 3C and 3D transitions in Fig. 1. We use mode n=3 (thick
black line) as the “baseline” for comparisons. For the 3C
transition, the effects of pseudostates in mode n=6+ are
shown to be important (with a 10-20% reduction) when
compared with () from the n=3 “baseline” mode and other
modes. Without pseudostates, while the mode n=5 improves
slightly over the mode n=4, we find that the mode n=6
shows little improvement over the mode n=5 for the 3C
transition. This further demonstrates the importance of the
inclusion of pseudostates in mode n=6+. The results from
n=4+ and n=5+ modes are converged to the n=6+ mode, so
both modes are not shown in Fig. 1. The results from modes
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TABLE I. Cross sections o (in units 107" cm?=0.1 Mb) for 3C and 3D transitions of Fe xvi from the
present RDW calculations are compared with previous results.

€ (eV) converged calc. previous calc. Expt.
n=3 4 5 6 4+ 5+ 6+ [20] [30] [30]
3C 910 RDW 123 118 1.15 1.14 1.03 1.04 1.04 1.21 1.26  0.849=*0.16
DRM 124 125 1.19 1.08 1.06 1.06"
964 RDW 122 1.17 1.15 1.14 1.02 103 1.03 1.19 1.30 0.888%=0.93
DRM 123 126 1.21 1.08 1.06 1.07°
3D 910 RDW 0301 0319 0.327 0.328 0323 0.323 0.323 0.319 0417 0.310*£0.64
DRM 0.312 0.403 0.385 0.394 0.383 0.384°
964 DRM 0.297 0316 0.323 0.324 0.319 0320 0.320 0.314 0437 0.298*0.33
DRM 0.308 0.394 0.390 0.385 0.381 0.391°

“DRM calculations from mode n=5+ with the inclusion of cascade effects, dubbed as mode n=5++ in Ref.

[15].

n=4+ and n=5+ are given in Table I below. In Fig. 1(a),
from the comparison between curves of mode n=6+ and
other curves, we find that it is important to include the pair
excitation configuration and the pseudostates (for the long-
range correlation and collisional coupling effects) for the 3C
transition. For the 3D transition, all the modes n=4—-6 and
the modes n=4+ to 6+ appear to converge and they are about
8% larger than the “baseline” results from mode n=3. Be-
cause of the competition of these different effects mainly
from the target correlation effects and the collisional cou-
pling effects, the combined effects with the pseudostates and
the pair excitation configuration in modes n=4+—6+ are
small for the 3D transition.

In Table I, the cross sections from all the present seven
calculation modes are listed to compare in order to further
demonstrate the convergence in the present RDW results and
to show the effects of the pseudostates and the pair excitation
configuration. Our calculations are also compared with the
previous theory and experiment results in Table I. The DRM
results shown in Table I are in fact the effective cross sec-
tions defined in Ref. [15]. The results of mode n=3 should
be comparable to those in Ref. [34]. The RDW results [20]
without resonances and cascades are similar to mode n=4
results as evidenced from Table I. The tenth column in the
DRM entry is for the DRM calculations of mode n=5+ with
the inclusion of cascade effects, dubbed as mode n=5++ in
Ref. [15]. These DRM data in the tenth column should be
comparable to the electron beam ion trap (EBIT) results [30]
and the RDW results in [30] (last two columns), both of
which include the cascade and resonance effects. But the
resonance effects in the RDW calculation presented in Ref.
[30] may not be as accurate as my previous DRM results. In
fact, the comparison of my DRM calculations of mode n
=5+ with the EBIT and the RDW data given in Ref. [30]
(last two columns) has been extensively and deeply dis-
cussed in my previous paper [15].

From Fig. 1 and Table I, we find that the convergence of
target correlation and collisional coupling is achieved in
modes n=4+—6+. The difference between the present
RDW results and my previous DRM calculations with the
same calculation modes clearly shows the importance of

resonance effects that were included in my previous DRM
calculations but are not in the present RDW calculations. The
effects of resonances are much more pronounced in the 3D
transition than in the 3C transition as expected.

For the 3C transition, the RDW cross sections o from
mode n=6+ (10th column) are 11% smaller than those from
mode n=6 (7th column). This fact demonstrates the impor-
tance of the inclusion of pseudostates and the pair correlation
configuration in mode n=6+. For the 3D transition, the
RDW o of mode n=6+ are only slightly different from the o
of mode n=6 due to the competition between the target cor-
relation and the collisional coupling effects as explained
above. In a separated check, the mode n=6+ cross sections
are compared with the results when the pair excitation con-
figuration is removed from mode n=6+. We find that the
effects of the pair excitation configuration reduce the 3C and
3D cross sections by 4 and 2 %, respectively.

In Table II, I compare the RDW and DRM calculations
for a range of of impact electron energies for modes n=5 and
n=5+. For the 3C transition, the resonance effects enhance
the DRM results by up to 5% when compared with the cor-
responding RDW data with the same computation mode (n.b.

