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We present a treatment of cold hydrogen-antihydrogen collisions based on the asymptotic properties of
atom-antiatom interactions. We derive general formulas for the elastic and inelastic cross sections and for the
scattering lengths and analyze their sensitivity to the parameters characterizing the inelasticity of the collision
process. Given the inelasticity, we obtain bounds for the complex scattering length. We investigate the influ-

ence of strong nuclear forces and the isotope effects in HH̄ and DH̄ collisions and demonstrate enhancement

of these effects due to the presence of the near-threshold narrow HH̄ �DH̄� states. The values of the elastic and
inelastic cross sections with simultaneous account of rearrangement and strong forces are presented. General

expressions for the �complex� energies of the near-threshold HH̄ states are obtained.
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I. INTRODUCTION

A very important property of ultracold atom-antiatom col-
lisions is the separation of scales, characteristic for inelastic
transitions on one hand, and van der Waals interaction on the
other hand. Indeed, the analysis of the dynamics of proto-
nium �Pn� and positronium �Ps� formation �1–9�, which is

the dominant inelastic process in cold H−H̄ collisions,
shows that rearrangement transitions happen mainly at inter-
nuclear separations smaller than Rs, where Rs is on the order
of the hydrogen Bohr radius �rB�. As shown by previous
investigations �6� this distance is optimal for the overlap of

the initial channel �H−H̄� wave function and the final state
�Pn−Ps� wave functions.

At separation distances larger than Rs the H−H̄ interac-
tion is well approximated by the one-channel adiabatic po-
tential Vad �9,10�. Therefore the wave function for the rela-

tive motion of H̄ and H could be obtained from the solution
of the one-channel Schrödinger equation with the potential
Vad�r�, together with a proper boundary condition imposed at
the internuclear distance r�Rs. Importantly, such a boundary
condition �which ideally should be derived from the solution
of the four-body problem at internuclear distances r�Rs�
turns out to be energy independent for sufficiently small col-

lisional energies of H and H̄. Indeed, as follows from the
kinematics of Pn and Ps formation �7� the energy of relative
motion of Pn and Ps is �=E+M / �2N2�−m+m / �4n2�, where

E is the H−H̄ c.m. collision energy, M is the reduced mass
of Pn, m is the reduced mass of hydrogen, N is the principal
quantum number of Pn, and n is the principal quantum num-
ber of Ps. As one can see the minimum of � is �m
=0.046 a.u. �E=0, N=24, and n=1�. Therefore it is reason-

able to expect that for H̄−H collision energies E��m the
Pn−Ps wave function would only weakly depend on the col-
lisional energy E. In the following we will be interested in
cold collisions at energies E�10−5 a.u. where the S-wave
contribution is dominant and the above condition is easily
fulfilled. Thus the influence of rearrangement and annihila-

tion on the wave function in the HH̄ channel can be de-

scribed by the complex boundary condition for the logarith-
mic derivative of the wave function at Rs, which is energy
independent in the energy domain of interest. This boundary
condition can be conveniently expressed in terms of the
short-range complex phase shift �=�R+ i�I via the relation

���Rs�
��Rs�

= p�Rs�cot��� , �1�

where p�Rs�=�2MVad�Rs� is the classical local momentum
given at the distance Rs.

In our study we will be interested in the near-threshold

properties of H−H̄ scattering. Such properties are critically
dependent on the existence of the near-threshold singularities
of the S-matrix, namely, the weakly bound states or reso-
nances. It is known that the density of the near-threshold
levels is determined by the large distance behavior of the
adiabatic potential Vad�r� �11�. In our case this potential at
large distances turns into the homogeneous van der Waals
potential −C6 /r6. The strength of this potential �C6� deter-
mines the characteristic distance RvdW=�2MC6
�10.5 a.u.4 which, as will be shown later, gives the order

of magnitude of the scattering length for the H−H̄ system. At
the same time the variation of the boundary condition �re-
lated to the short-range phase shift �, see Eq. �1�� will only
weakly affect the density of the near-threshold levels; it re-
sults mainly in shifting of the whole spectrum of such states.
It may happen that for a certain value of � there is a state
�resonance� very close to the threshold. This results in a
strong enhancement of the cross sections.

