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The excitation energies of ns, np, nd, and nf �n�6� states in neutral lithium are evaluated within the
framework of relativistic many-body theory. First-, second-, third-, and all-order Coulomb energies and first-
and second-order Breit corrections to energies are calculated. All-order calculations of reduced matrix ele-
ments, oscillator strengths, transition rates, and lifetimes are given for levels up to n=4. Electric-dipole �2s
−np�, electric-quadrupole �2s−nd�, and electric-octupole �2s−nf�, matrix elements are evaluated to obtain the
corresponding ground-state multipole polarizabilities using the sum-over-states approach. Scalar and tensor
polarizabilities for the 2p1/2 and 2p3/2 states are also calculated. Magnetic-dipole hyperfine constants A are
determined for low-lying levels up to n=4. The quadratic Stark shift for the �F=2 M =0�↔ �F=1 M =0�
ground-state hyperfine transition is found to be −0.0582 Hz / �kV /cm�2, in slight disagreement with the ex-
perimental value −0.061�0.002 Hz / �kV /cm�2. Matrix elements used in evaluating polarizabilities, hyperfine
constants, and the quadratic Stark shift are obtained using the all-order method.
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I. INTRODUCTION

Investigations of the properties of neutral lithium provide
excellent illustrations of how disagreement between theory
and experiment leads to the development of new techniques
that improve both theory and experiment. For example, pre-
cise calculations of energies and matrix elements for Li car-
ried out in the late 1980s and early 1990s �1–6� gave an
accurate value of the line strength of the 2p-2s transition
close to 33.0a0

2. These theoretical calculations were con-
firmed by a highly accurate �0.0001%� variational calcula-
tion by Yan and Drake �7�. The theoretical lifetime disagreed
by about 1% with a precise �0.15%� measurement by Gaupp
et al. �8�, which was confirmed by subsequent measurements
�9�. The difference between theory and experiment was ulti-
mately resolved through measurements by Volz and Schmo-
ranzer �11� and McAlexander et al. �10�.

Very recently, measurements of the electric polarizability
of lithium by atom interferometry were presented by Miffre
et al. �12�. The measured value �=164.2�1.1 a.u. illus-
trated the sensitivity of atom interferometry and is in agree-
ment with the theoretical result �=164.111�0.002 a.u. ob-
tained using variational wave functions by Yan et al. �13�.

Experimental measurements by Windholz et al. �14� of scalar
and tensor polarizabilities of the 2p 2P state of Li also com-
pare well with recent model-potential calculations by Cohen
and Themells �15�. Highly accurate variational calculations
�0.0002%–0.00035%� of electric-quadrupole �E2� and
electric-octupole �E3� polarizabilities of the Li ground state
were carried out by Yan et al. �13� and relativistic many-
body calculations of E2 and E3 polarizabilities for the Li
ground state, accurate to 0.3%, were carried out by Porsev
and Derevianko �16�. In the latter calculations, wave
functions were determined from an effective many-body
Schrödinger equation �17,18�. Measurements of the Stark
shift of the �F=2 M =0�↔ �F=1 M =0� ground-state
hyperfine interval in Li �−0.061�0.002 Hz / �kV /cm�2�
were carried out by Mowat �19� and evaluated theor-
etically to be −0.0627 Hz / �kV /cm�2 by Kaldor �20� and
−0.0595 Hz / �kV /cm�2 by Lee et al. �21�.

In the present paper, we investigate all of the above prop-
erties of the ground state and low-lying excited states of
neutral Li using the relativistic all-order method described by
Blundell et al. �2�. In particular, we evaluate the excitation
energies of ns, np, nd, and nf states with n�6, reduced
matrix elements, oscillator strengths, transition rates, and
lifetimes for levels with n�4, ground state E1, E2, and E3
static polarizabilities, scalar and tensor polarizabilities for 2p
and 2p states, and magnetic-dipole hyperfine constants A for
levels with n�4. We use B-splines �22� to generate a com-
plete set of basis orbitals for use in the evaluation of energies
and matrix elements.
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II. THIRD-ORDER AND ALL-ORDER MANY-BODY
PERTURBATION THEORY CALCULATIONS

OF ENERGIES

Energies of nlj states are evaluated for n�6 and l�3
using both third-order many-body perturbation theory
�MBPT� and the single-double �SD� all-order method dis-
cussed in Ref. �2�, in which single and double excitations of
Dirac-Hartree-Fock �DHF� wave functions are iterated to all
orders. Results of our energy calculations are summarized in
Table I. Columns 2–8 of Table I give the lowest-order DHF
energies E�0�, second-order and third-order Coulomb correla-
tion energies E�2� and E�3�, first-order and second-order Breit
corrections B�1� and B�2�, an estimated Lamb shift contribu-
tion ELS, and a recoil correction Erecoil. The sum of these
contributions Etot

�3�, listed in the ninth column of Table I, is the
final third-order MBPT result. The recoil correction, which is
the sum of the reduced mass correction and the mass-
polarization correction, is calculated through third-order in
MBPT. The Lamb shift correction for ns states is estimated

by scaling the 2s Lamb shift �X�=2 /3 case� given by Sa-
pirstein and Cheng �24� with 1 /n3. The 2s Lamb shift from
�24� is consistent with values found in Refs. �25,26�. For
states with l�0, the Lamb shift is estimated to be smaller
than 0.01 cm−1 using scaled Coulomb values and is ignored.
We list the all-order SD energies in the column labeled E�SD�

and list that part of the third-order energies missing from
E�SD� in the column labeled Eextra

�3� . The sum of the seven
terms E�0�, ESD, Eextra

�3� , B�1�, B�2�, ELS and Erecoil is our final
all-order result Etot

SD, listed in the 12th column of Table I.
Recommended energies from the National Institute of Stan-
dards and Technology �NIST� database �23� are given in the
column labeled ENIST. Differences between our third-order
and all-order calculations and experimental data, �E�3�=Etot

�3�

−ENIST and �E�SD�=Etot
�SD�−ENIST, are given in the two final

columns of Table I, respectively.
As expected, the largest correlation contribution to the

valence energy comes from the second-order term E�2�.
Therefore, we calculate E�2� with higher numerical accuracy.