TABLE II. Cross sections o (in units 107" cm?®=0.1 Mb) for
3C and 3D transitions of Fe xvi between the present RDW calcu-
lations and our previous DRM calculation [15] for modes n=35 and
n=5+.

mode  method € (eV)
840 870 910 964 2000
3C n=5 RDW 1.15 1.15 1.15 1.15 1.00
DRM 1.15 1.20 1.19 1.21 0.991
n=5+ RDW 1.04 1.04 1.04 1.03 0.913
DRM 1.02 1.07 1.06 1.06 0.887
3D n=5 RDW 0.332  0.330 0.327 0.323 0.269
DRM 0.369 0.409 0.385 0.390 0.267
n=5+ RDW 0.328 0.325 0.323 0.320 0.269
DRM 0.364 0.410 0.383 0.381 0.271
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TABLE III. Cross sections o (in units 107!° cm?=0.1 Mb) for
3C and 3D of Fe xvn from the present mode n=5+ RDW calcula-
tions with four types of exchange distortion potentials.

e(eV) exchange distortion potential
SCE SOFEGE AAFEGE DFS DRM
3C 840 1.04 1.06 1.09 1.07 1.02
870 1.04 1.06 1.08 1.07 1.07
910 1.04 1.06 1.07 1.07 1.06
964 1.03 1.05 1.06 1.06 1.06
2000 0.913 0.913 0.915 0.923  0.887
3D 840 0.328 0.334 0.340 0.335 0.364
870 0.325 0.331 0.335 0.333  0.410
910 0.323 0.328 0.331 0.330 0.383
964 0.320 0.324 0.326 0.327 0.381
2000 0.269 0.269 0.270 0.272  0.271

for mode n=5+ the DRM value of 0.887 in unit 0.1 Mb at
2000 eV is 3% smaller than the RDW value of 0.913); for
the 3D transition, the DRM results are up to 25% larger. This
is again a strong indication of resonance effects that are not
included in the present RDW calculations. Furthermore and
more importantly, we find that the difference between the
RDW and DRM results varies with electron energies. This
interesting feature indicates that the effects of resonance en-
hancement are not uniformly appearing in the resonance re-
gion of both 3C and 3D transitions. The mode n=5+ results
for the 3C transition in Table II are about 11% smaller than
the mode n=35 data, for a wider range of impact energies
than in Table I. This is because the inclusion of pseudostates
and the pair correlation configuration in mode n=5+, as we
already explain above. However, when a similar comparison
is made for the 3D transition between modes n=5 and n=5
+, we find that for the full range of impact energies in Table
II there is a rather small difference for the 3D transition due
to the competition of different effects.

B. Effects of exchange distortion potential

In Table III, we investigate the effects of four types of
different exchange distortion potentials, as discussed in Sec.
II B and given in Ref. [26]. The DRM data are shown in the
last column for a baseline comparison. Generally, there is an
overall agreement between the RDW results with the four
different distortion potentials. The difference is up to 5% for
the 3C transition and up to 4% for 3D at low electron energy,
where the correlation and exchange effects are expected to
have more influence on the RDW cross sections. The differ-
ent treatments of the correlation and exchange effects are
expected to have more influence on the calculations of some
ions with lower ionization stages [26]. At high energy, there
is hardly any difference among RDW results using different
types of exchange distortion potentials.

C. Comparison with background of DRM collision strength

In Figs. 2-5, I compare the present RDW collision
strengths with my previous DRM results for modes n=3, 4,
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FIG. 2. (Color online) The mode n=3 RDW collision strengths
Q (blue squares) as a function of incident electron energy € for 3C
[top panel (a)] and 3D [bottom panel (b)] transitions of Fe xvn are
compared with the background of detailed mode n=3 DRM ().

5, and 5+, respectively. The RDW data are in agreement to
the backgrounds of the DRM data. This agreement is a
strong indication of the mutual validation of both the RDW
and DRM calculations. This agreement also shows that the
collisional coupling may be adequately taken into account by
my RDW code as far as the background or direct cross sec-
tions are concerned. Of course, the resonance effects in par-
ticular the interacting Rydberg resonance series may not be
well treated by the RDW method, as we emphasized in our
earlier publications [15-17]. The detailed DRM collision
strengths from n=>5+ mode have been reported in Ref. [15].
However, the detailed DRM collision strengths with reso-
nance structures from the other three modes (n=3—-5) shown
in Figs. 2—4 are only first presented in this paper. The DRM
calculations from mode n=6 and n=6+ are currently still
underway. These calculations have not yet been finished, so
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FIG. 3. (Color online) The mode n=4 RDW collision strengths
Q) (blue squares) as a function of incident electron energy € for 3C
[top panel (a)] and 3D [bottom panel (b)] transitions of Fe xvn are
compared with the background of detailed mode n=4 DRM Q.
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FIG. 4. (Color online) The mode n=5 RDW collision strengths
Q (blue squares) as a function of incident electron energy e for 3C
[top panel (a)] and 3D [bottom panel (b)] transitions of Fe xvi are
compared with the background of detailed mode n=5 DRM ().

their results cannot be shown in Table I and here for com-
parisons.

