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The major goal of high-precision studies of rovibrational states in the hydrogen molecular ions is to provide
an alternative way for improving the electron-to-proton mass ratio, or the atomic mass of electron. By now the
complete set of relativistic and radiative corrections have been obtained for a wide range of rovibrational states
of H2

+ and HD+ up to order R��4. In this work we complete calculations of various contributions to the R��4

order by computing the relativistic corrections to the binding energy of electron.
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In recent years several laser spectroscopy experiments
have been proposed �1,2� for high precision measurements of
the vibrational spectrum of the hydrogen molecular ions H2

+

and HD+. These experiments have metrological interest and
are aimed at a sup-ppb precision. In order to improve the
present accuracy of the electron-to-proton mass ratio �3� the
uncertainty of the spectroscopic data �as well as of the theo-
retical calculations of the spectra to compare to� should be
below 1 part per billion �1 ppb�. To meet these stringent
requirements, the theoretical calculations should achieve at
least a level of 10 kHz �or �10−11 in atomic units�.

While the variational calculations of the nonrelativistic
energies have reached a numerical precision of
10−15–10−30 a.u. �4–10�, the radiative and relativistic correc-
tions have not been presented in the literature with required
accuracy. Only recently high-precision variational calcula-
tions for the ro-vibrational states in the range of the total
orbital momentum L=0–4 and vibrational quantum number
v=0–4 for the H2

+ and HD+ molecular ions along with rela-
tivistic and radiative corrections of orders R��2,
R��2�m /M�, R��3, R��3�m /M�, and, partially, R��4 have
been obtained �11�. Here m is a mass of an electron and M is
a mass scale characteristic for molecular nuclei.

The total R��4 order contribution to the energy in a non-
recoil limit consist of the radiative one- and two-loop correc-
tions and the relativistic correction for the Dirac electron.
The spin-orbit contribution to the hyperfine structure, which
arises from the anomalous magnetic moment, has been con-
sidered separately for H2

+ in Ref. �12� and for HD+ in Ref.
�13�. The radiative corrections are known in an analytic form
�see, for example, Refs. �14,15��.

The major aim of the present work is to calculate relativ-
istic contribution due to a bound electron to the energies of
rovibrational states of H2

+ and HD+ in the same range of
total orbital angular momentum L and vibrational quantum
number v as in Ref. �11�. The atomic units ��=e=me=1� are
used throughout.

I. RADIATIVE CORRECTIONS OF ORDER R��4

For a given relative accuracy of �10−10–10−11 recoil cor-
rections of orders R��4�m /M� and higher are small and may
be neglected. That allows us to reduce calculation of higher

order corrections for the Coulomb three-body system to the
problem of a bound electron in an external field.

The radiative corrections of order R��4 in the external
field approximation can be expressed as follows �14,15�:
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The last equation includes both Dirac form factor and polar-
ization operator contributions.

II. RELATIVISTIC CORRECTIONS OF ORDER R��4

The most problematic contribution of R��4 order is the
relativistic correction for a Dirac electron. It can be obtain
within the adiabatic two-center approximation as follows �for
details, see Ref. �16��.

We start from the nonrelativistic Schrödinger equation
with the Hamiltonian

H0 =
p2

2me
+ V, V = −

Z1

r1
−

Z2

r2
. �2�

The total contribution to the energy of a bound electron at
the R��4�mec

2�6 order is defined by

	E�6� = �HBQ�E0 − H0�−1QHB	 + �H�6�	 . �3�

Here H�6� is the effective Hamiltonian for the interaction of
an electron with the external field of two centers in this or-
der, which can be expressed in the form
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HB is the Breit-Pauli interaction
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Both terms in Eq. �3� are divergent. In order to remove the
infinities a transformation to the second order term can be
applied which separates a divergent part

HB� = HB + �H0 − E0�U + U�H0 − E0� ,

�HBQ�E0 − H0�−1QHB	

= �HB�Q�E0 − H0�−1QHB�	 + �UHB + HBU	

− 2�U	�HB	 + �U�H0 − E0�U	 �6�

with U= 1
4me

�Z1 /r1+Z2 /r2�=− 1
4me

V.
The last three terms of the second expression in Eq. �6�

can be recast in a form of a new effective interaction
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Taking into account that �0 is a solution of the Schrödinger
equation H0�0=E0�0, one may obtain from the above the
following finite expression �16�
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This new expression can be now calculated numerically,
since all the terms are finite.