In this paper we will study the evolution of the scattering
observables as a function of the short-range complex phase
shift �, thought of as a free variable. Though the “true” value
of � could be, in principle, obtained from the solution of the
four-body problem, it is very instructive to get a general
dependence of the scattering amplitude on �. Indeed, the

existing model calculations of the low energy H−H̄ scatter-
ing are all restricted by approximations in which the effects
of certain decay channels are neglected. In terms of the here
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developed approach any account of additional channels, or
generally any improvement of the optical potential, result in
a change of the short-range phase shift �.

We present the universal dependence of the scattering
length on the complex short-range phase shift � in a closed
form and show that such dependence manifests resonant be-
havior, connected to the existence of narrow near-threshold

states of the HH̄ system. We analyze this behavior in terms
of the near-threshold poles of the S -matrix. Such resonance
phenomena can significantly enhance the influence of
“small” physical effects �or their neglect in approximate
treatments� and make the naive perturbation approach inap-
plicable. In particular, we study the influence of strong forces

in the nonrelativistic HH̄ Hamiltonian, including the shift

and splitting of the quasibound near-threshold HH̄ states, as

well as the isotope effect in D−H̄ scattering.

II. LOW ENERGY S-STATE H−H̄ SCATTERING

We start with the derivation of the analytical expression

for the scattering length for H−H̄ collisions. This derivation
is based on the matching of the WKB form of the wave
function and the analytical zero-energy solution of the
Schrödinger equation with the homogeneous �−C6 /r6� poten-
tial in the asymptotic region. Such an approach was success-
fully used for the study of cold atomic collisions �2,12,13�.
Our treatment will be extended to the atom-antiatom case,
where account of inelastic transitions is important.

Further analysis is based on the fact that the WKB ap-
proximation is applicable for the description of the wave
function in between the short-range distance and the
asymptotic domain Rs�r�RvdW

��r� �
1

�p�r�
sin�� + �

Rs

r

p�r��dr�� , �2�

where p�r�=�2MVad�r� is the classical local momentum in
the adiabatic potential Vad�r�, while �=�R+ i�I is the com-
plex short-range phase shift, whose value should be fixed by
matching with the solution of the four-body problem at r
=Rs.

It is important that the distance �Rh� above which the
adiabatic potential Vad�r� is well approximated by the homo-
geneous −C6 /r6 potential is within the distance of the valid-
ity of WKB approximation, i.e., Rh�RvdW. The rough esti-
mation of Rh can be obtained from the condition that for the
distances above Rh the term C6 /r6 should dominate in the
multipole expansion of Vad�r�. This gives Rh=�C8 /C6

�5 a.u.. Thus there exists a matching region Rh
�r�RvdW, where both the WKB approximation and the
zero-energy solution of the Schrödinger equation with homo-
geneous �−C6 /r6� potential are valid approximations of the

HH̄ wave function.
In the vicinity of Rh, where the adiabatic potential is well

reproduced by a homogeneous potential, the classical mo-
mentum is p�r�=�2MC6 /r6 and one can get the explicit r
dependence of the wave function introduced in Eq. �2� as
follows:

��r� �
r3/2

�4 2MC6

sin	� + � −
�2MC6

2r2 
 , �3�

where we have introduced the semiclassical phase � defined
as

� = �
Rs

	

p�r�dr . �4�

The value of � calculated using the adiabatic potential Vad of

the H−H̄ system from the ref �14�. and Rs=1 a.u. turns out
to be �=19.383.

The wave function given in Eq. �3� can be matched in the
vicinity of Rh with the exactly known zero-energy wave
function �0�r� in a homogeneous potential C6 /r6 �15�, which
is a linear combination of the form

�0�r� � �r�J1/4	�2MC6

2r2 
 − CY1/4	�2MC6

2r2 
� .

The coefficient C has to be determined from the matching
procedure at R�Rh, which results in the following wave
function at distances r
Rh:

��r 
 Rh� � �r�J1/4	�2MC6

2r2 

− tan	�

8
+ � + �
Y1/4	�2MC6

2r2 
� . �5�

Using the Taylor expansion of the Bessel functions for small
argument and taking into account that the scattering length
appears in the asymptotic form of the wave function through

��r → 	� � 1 − r/a , �6�

we obtain for the scattering length

a = a0�1 + cot	�

8
+ � + �
� �7�

where a0 is

a0 = RvdW
��3/4�

2�2��5/4�
� 4.99 a.u. �8�

As one can see RvdW gives the characteristic size scale for the

H−H̄ scattering length. The argument of cotangent in Eq. �7�
has a simple meaning. Indeed, � is the semiclassical phase
accumulated in the region r
Rs, � is the short-range phase
shift accumulated at r�Rs, and the term �� /8� is the quan-
tum correction to the semiclassical phase from the
asymptotic van der Waals tail �−C6 /r6�.