TABLE I. Zeroth-order �DHF�, second-order, and third-order Coulomb correlation energies E�n�, single-double Coulomb energies E�SD�

and Eextra
�3� , first-order and second-order Breit corrections B�n�, and Lamb shift ELS and recoil Erecoil corrections in 7Li. The total energies

�Etot
�3�=E�0�+E�2�+E�3�+B�1�+B�2�+ELS+Erecoil and Etot

�SD�=E�0�+ESD+Eextra
�3� +B�1�+B�2�+ELS+Erecoil� are compared with experimental ener-

gies ENIST �23�, �E=Etot−ENIST. Units: cm−1. The value of the infinite-mass Rydberg constant used to convert numerical data from a.u. to
cm−1 is Ry=10 973.7316.

nlj E�0� E�2� E�3� B�1� B�2� ELS Erecoil Etot
�3� E�SD� Eextra

�3� Etot
�SD� ENIST �E�3� �E�SD�

2s1/2 −43087.3 −362.03 −26.94 1.16 −0.48 0.24 3.59 −43471.8 −407.02 2.35 −43487.5 −43487.2 15.3 −0.4

2p1/2 −28232.9 −301.77 −29.69 0.61 −0.18 0.00 1.52 −28562.4 −353.11 2.14 −28581.9 −28583.5 21.1 1.6

2p3/2 −28232.3 −301.67 −29.69 0.31 −0.16 0.00 1.52 −28562.0 −352.99 2.13 −28581.5 −28583.2 21.1 1.6

3s1/2 −16197.4 −76.72 −5.48 0.26 −0.12 0.07 1.32 −16278.1 −85.52 0.38 −16281.0 −16281.0 2.9 0.0

3p1/2 −12460.0 −88.63 −8.36 0.20 −0.06 0.00 0.76 −12556.1 −102.58 0.56 −12561.2 −12561.8 5.6 0.6

3p3/2 −12459.9 −88.60 −8.36 0.11 −0.06 0.00 0.76 −12556.0 −102.54 0.56 −12561.0 −12561.8 5.8 0.7

3d3/2 −12194.4 −8.93 −1.24 0.00 0.00 0.00 0.95 −12203.7 −10.67 0.13 −12204.0 −12204.1 0.4 0.1

3d5/2 −12194.4 −8.93 −1.24 0.00 0.00 0.00 0.95 −12203.6 −10.67 0.13 −12204.0 −12204.0 0.4 0.0

4s1/2 −8444.5 −28.33 −2.00 0.11 −0.04 0.03 0.68 −8474.0 −31.51 0.13 −8475.1 −8475.1 1.0 0.0

4p1/2 −6975.1 −37.16 −3.46 0.09 −0.03 0.00 0.45 −7015.2 −42.84 0.23 −7017.2 −7017.6 2.4 0.4

4p3/2 −6975.0 −37.15 −3.46 0.04 −0.02 0.00 0.45 −7015.2 −42.83 0.23 −7017.2 −7017.6 2.4 0.4

4d3/2 −6859.4 −4.18 −0.56 0.00 0.00 0.00 0.54 −6863.6 −4.97 0.06 −6863.8 −6863.8 0.2 0.0

4d5/2 −6859.4 −4.18 −0.56 0.00 0.00 0.00 0.54 −6863.6 −4.97 0.06 −6863.8 −6863.8 0.2 0.0

4f5/2 −6858.6 −0.64 −0.10 0.00 0.00 0.00 0.54 −6858.8 −0.78 0.01 −6858.8 −6857.0 −1.9 −1.9

4f7/2 −6858.6 −0.64 −0.10 0.00 0.00 0.00 0.54 −6858.8 −0.78 0.01 −6858.8 −6857.0 −1.8 −1.9

5s1/2 −5173.2 −13.49 −0.95 0.04 −0.02 0.01 0.41 −5187.2 −14.99 0.06 −5187.7 −5187.7 0.5 0.0

5p1/2 −4450.0 −18.95 −1.76 0.04 −0.01 0.00 0.35 −4470.3 −21.80 0.11 −4471.3 −4471.6 1.3 0.3

5p3/2 −4450.0 −18.94 −1.76 0.02 −0.01 0.00 0.35 −4470.3 −21.79 0.11 −4471.3 −4471.6 1.3 0.3

5d3/2 −4390.0 −2.24 −0.30 0.00 0.00 0.00 0.34 −4392.2 −2.65 0.03 −4392.3 −4392.2 0.1 0.0

5d5/2 −4390.0 −2.23 −0.30 0.00 0.00 0.00 0.34 −4392.1 −2.65 0.03 −4392.2 −4392.2 0.1 0.0