In Fig. 2, since the highest target threshold included in the
n=3 mode DRM CC expansion is just the excitation thresh-
old of the 3C transition, there is no resonance effects appear-
ing in the 3C transition at all. There is a narrow region of
resonance enhancement in the 3D transition for mode n=3,
simply due to the slightly smaller excitation energy of the 3D
transition.

In Fig. 3, by using the mode n=4 DRM CC expansion,
pronounced resonance features start to show up in both the
3C and 3D transitions for a range of electron energies up to
75 Ry. In Figs. 4 and 5, with the mode n=5 and 5+ DRM
CC expansion, the resonance features show up in the region
75-82 Ry. However, the strength of the resonance enhance-
ment is small when compared to that in the region
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FIG. 5. (Color online) The mode n=5+ RDW collision strengths
Q (blue squares) as a function of incident electron energy e for 3C
[top panel (a)] and 3D [bottom panel (b)] transitions of Fe xvi are
compared with the background of detailed mode n=5+ DRM ().
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60—75 Ry. It should be noted that in the mode n=4, 5, and
5+ DRM calculations, some broad and diffuse resonance en-
hancements may be found in the energy range 63—65 Ry and
66.5-68 Ry. These interesting resonance features are due to
many interacting Rydberg resonance series appearing in the
same energy region. Some similar broad and diffuse reso-
nance features have also been found and deeply investigated
in our earlier EIE calculation of Fe’* using the BPRM
method [18]. In Fig. 5, the pseudostates and the pair excita-
tion configuration are included in the DRM and RDW calcu-
lations. The extensive discussions of DRM calculations in
Fig. 5 have already been given in my previous paper [15].

Since RDW calculations may be considered as a 2CC
approximation, the agreement, between the RDW 3C and 3D
collision strengths and the backgrounds of the DRM Q) with
resonances, as shown in Figs. 2-5, demonstrates that the ma-
jor part of channel coupling effects may be adequately cal-
culated with our RDW code for 3C and 3D EIE of Fe xvm.
This in turn shows that the direct channel coupling effects
dominate over the indirect channel coupling effects for 3C
and 3D cross sections.

V. SUMMARY

A brief summary of the results I have given is presented
below.

(1) T have extended my RDW procedures to include pseu-
dostates. The RDW code with pseudostates has been used to
calculate the 3C and 3D EIE cross sections of Fe xvi. The
importance of the inclusion of pseudostates in the RDW cal-
culations is demonstrated. The effect of pair correlation con-
figuration 25s?2p*3d*> may reduce the 3C and 3D collision
strengths by a few per cent. The 3C EIE collision strengths
may be reduced by as much as 10-15% due to the inclusion
of pseudostates and pair correlation configuration. The over-
all combined effects on 3D is small due to the competition
outcome of the different effects, mainly from the correlation
effects in the target structure and from the collisional cou-
pling effects.

(2) The effects of different types of distortion potentials
on 3C and 3D cross sections have been investigated. From
the comparison of four types of exchange distortion poten-
tials (different free electron gas approximation), the differ-
ence may reach 5% at low impact energy. There is no effect
at high impact energy.

(3) The convergence in our RDW calculation of EIE of
Fe xvi is shown for both cases with and without pseu-
dostates. The RDW results are compared with the back-
ground collision strengths in my previous DRM calculations
with similar computation modes. Good agreement is found in
all the cases that are compared in this work. This agreement
is an indication for the mutual validation of both the present
RDW calculation and my previous DRM work. This agree-
ment further shows that the direct channel coupling effects
dominate over the indirect channel coupling effects for the
3C and 3D transitions. Our RDW procedures are therefore
adequate to be used for the calculation of 3C and 3D direct
or background collision strengths in EIE of Fe xv.

(4) In both our RDW and DRM procedures for the calcu-
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lations of atomic processes, the GRASP2 code is used as
atomic structure inputs. These procedures may be of some
particular use and benefit to assess the effects of resonance
enhancement and channel coupling because the same target
structure can be used for further RDW and DRM collisional
calculations.

(5) With the inclusion of pseudostates and pair correlation
configuration, the accuracy of the present converged RDW
calculation for the direct 3C and 3D collision strengths is
shown to be =5%. Due to the overall good agreement (from
the cross check) between the RDW and DRM calculations,
the accuracy of the background collision strengths of 3C and
3D transitions in our previous converged DRM calculations
is also shown to be =5%.

The fact that a set of highly accurate atomic data for
Fe xvi has been completed from this work and my previous
DRM work is expected to have an important impact on X-ray
astrophysics. The immediate application of the present re-
sults to astrophysical, fusion, and laser-produced plasmas is

PHYSICAL REVIEW A 77, 022701 (2008)

implied. The results obtained and the method used in this
paper should have some impact on the general RDW calcu-
lations of fundamental atomic processes. A systematic calcu-
lation of atomic processes in Ne isoelectronic sequence and
other ions is currently underway.
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