The accuracy of the above expression is limited by the
accuracy of the WKB approximation in the range Rs�r
�RvdW and on possible discrepancies between the adiabatic
potential Vad and the van der Waals term −C6 /r6 at the upper
limit of that range. The comparison of Eq. �7� with the nu-
merical calculation of the Schrödinger equation with the
adiabatic potential Vad�r� and boundary condition �1� shows
that formula �7� has the accuracy of 10% in the wide range
of �.

A. YU. VORONIN AND P. FROELICH PHYSICAL REVIEW A 77, 022505 �2008�

022505-2



One can extend the above analysis to the calculation of
the effective range. According to �16,17� the effective range
is

re =
a0

3
���1/4�

��3/4��2	1 − 2
a0

a
+ 2

a0
2

a2
 .

Upon substitution of a from Eq. �7� one gets

re =
a0

3
���1/4�

��3/4��2 �cot��/8 + � + ���2 + 1

�cot��/8 + � + �� + 1�2 . �9�

For sufficiently low energy, i.e., when the momentum of the
incident atom satisfies ka�1 the elastic �el� and inelastic
�in� cross sections are determined by the scattering length

el = 4�a2 = 4�a0
2��1 + Re cot	�

8
+ � + �
�2

+ �Im cot	�

8
+ � + �
�2� , �10�

in = 4�Im a/k = 4�
a0

k
Im cot	�

8
+ � + �
 . �11�

These values can be corrected to account for the second or-
der terms in momentum k as follows:

el =
4�a2

1 – 2k Im a + k2�a2 − Re�rea��
, �12�

in =
4�

k

Im a
1 − 2k Im a + k2�a2 − Re�rea��

. �13�

Since the formation of protonium and positronium in the
rearrangement collisions ends in complete annihilation, the
total inelastic cross section can be identified with the cross
section for annihilation.

We will now turn to the study of the general dependence
of the scattering lengths and cross sections �elastic and in-
elastic� on the variation of the real ��R� and imaginary ��I�
parts of the short-range phase shift �.

Let us treat two important limiting cases. The first, which
we refer to as the “weak absorption limit,” is characterized
by small imaginary phase shift �I�1, which means that the
probability of transitions to the inelastic channels is small. In
that case we get for the scattering length a from Eq. �7�,

a = a0�1 + cot	�

8
+ � + �R
� − ia0�I/sin2	�

8
+ � + �R
 ,

�14�

el = 4�a2 = 2�a0
2sin2� 3�

8 + � + �R�
sin2��

8 + � + �R� , �15�

in = 4�Im a/k = 4�
a0

k

�I

sin2��
8 + � + �R� . �16�

The scattering cross sections �Eqs. �15� and �16�� show os-
cillating character as a function of �R. As will become appar-

ent later, such oscillations originate from the existence of a

spectrum of long-lived near-threshold states of the HH̄ sys-
tem.

For the application to collisional cooling we are interested
in the competition between the rate of elastic scattering and
the rate of annihilation. The ratio el /in reaches its maxi-
mum

	el

in



max
=

a0k

2�I
�17�

for �
8 +�+�R=� /4+�v, v=0,1 , . . . and its minimum

	el

in



min
= 2ka0�I �18�

for �
8 +�+�R=3� /4+�v, v=0,1 , . . ..

Let us now turn to the opposite limit of strong absorption,
characterized by �I�1. In this case we get

a = a0�1 − i� , �19�

re = 0, �20�

el = 8�a0
2, �21�

in = 4�
a0

k
. �22�

The above cross sections �Eqs. �21� and �22�� are determined
by the van der Waals tail of the adiabatic potential only.
Remarkably, they include no information about the short-
and middle-range parts of the atom-antiatom interaction. All
particles that penetrate to these short distances are lost, so the
only information available to the observer is due to the so-
called quantum reflection �18,19� from the asymptotic tail of
the potential, which is determined by C6 alone. A remarkable
feature of the strong absorption limit is that the effective
range �9� is exactly zero.