5f5/2 −4389.5 −0.37 −0.06 0.00 0.00 0.00 0.34 −4389.6 −0.45 0.01 −4389.6 −4382.7 −6.9 −6.9

5f7/2 −4389.5 −0.37 −0.06 0.00 0.00 0.00 0.34 −4389.6 −0.45 0.01 −4389.6 −4382.7 −6.9 −6.9

6s1/2 −3491.6 −7.45 −0.53 0.02 −0.01 0.01 0.27 −3499.3 −8.28 0.03 −3499.6 −3499.5 0.2 0.0

6p1/2 −3083.5 −10.94 −1.01 0.02 −0.01 0.00 0.24 −3095.2 −12.56 0.07 −3095.8 −3096.3 1.1 0.6

6p3/2 −3083.5 −10.93 −1.01 0.02 −0.01 0.00 0.24 −3095.2 −12.56 0.07 −3095.7 −3096.3 1.1 0.6

6d3/2 −3048.5 −1.32 −0.17 0.00 0.00 0.00 0.24 −3049.8 −1.57 0.02 −3049.9 −3049.8 0.0 0.0

6d5/2 −3048.5 −1.32 −0.17 0.00 0.00 0.00 0.24 −3049.8 −1.57 0.02 −3049.9 −3049.8 0.0 0.0
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The second-order energy includes partial waves up to lmax
=8 and is extrapolated to account for contributions from
higher partial waves �see, for example, Refs. �27,28��. As
an example of the convergence of E�2� with the number of
partial waves l, consider the 2s1/2 state. Calculations of E�2�

with lmax=6 and 8 yield E�2��2s1/2�=−361.046 and
−361.596 cm−1, respectively. Extrapolation of these calcula-
tions yields −362.025 and −362.066 cm−1, respectively.
Thus, in this particular case, we have a numerical uncertainty
in E�2��2s1/2� of 0.041 cm−1. It should be noted that the
1.02 cm−1 contribution from partial waves with l�8 for the
2s state is the largest among all states considered in Table I;
a smaller �1.00 cm−1� contribution is obtained for the two
other n=2 states and a much smaller contribution
�0.01–0.32 cm−1� for n=3 states.

Owing to numerical complexity, we restrict l� lmax=6 in
the E�SD� calculation. As noted above, the second-order con-
tribution dominates E�SD�; therefore, we can use the extrapo-
lated value of E�2� described above to account for the contri-
butions of the higher partial waves. Six partial waves are also
used in the calculation of E�3�. Since the asymptotic l depen-
dences of the second- and third-order energies are similar
�both fall off as l−4�, we use the second-order remainder as a
guide to estimate the remainder in the third-order contribu-
tion. The term Eextra

�3� in Table I, which accounts for that part
of the third-order MBPT energy missing from the SD all-
order expression for the energy, is smaller than E�3� by an
order of magnitude for the states considered here.

The column labeled �E�SD� in Table I gives differences
between our ab initio results and the experimental values
�23�. The SD all-order results agree better with measured
values than do the third-order MBPT results, illustrating the
importance of fourth- and higher-order correlation correc-
tions. It should be noted that the largest differences between
our SD all-order data and the NIST data occur for 4f
�1.9 cm−1� and 5f �6.9 cm−1� states. However, we agree
very well �0.0 cm−1 for the 4f states and 0.2 cm−1 for the 5f
states� with more recent measurement of Radziemski et al.
�29�. We refer the reader to Ref. �30� and references therein
for a detailed discussion of the 4f energy level.

Below, we give a few numerical details of our calculation.
We use the B-spline method described in �22� to generate a
complete set of DHF basis wave functions for use in the
evaluation of MBPT expressions. For Li I, we use 70 splines
of order k=9 for each angular momentum. The basis orbitals
are constrained to a spherical cavity of radius R=220 a.u.
The cavity radius is chosen large enough to accommodate all
nlj orbitals considered here and small enough that 70 splines
can approximate inner-shell DHF wave functions with good
precision. We use 65 out 70 basis orbitals for each partial
wave in our third-order and all-order energy calculations,
since contributions from the highest-energy orbitals are neg-
ligible.

III. OSCILLATOR STRENGTHS, TRANSITION RATES,
AND LIFETIMES

We calculate oscillator strengths and transition probabili-
ties for nlj −n�lj�

� electric-dipole transitions with n�4 and l

�3 in the SD all-order approximation �2�. Our results are
compared with other theoretical calculations �7,31–34�, and
with experimental measurements �11,35–39� in Tables II and
III. Numerous theoretical calculations concerning the prop-
erties of neutral lithium have been published over the past 30
years. In Table II, we compare our SD all-order oscillator
strengths with the accurate calculations given in Refs.
�7,31–34�. The highest-accuracy oscillator strengths for
2s 2S-2p 2P �0.0001%� and 2p 2P-3d 2D �0.0005%� transi-

TABLE II. Oscillator strengths f averaged over j. The SD all-
order data �f �SD�� are compared with other theoretical data.