The “effective” potentials of 	E�6��R� have been obtained
for different bond lengths in Ref. �16�. Results are shown in
Fig. 1.

Averaging them over the radial wave function of particu-
lar state one may get corresponding contribution to the en-
ergy of that state of order R��4. Results of numerical calcu-
lation of the relativistic corrections at this order are presented
in Tables I and II. For the transition frequency this adiabatic
approach provides about three significant digits.

III. HIGHER ORDER RADIATIVE CORRECTIONS

The electron ground-state wave function to a good extent
may be approximated by �e�re�=C��1s�r1�+�1s�r2��, where
�1s is the hydrogen ground-state wave function. So, the most
important R��5 order contributions can be evaluated using
this approximate wave function and the expressions
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TABLE I. Relativistic corrections of R��4 order �in units
�4� �1 a.u.��, H2

+.

v=0 v=1 v=2 v=3 v=4

L=0 −0.042097 −0.042908 −0.043786 −0.044732 −0.045729

L=1 −0.042100 −0.042912 −0.043792 −0.044740 −0.045738

L=2 −0.042107 −0.042922 −0.043805 −0.044757 −0.045756

L=3 −0.042117 −0.042938 −0.043825 −0.044782 −0.045783

L=4 −0.042133 −0.042959 −0.043854 −0.044818 −0.045820

TABLE II. Relativistic corrections of R��4 order �in units
�4� �1 a.u.��, HD+.

v=0 v=1 v=2 v=3 v=4

L=0 −0.042043 −0.042738 −0.043483 −0.044278 −0.045126

L=1 −0.042045 −0.042741 −0.043487 −0.044284 −0.045132

L=2 −0.042050 −0.042748 −0.043496 −0.044295 −0.045146

L=3 −0.042058 −0.042759 −0.043510 −0.044312 −0.045167

L=4 −0.042069 −0.042773 −0.043529 −0.044336 −0.045195

FIG. 1. Adiabatic “effective” potentials for the relativistic m�6

order correction for H2
+ molecular ion �Z1=Z2=1�. Energies are in

�atomic units���4.
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where the constants A61, A60, and B50 are taken equal to the
constants of the 1s state of the hydrogen atom
A61=5.419¯ �17�, A60=−30.924¯ �18�, and B50
=−21.556¯ �19�. We note that the leading contribution
�R��5 ln2 �� is exact.

IV. RESULTS AND CONCLUSION

Various contributions to the frequency interval of the fun-
damental transition are summarized in Table III. Uncertainty
in orders R��2 and R��3 are primarily due to numerical un-
certainty in calculation of leading order terms such as �p4	 in
the Breit-Pauli Hamiltonian or the Bethe logarithm �L ,v�
�see Refs. �21,22� for the details�, and can be improved by
more extensive calculations. We estimate uncertainty due to

finite size of nuclei as �3�10−4 MHz for these transitions.
So, the latter is so far negligible for the rovibrational spec-
troscopy. For the contribution of order R��5 the error bars
are determined by the total contribution of the terms with
coefficients A and B in Eq. �9�.

Recently, the �v ,L� : �0,2�→ �4,3� rovibrational transition
for the HD+ ion has been precisely measured in the experi-
ment at the Düsseldorf university �23�. Comparison with the-
oretical calculation demonstrates a very good agreement:

Eexpt = 214 978 560.6�5� MHz,

Etheor = 214 978 560.88�7� MHz.

In conclusion, the relativistic corrections of order R��4 allow
us to reduce the relative accuracy of the fundamental transi-
tion frequency in H2

+ to about 3�10−9 or 0.3 ppb. Further
improvement we expect to achieve by numerical estimate of
coefficients A61, A60, and B50 from Eq. �9� using the two-
center adiabatic �or external field� approximation. That may
reduce the final uncertainty by a factor of 5−10 and the
relative uncertainty to less than 10−10. Eventually, it will
make real the main goal of our studies: improving of the
mp /me mass ratio from the rovibrational spectroscopy of H2

+

and HD+.
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	Etot 65 688 323.688�25� 57 350 154.355�21�
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