In Fig. 1 we plot the elastic cross section as a function of
the real part of short-range phase shift �R for two values of
the “inelasticity parameter” �I=0.3 and �I=0.7. Pronounced
oscillations can be seen in the weak absorption case, which
become much more smooth with increasing inelasticity pa-
rameter �in the limit �I�1 the cross sections are constant�.
The same tendency is apparent in the inelastic cross section
�Fig. 2� and in the ratio of the elastic to the annihilation cross
section �Fig. 3�.

III. PHYSICAL IMPLICATIONS

In this section we discuss the physical implications of the
sensitive dependence of the scattering length on the short-
range phase shift. We study the evolution of the scattering
length as a function of the phase shift �R. This can be con-
sidered as a universal tool for studying the contribution of
various physical effects to scattering observables.

A. Limits on the accuracy of the model H1S−H̄1S calculations

Since the complete ab initio treatment of the hydrogen-
antihydrogen scattering is a difficult problem it is important
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to be able to estimate the accuracy of the approximate cal-
culations. Several model calculations have been performed
to get elastic and annihilation cross sections in the case of

H1S−H̄1S scattering �3–5,7,8,20–28�. In these models mostly

the same adiabatic potential Vad of H1S−H̄1S was used, ap-
plicable in the distance range r
Rs�1rB �14�. At the same
time very different approximations were made regarding the
rearrangement and strong forces. They include calculations
of the elastic cross section neglecting both rearrangement
and strong force �7�, the account of rearrangement in the
“distorted-wave” approximation �6,21,29�, calculation of the
annihilation cross section due to strong force only �21,23�,
nonperturbative calculations based on the approximative op-
tical potential �5,8�, and others.

In terms of the formalism developed in the previous sec-
tion the above mentioned models differ by the short-range
phase �=�R+�I, i.e., the phase accumulated up to R�Rs.
This phase incorporates the effects of inelasticity due to
strong forces and rearrangement. In the optical model calcu-
lations by Voronin and Carbonel �5� �further referred to as
model I� it was found that a=5.2− i1.8 a.u. �without account
of strong force�. From this value of the scattering length the
corresponding value of the short-range phase shift can be
uniquely deduced �in the sense that the solution of the
Schrödinger equation with given adiabatic potential Vad and
with boundary condition �1� results in unique correspon-
dence between � and a, as can be seen from Eq. �7��. The
value of the short-range phase shift for model I turns out to
be �=0.696+ i0.305. The value presented in �22� by Armour,
Liu, and Vigier �further referred to as model II� is a=8.2
− i2.8 a.u. and the short-range phase shift deduced from this
value of the scattering length is �=0.136+ i0.41. The optical
model calculation �8� by Zygelman, Saenz, Froelich, and
Jonsell �further referred to as model III� gives a=5.6
− i3.7 a.u. �without strong force�. The corresponding short-
range phase shift turns out to be �=0.638+ i0.715. Finally,
the calculation of elastic scattering neglecting both rear-
rangement and strong force effects �further referred to as
model IV �29�� results in the scattering length a=7.69 a.u.
The corresponding real phase shift deduced from this value
of the scattering length is �=0.287. All these values are tabu-
lated in Table I. Inclusion of the inelasticity is thus equiva-
lent to an introduction of the short-phase corrections to
model IV. Whereas it was possible to separately calculate the
complex phase due to direct annihilation �21,30�, calculation
of such phase correction due to the rearrangement is still
incomplete since it is based merely on the imaginary com-
ponent of the optical potential �8�. Hence the inaccuracy of
the real phase �R remains an important source of the inaccu-

racy of the scattering length in H−H̄ scattering.
From Eqs. �15� and �16� it is clear that the smaller is the

inelasticity parameter �I, the more sensitive are the model

FIG. 1. �Color online� Elastic cross section for H−H̄ collisions
as a function of phase �R, calculated at E→0 according to el

=4�a2 with a given by Eq. �7�.

(
)

FIG. 2. �Color online� Annihilation cross section for H−H̄ col-
lisions as a function of phase �R, calculated at the energy E
=10−6 a.u. according to in=4� Im�a� /k, with a given by Eq. �7�.