Lower Upper f �SD� f f

2s 2S 2p 2P 0.746944 0.747042 �31� 0.7469572�10� �7�
2s 2S 3p 2P 0.004704 0.004712 �31� 0.0047242 �33�
2s 2S 4p 2P 0.004235 0.0042187 �33�
2p 2P 3s 2S 0.110595 0.110554 �31� 0.110505 �33�
2p 2P 4s 2S 0.012833 0.012835 �31� 0.012887 �33�
2p 2P 3d 2D 0.638615 0.638546 �31� 0.6385705�30� �7�
2p 2P 4d 2D 0.122731 0.123008 �33�
3s 2S 3p 2P 1.214724 1.215881 �31� 1.214925 �33�
3s 2S 4p 2P 0.000041 0.000024 �33�
3p 2P 3d 2D 0.074366 0.074336 �31� 0.074173 �33�
3p 2P 4d 2D 0.522086 0.522649 �33�
3p 2P 4s 2S 0.223285 0.223283 �31� 0.223392 �33�
3d 2D 4p 2P 0.018129 0.017963 �33�
3d 2D 4f 2F 1.015637 1.0153 �34�
4s 2S 4p 2P 1.640289 1.6359 �33�
4p 2P 4d 2D 0.135795 0.135305 �33�
4d 2D 4f 2F 0.003130

TABLE III. Lifetimes of nl 2LJ states in neutral lithium. The SD
all-order data ���SD�� are compared with theoretical and experimen-
tal data.

Level ��SD� �th �expt

2p 2P 27.108 27.109804�36� �7� 27.102�9� �35�
2p 2P1/2 27.109 27.106 �31� 27.102�9� �35�
2p 2P3/2 27.107 27.104 �31� 27.102�9� �35�
3d 2D 14.583 14.583687�68� �7� 14.60�13� �36�
3d 2D3/2 14.584 14.591 �31�
3d 2D5/2 14.583 14.592 �31�
3s 2S1/2 29.856 29.886 �31� 29.72�7� �11�
3p 2P1/2 211.11 210.94 �32� 203�8� �37�
3p 2P3/2 211.15 210.93 �32�
4d 2D3/2 33.382 33.315 �33� 31.0�1.0� �38�
4d 2D5/2 33.381 33.315 �33�
4s 2S1/2 56.037 56.084 �32� 56�1.7� �39�
4f 2F5/2 72.278

4f 2F7/2 72.279

4p 2P1/2 388.17 357.2 �33�
4p 2P3/2 388.30 357.2 �33�
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tions were those obtained by Yan and Drake �7� who used
variationally constructed wave functions in Hylleraas coordi-
nates. Another Hylleraas-type calculation of the properties of
lithium was presented by Pestka and Wolźnicki �33�, where
superposition of correlated configurations was used to evalu-
ate the nonrelativistic energies and lifetimes of the ns 2S,
np 2P, and nd 2D states with n�4 together with the oscilla-
tor strengths of the transitions between such states. The mul-
ticonfiguration Hartree-Fock �MCHF� method was used re-
cently by Godefroid et al. �31� to calculate the atomic
properties of �2s ,3s ,4s 2S�, �2p ,3p 2P�, and �3d 2D� states
in Li and Li-like ions. The reliability of expectation values in
�31� was assessed by analysis of convergence patterns as the
approximate wave function was systematically improved. In
order to compare our relativistic SD all-order oscillator
strengths f�nlj ,n�l�j�� with the nonrelativistic results given
in Refs. �7,31–34�, we average our f�nlj ,n�l�j�� data over j
and j�. The contribution of relativistic effects is in the range
0.005%–0.01%. We can see from Table II that the difference
between our SD all-order values and the high-precision val-
ues from �7� is about 0.002% for the 2s 2S-2p 2P transition
and 0.006% for the 2p 2P-3d 2D transition. These differ-
ences are in part explained by relativistic effects omitted in
Ref. �7�. The largest and smallest differences between the
present SD all-order oscillator strengths and the MCHF �31�
values listed in Table II are 0.17% �2s 2S-3p 2P transition�
and 0.001% �3p 2P-4s 2S transition�, respectively. The dif-
ferences between the SD all-order oscillator strengths and the
oscillator strengths presented by Pestka and Wolźnicki �33�
�see Table II� are much larger; the smallest difference is
0.003% for the 2s 2S-2p 2P transition and the largest differ-
ence is 73% for the 3s 2S-4p 2P transition. It should be noted
that the oscillator strength of the 3s 2S-4p 2P transition is
three to four orders of magnitude smaller than for other tran-
sitions.

We also calculate the lifetimes of ns 2S1/2, np 2PJ, nd 2DJ,
and nf 2FJ states for n�4 in neutral lithium using SD all-
order dipole matrix elements and experimental energies �23�.
We list the lifetimes ��SD� in Table III. The difference be-
tween lifetimes of np 2P1/2 and np 2P3/2 states is 0.01%,
0.02%, and 0.03% for n=2, 3, and 4, respectively, illustrat-
ing the size of relativistic effects. In Table III, we compare
lifetimes ��SD� with available experimental measurements
�11,35–39�. Experimental results have changed with time,
and we present only the most recent results in Table III. �We

found no experimental measurements for 3d 2DJ, 4p 2PJ, or
4f 2FJ states.� Our SD all-order results agree well with mea-
surements when experimental uncertainties are taken into ac-
count. We also compare our lifetime calculations with theo-
retical results from Refs. �7,31–33� in Table III. We find
excellent agreement �0.008% and 0.002%� between the
present lifetime data and the high-precision results �7� for
2p 2P and 3d 2D states. Differences between our values of
��SD� and the results from Refs. �31,32� for the 2p 2PJ,
3d 2DJ, 3s 2S1/2, 3p 2PJ, and 4s 2S1/2 states are less than
0.1%. There is also good agreement, except for the 4p 2P
state, with results from Ref. �33�. �The differences found for
4p 2P states are unexpected since we have excellent agree-
ment for oscillator strengths for all transitions including the
4p 2P state, as seen in Table II. When we recalculate the
lifetime of the 4p 2P state using data given in Table IV of
Ref. �33�, we obtain the value �=375 ns which agrees much
better with our value ��SD�=388 ns than the value 357 ns
given in Table V of Ref. �33�.�

IV. STATIC MULTIPOLE POLARIZABILITIES IN THE 2s
GROUND STATE OF NEUTRAL LI

The static multipole polarizability �v
Ek of Li in its 2s

ground state can be separated into two terms: a dominant
first term from intermediate valence-excited states �nlj�1s�2�
and a smaller second term from intermediate core-excited
�nlj2s1s� states. The latter term is smaller than the former by
several orders of magnitude and is here evaluated in the
random-phase approximation �41�. The dominant valence
contribution is calculated using the sum-over-state approach,

�v
Ek =

1

2k + 1�
n

��nlj	rkCkq	2s��2

Enlj − E2s
, �1�

where Ckq�r̂� is a normalized spherical harmonic and where
nlj is npj, ndj, and nf j for k=1, 2, and 3, respectively �42�.
The reduced matrix elements in the above sum are evaluated
using the SD all-order approximation for basis states with
n�26 and in the DHF approximation for the remaining
states.

Contributions to dipole, quadrupole, and octupole polar-
izabilities of the 2s ground state are presented in Table IV.
The first two terms in the sum-over-states for �E1, �E2, and
�E3 contribute 98.8%, 74%, and 29%, respectively, of the

TABLE IV. Contributions to multipole polarizabilities �a.u.� of the 2s state of Li. The two leading terms
and those terms with n�26 in the expression for �v

Ek �Eq. �1�� are evaluated using SD all-order wave
functions. The remainders �n�26�, labeled “Tail” below, are evaluated in the DHF approximation. Contri-
butions from core-excited states �c

Ek are evaluated in the random-phase approximation.

nlj=2p1/2 53.993 nlj=3d3/2 421.75 nlj=4f5/2 4949.3

nlj=2p3/2 107.986 nlj=3d5/2 632.60 nlj=4f7/2 6599.1

nl= �3p−26p� 1.915 nl= �4d−26d� 368.16 nl= �5f −26f� 28074.8

Tail 0.001 Tail 0.12 Tail 0.9

�v
E1 163.895 �v

E2 1422.62 �v
E3 39624.1

�c
E1 0.189 �c

E2 0.11 �c
E3 0.2

�E1 164.084 �E2 1422.73 �E3 39624.2
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totals. The rapid convergence of the sum over states for �1
has been emphasized in many publications �for example,
�43,44��. We use recommended energies from �23� and SD
all-order wave functions to evaluate terms in the sum with
n�13, and we use theoretical SD all-order energies and
wave functions to evaluate terms with 13�n�26. The re-
maining contributions to �Ek from basis functions with 27
�n�70 are evaluated in the DHF approximation. As can be
seen from Table IV, sums over n for n�26 in �E2 and �E3

essentially reproduce the final results, since the contribution
from 27�n�70 is smaller than 0.01% in all cases.

Final results for the multipole polarizabilities of the Li I

ground state are compared in Table V with high-precision
calculations given in Refs. �13,16,40� and a recent experi-
mental measurement presented in Ref. �12�. Our results
given in the first row of Table V differ from high-precision
calculations presented by Yan et al. �13� by 0.016%, 0.03%,
and 0.06% for �E1, �E2, and �E3, respectively. Our results
agree with values given by Porsev and Derevianko �16� for
the quadrupole polarizability taking into account the uncer-
tainty given in �16�; however, the difference for the octupole
polarizability is equal to 0.13%. Also, we agree with theoret-
ical results given by Derevianko et al. �40� for the dipole
polarizabilty within the uncertainty quoted in �40�. The un-
certainty in the experimental measurement �12� of the dipole
polarizability is too large to reflect on the accuracy of the
present calculations.

V. SCALAR AND TENSOR POLARIZABILITIES OF THE
2p1Õ2 AND 2p3Õ2 EXCITED STATES OF Li

The scalar �0�v� and tensor �2�v� polarizabilities of an
excited state v of Li are given by

�0�v� =
2

3�2jv + 1��nlj

��v	rC1	nlj��2

Enlj − Ev
, �2�

�2�v� = �− 1� jv
 40jv�2jv − 1�
3�jv + 1��2jv + 1��2jv + 3�

��
nlj

�− 1� j� jv 1 j

1 jv 2
� ��v	rC1	nlj��2

Enlj − Ev
. �3�

As before, our calculation of the sums is divided into
three parts. The first part is the sum over valence states with
n�26, which is carried out using SD all-order wave func-

tions. The second part is the sum over basis states with n
�26, which is carried out in the DHF approximation. The
third part is the contribution from core-excited states, which
is carried out in the random-phase approximation �RPA�.

A breakdown of contributions to the scalar dipole polar-
izability for the excited 2p1/2 and 2p3/2 states is presented in
Table VI. Contributions from excited ns and nd states with
n�26 differ only by 0.001%. Contributions from excited ns
and nd states n�26 are very small �n�26=0.007a0

3 and are
calculated in the DHF approximation. We evaluate the con-
tribution from the ionic core �core in the RPA and find
�core=0.1894a0

3. A counterterm �vc�2pj� compensating for
excitation from the core to the valence shell which violates
the Pauli principle is also evaluated in the RPA and found to
be �vc�2pj�=−0.003a0

3. The above values were combined to
obtain our final result for the scalar polarizability of the first
two excited states in Li I: �0

�SD��2p1/2�=126.980a0
3 and

�0
�SD��2p3/2�=126.995a0

3.
We present the details of our calculation of the tensor

polarizability �2 of the 2p3/2 state in Table VII. Reduced
electric-dipole matrix elements evaluated in the SD all-order
approximation are given in the columns labeled Zvn

�v	rC1	nlj�. The corresponding contributions to the tensor
polarizability are given in the columns labeled Inlj. The sum
of contributions from nd3/2 and ns1/2 intermediate states is
almost compensated for by the contribution from the nd5/2
states. The resulting contribution to �2�2p3/2� from states
with n�26 is 1.590a0

3. Contributions from states with n
�26 are −0.001a0

3.
States with n�13 in our basis have positive energies and

provide a discrete representation of the continuum. We find
that the continuous part of the spectra is responsible for 6%
of �2�2p3/2�. We evaluated the continuum contributions in
the range 14�n�26 using SD all-order wave functions for
dipole matrix elements and energies. For n�13, we use SD
all-order matrix elements and NIST energies �23� in the
sums. Our final result is �2

�SD��2p3/2�=1.59a0
3.

Our results for scalar and tensor polarizabilities of the 2pj
excited state of Li are compared in Table VIII with recent

TABLE V. Multipole polarizabilities �E1, �E2, and �E3 of the 2s
ground state of Li are compared with other calculations and with
experiment.

Reference �E1 �E2 �E3

Present 164.084 1422.73 39624.2

Yan et al. �13� 164.111�2� 1423.266�5� 39650.49�8�
Porsev and Derevianko�16� 1424�4� 39570

Derevianko et al. �40� 164.0�1�
Experiment �12� 164.2�1.1�

TABLE VI. Contributions to scalar polarizability of Li in the
excited 2p1/2 and 2p3/2 states calculated with SD all-order wave
functions �0�2p1/2�=�n=3

70 I2p1/2
�nd3/2�+�n=1

70 I2p1/2
�ns1/2� and

�0�2p3/2�=�n=3
70 I2p3/2

�ndj�+�n=1
70 I2p3/2

�ns1/2�.

Contribution j=1 /2 j=3 /2

�n=3
26 I2pj

�SD��nd3/2� 142.648 14.266

�n=3
26 I2pj

�SD��nd5/2� 0 128.393

�n=1
26 I2pj

�SD��ns1/2� −15.860 −15.856

�main
�SD��2pj� 126.787 126.802

�tail
�DF��2pj� 0.007 0.007

�core�2pj� 0.189 0.189

�vc�2pj� −0.003 −0.003

��SD��2pj� 126.980 126.995

RELATIVISTIC MANY-BODY CALCULATION OF … PHYSICAL REVIEW A 77, 022510 �2008�

022510-5



calculations by Cohen and Themells �15� and with experi-
mental measurements reported by Windholz et al. �14�. The
Rydberg-Klein-Rees inversion method combined with quan-
tum defect theory was used in �15� to calculate the scalar
��0� and tensor ��2� polarizabilities nonrelativistically. As
can be seen from Table VIII, the present SD all-order results

are in better agreement with measurements �14� than with the
theoretical results given by Cohen and Themells �15�.

VI. HYPERFINE CONSTANTS FOR 7Li

Calculations of hyperfine constants follow the pattern de-
scribed earlier for calculations of transition matrix elements.
In Table IX, we list the hyperfine constants A for 7Li and
compare our values with calculations by Godefroid et al.
�31� and with available experimental data from Refs.
�37,46–50�.

In this table, we present the lowest-order A�DHF� and all-
order A�SD� values for the ns, np, nd, and nf levels up to n
=4. The magnetic moment and nuclear spin of 7Li used here
are taken from �45�. Our SD all-order values are in excellent
agreement with high-precision measurements for the 2s 2S1/2
�0.07%�, 2p 2P1/2 �0.004%�, and 3s 2S1/2 �0.03%�. The larg-
est disagreements between our SD all-order data and the ex-
perimental values occur for the np 2P3/2 states �1.4%, 1.6%,

TABLE VII. Contributions to tensor polarizability of Li in the excited state v=2p3/2 calculated using
all-order SD method �2�2p3/2�=�n=3

70 I2p3/2
�ndj�+�n=1

70 I2p3/2
�ns1/2�. SD all-order dipole matrix elements Zvn

= �v	rC1	nlj� are also given. All values are in a.u.

n Zvn Iv�nd3/2� n Zvn Iv�nd5/2� n Zvn Iv�ns1/2�

2s1/2 4.690 53.994

3d3/2 −2.266 9.173 3d5/2 −6.798 −20.640 3s1/2 3.441 −35.200

4d3/2 0.863 1.003 4d5/2 2.588 −2.256 4s1/2 0.917 −1.529

5d3/2 0.501 0.304 5d5/2 1.504 −0.685 5s1/2 −0.493 −0.380

6d3/2 0.344 0.135 6d5/2 −1.031 −0.304 6s1/2 −0.327 −0.156

7d3/2 0.257 0.073 7d5/2 0.770 −0.164 7s1/2 −0.240 −0.081

8d3/2 −0.202 0.044 8d5/2 −0.606 −0.100 8s1/2 0.187 −0.048

9d3/2 0.165 0.029 9d5/2 0.496 −0.066 9s1/2 0.151 −0.031

10d3/2 0.148 0.023 10d5/2 −0.445 −0.053 10s1/2 0.130 −0.022

11d3/2 0.158 0.026 11d5/2 −0.473 −0.059 11s1/2 −0.132 −0.023

12d3/2 −0.171 0.031 12d5/2 0.512 −0.069 12s1/2 −0.144 −0.027

13d3/2 −0.180 0.033 13d5/2 −0.541 −0.075 13s1/2 −0.145 −0.027

14d3/2 −0.155 0.024 14d5/2 −0.540 −0.074 14s1/2 −0.189 −0.045

15d3/2 −0.193 0.037 15d5/2 0.549 −0.075 15s1/2 0.143 −0.026

16d3/2 0.144 0.021 16d5/2 −0.565 −0.078 16s1/2 −0.007 0.000

17d3/2 −0.318 0.096 17d5/2 0.984 −0.228 17s1/2 −0.360 −0.154

18d3/2 −0.079 0.006 18d5/2 0.038 0.000 18s1/2 0.414 −0.177

19d3/2 −0.364 0.116 19d5/2 1.093 −0.258 19s1/2 0.003 0.000

20d3/2 0.364 0.103 20d5/2 −1.078 −0.222 20s1/2 0.391 −0.127

21d3/2 0.023 0.000 21d5/2 −0.011 0.000 21s1/2 −0.312 −0.060

22d3/2 0.327 0.071 22d5/2 0.957 −0.148 22s1/2 −0.216 −0.020

23d3/2 −0.265 0.038 23d5/2 −0.767 −0.077 23s1/2 −0.133 −0.005

24d3/2 −0.196 0.016 24d5/2 0.561 −0.032 24s1/2 0.075 −0.001

25d3/2 0.133 0.006 25d5/2 −0.379 −0.011 25s1/2 0.041 0.000

26d3/2 0.085 0.002 26d5/2 −0.240 −0.003 26s1/2 −0.064 0.000

Sum 11.413 −25.679 15.856

�n�26
�SD� �2p3/2�=1.590

�n�26�2p3/2�=−0.001

��SD��2p3/2�=1.59

TABLE VIII. Values of scalar ��0� and tensor ��2� part of po-
larizability of the excited state 2p 2PJ in Li I. The SD all-order data
are compared with �a� theoretical �15� and �b� experimental �14�
values.

��SD� �th.
a �expt

b

�2�2p 2P3/2� 1.59 1.75 1.64�4�
�0�2p 2P1/2� 126.980 126.9�3�
�0�2p 2P3/2� 126.995 126.7�4�
�0�2p 2P� 126.990 126.4
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and 7% for n=2, 3, and 4, respectively�. The correlation
correction for np 2P3/2 states is of the same order of magni-
tude as the DHF value and has an opposite sign. With such
large cancellations, it is difficult to calculate A�np3/2� accu-
rately. Moreover, as was noted in Ref. �31�, experimental
values of A for the 2p 2P3/2 state obtained in different experi-
ments differ by 7%.

The present values of A for the 2s, 2p, and 3s states differ
slightly from the earlier SD all-order values obtained by
Blundell et al. �2� for two reasons: first, the present values
are evaluated in the infinite-nuclear-mass limit, whereas the
earlier values took into account the finite mass of the Li
nucleus; second, the present calculations assume a Fermi dis-
tribution for the nuclear magnetism with parameters obtained
from the charge distribution, while the previous calculation
assumed a point nucleus.

VII. HYPERFINE-INDUCED TRANSITION
POLARIZABILITY OF THE 7Li GROUND STATE

We now turn to the calculation of the quadratic Stark shift
of the ground-state hyperfine interval �F=2−F=1� in 7Li.
The quadratic Stark shift is closely related to the blackbody
radiation shift discussed, for example, in Ref. �51�, and our
calculation follows the procedure outlined in �51�, but in-
cludes some details omitted therein.

The dominant second-order contribution to the polariz-
ability cancels between the two hyperfine components of the
2s state, so the Stark shift of the hyperfine interval is gov-
erned by the third-order F-dependent polarizability
�F

�3��0�. The expression for the �F
�3��0� is �51�

�F
�3��0� =

1

3

�2I��2I + 1��2I + 2�� jv I F

I jv 1
�

�gI	n�− 1�F+I+jv�2T + C + R� , �4�

where gI is the nuclear gyromagnetic ratio, 	n is the nuclear

magneton equal to 3.256 424 in 7Li, I=3 /2 is the nuclear
spin, and jv=1 /2 is the total angular momentum of the
atomic ground state. The F-independent sums are ��v�

�2s1/2��

T =
�− 1� jv

2jv + 1 �
m,n�v

�− 1� jm
�v	rC1	m��m	rC1	n��n	T	v�

�Em − Ev��En − Ev�
� jn,jv

,

�5�

C = �
m,n�v

�− 1� jm−jn�1 jv jv

1 jm jn
�

�
�v	rC1	m��m	T	n��n	rC1	v�

�Em − Ev��En − Ev�
, �6�

R =
�v	T 	v�
2jv + 1 �

n

��v	rC1	n��2

�En − Ev�2 . �7�

In the above equations, T is the dipole hyperfine operator,
We note first that in the DHF approximation the values of

T, C, and R in atomic units are

2TDF = 5.51 � 10−5,

CDF = 3.36 � 10−10,

RDF = 9.06 � 10−5. �8�

Since the value of CDF is smaller than the value of TDF and
RDF by five orders of magnitude, we do not recalculate the C
term in the SD all-order approximation.

The expression for R is similar to that for �E1�0� �com-
pare Eqs. �1� and �7��. The difference is an additional factor
in Eq. �7� of the diagonal hyperfine matrix element:

TABLE IX. Hyperfine constants A �in MHz� in 7Li �I=3 /2, 	=3.256427�2� �45��. The SD all-order data
are compared with theoretical and experimental results.

Level A�DHF� A�SD� A�th� A�expt�

2s 2S1/2 284.35 402.02 402.47 �2�, 401.76 �31� 401.7520433�5� �31�
2p 2P1/2 32.295 45.916 45.96 �2�, 45.945 �31� 45.914�25� �46�
2p 2P3/2 6.457 −3.014 −3.03 �2�, −3.06 �31� −3.055�14� �46�
3s 2S1/2 66.88 93.130 93.24 �2�, 93.084 �31� 93.106�11� �47�
3p 2P1/2 9.745 13.875 13.892 �2� 13.5�2� �46�
3p 2P3/2 1.9484 −1.0198 −1.045 �2� −1.036�16� �37�
3d 2D3/2 0.8206 0.8376 0.8384 �2� 0.843�41� �48�
3d 2D5/2 0.3517 0.3441 0.3431 �2� 0.343�10� �48�
4s 2S1/2 25.34 35.12 35.09 �2� 36.4�4� �49�
4p 2P1/2 4.116 5.852

4p 2P3/2 0.8230 −0.4399 −0.41�2� �50�
4d 2D3/2 0.3465 0.3557

4d 2D5/2 0.1485 0.1438

4f 2F5/2 0.1057 0.1058

4f 2F7/2 0.05871 0.05876
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�2s1/2	T 	2s1/2��SD� = 3.4447 � 10−8 a.u.

We evaluate the matrix elements �v	rC1	n� in the SD all-
order approximation for n�26. We use recommended NIST
energies �23� for n up to n=13 and SD all-order energies for
14�n�26. The sum of terms for n�26 is Rn�26=1.2367
�10−4. The remainder of the sum, evaluated in the DHF
approximation, Rn�26=1.0�10−10 is insignificant.

The expression for T includes sums over two indices m
and n. To calculate the dominant part of T, we limit the sum
over m to four states �m=2p1/2, 3p1/2, 2p3/2, and 3p3/2� and
sum over n up to n=26:

T m�3
n�26

= −
1

2 �
ns=3s

26s �ns	T �1�	2s�
�Ens − E2s�

� �2s	rC1	2p1/2��2p1/2	rC1	ns�
�E2p1/2

− E2s�

+
�2s	rC1	3p1/2��3p1/2	rC1	ns�

�E3p1/2
− E2s�

−
�2s	rC1	2p3/2��2p3/2	rC1	ns�

�E2p3/2
− E2s�

−
�2s	rC1	3p3/2��3p3/2	rC1	ns�

�E3p3/2
− E2s�

� . �9�

The sum of the four contributions from Eq. �9� is 3.6371
�10−5. Contributions to the sum from the 3p states are
smaller than contributions from the 2p states by a factor of
30. The relatively small remainder T−T m�3

n�26
=0.0831�10−5

is evaluated in the DHF approximation, leading to a final
value T�SD�=3.720 18�10−5. Combining these contributions,
we obtain

2TSD + CDF + RSD = 1.9807 � 10−4a.u. �10�

The F-dependent factor �see Eq. �4��

A�F� =
gI	n

3

�2I��2I + 1��2I + 2�� jv I F

I jv 1
��− 1�F+I+jv

is equal to −1.477 144 for F=1 and 0.886 286 for F=2. Us-
ing these values and the result from Eq. �10�, we obtain

�F=2
�3� �0� − �F=1

�3� �0� = 4.6814 � 10−4 a.u.

The Stark shift coefficient k defined as 
�=kE2 is k
=− 1

2 ��F=2
�3� �0�−�F=1

�3� �0��. Converting from atomic units, we
obtain

k = − 2.3407 � 10−4 a.u. = − 5.8244 � 10−12 Hz/�V/m�2.

In Table X, we compare our SD all-order value of k with
available theoretical �20,21� and experimental �19� results.
Our result is in better agreement with result by Lee et al. �21�
than with the theoretical result by Kaldor �20� and the mea-
surement performed by Mowat �19�.

VIII. CONCLUSION

In summary, a systematic MBPT study of the energies of
the ns1/2, npj, ndj, and nf j �n�6� states in neutral lithium is
presented. The energy calculations are in excellent agree-
ment with existing experimental energy data. A systematic
relativistic MBPT study of reduced matrix elements and os-
cillator strengths, transition rates, and lifetimes for the low-
lying levels up to n=4 is conducted. Electric-dipole
�2s1/2−npj, n=2–26�, electric-quadrupole �2s1/2−ndj, n
=3–26�, and electric-octupole �2s1/2−nf j, n=4–26� matrix
elements are calculated to obtain the ground-state E1, E2,
and E3 static polarizabilities. Scalar and tensor polarizabil-
ities for the 2pj excited state in Li I are calculated including
2pj −ndj and 2pj −nsj matrix elements with n up to 26. All of
the above-mentioned matrix elements are determined using
an all-order method. Hyperfine A values are presented for the
low-lying levels up to n=4. The quadratic Stark shift of the
ground-state hyperfine interval in 7Li I is also evaluated.
These calculations provide a theoretical benchmark for com-
parison with experiment and theory.
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