FIG. 3. �Color online� Ratio of the elastic to the annihilation
cross section as a function of phase �R, calculated at the energy E
=10−6 a.u., with a given by Eq. �7�.
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results to the uncertainty in the real part of the H−H̄ inter-
action at distances r�Rs. We notice that for a fixed value of
inelasticity parameter �I the relation between the imaginary
and real part of the scattering length cannot be arbitrary but
is determined by Eq. �7�. To illustrate this statement we plot
in Fig. 4 the possible values of the scattering length a in the
complex plane of a as a function of �R �which changes from
−� /2 to � /2� for a fixed value of �I. The possible values of
a for each fixed value of �I form closed curves. The three
curves of the scattering length correspond to three different
inelasticity parameters �I deduced from models I–III. One
can see that the smaller is �I the larger is the possible varia-
tion of a with �R. In the limit of zero absorption ��I→0� the
variation becomes infinite and the closed curve degenerates

into the whole real axis of the complex plane �model IV�,
while in the opposite limit of strong absorption the curve
shrinks into a point a=a0�1− i��5− i5 a.u.. Interestingly,
the mean value of the scattering length ā �averaged over �R�
is the same for all curves, i.e., it turns out to be independent
on the inelasticity parameter �I and is equal to ā=a0�1− i�.

The corresponding variations of the cross sections are
shown in Figs. 1 and 2 for models I and III �the correspond-
ing inelasticity parameters are �I=0.3 and �I=0.7, respec-
tively�. One can see that the ratio of maximum to minimum
possible values of elastic cross section turns out to be
el

max /el
min�46 for �I=0.3. The same value for �I=0.7 is

much less and turns out to be el
max /el

min�4. In view of this
result it is clear that the knowledge of the absorptive phase
shift �I is very essential and it is sufficient for establishing
the limits of accuracy in calculations of both inelastic and
elastic cross sections.

We can perform further analysis and estimate how the
uncertainty in the H−H̄ interaction at distances r�Rs would
be reflected in the uncertainty of the scattering observables.
Such an estimation cannot be model independent. We will
use the following simple assumptions. One can expect
�21,22,28� that the leading contribution to the mentioned in-
teraction at distances R�Rs is given by the local interaction
of the form �expressed in a.u.�

Vloc�r� = − 1/r + 0.75. �23�

This potential continuously matches with Vad�r� at r
�Rs a.u. Apart from such local potential there is an addi-

tional interaction in the H−H̄ channel, which results from
coupling to the decay channels. We will model the effects of
coupling to the Pn and Ps channels, responsible for rear-
rangement, by the local complex potential of the form

Vopt =
�v − iw�

rB
exp�− 2r� . �24�

The above simple form of “optical” potential is only used to
mimic the effect of coupling to the decay channels and can-

TABLE I. Values of the scattering lengths, short range phase shifts, and cross sections �in a.u.2� calculated

at the energy E=10−6 a.u. with the parameters deduced from different models I–IV for H−H̄ interaction. The
superscript sc corresponds to the account of the strong force in the presence of the Coulomb field. The results
were obtained by numerical solution of the one-channel Schrödinger equation subject to the boundary con-
dition given by Eq. �1� with the phase � from row 5 incremented by the strong force contribution given by
Eqs. �32� and �33�.

Model I Model II Model III Model IV

a �a.u.� 5.2− i1.8 8.2− i2.8 5.6− i3.7 7.7− i0

asc�S=0� �a.u.� 5.6− i2.2 8.3− i3.4 5.8− i4.0 8.4− i0.4

asc�S=1� �a.u.� 5.8− i2.1 8.6− i3.4 6.0− i3.9 8.1− i0.6

� 0.696+ i0.305 0.136+ i0.41 0.638+ i0.715 0.287+ i0

el �a.u.2� 380 943 566 745

el
sc�S=0� �a.u.2� 448 1018 623 889

el
sc�S=1� �a.u.2� 472 1077 640 829

�Ein �a.u.� 0.53 0.8 1.08 0
�Ein

sc�S=0� �a.u.� 0.65 1.0 1.17 0.13
�Ein

sc�S=1� �a.u.� 0.62 1.0 1.15 0.18

FIG. 4. �Color online� Complex scattering length a as a function
of the short-range phase shift �R, for the fixed value of �I. The
square indicates the complex value of the scattering length obtained
in model I; circle—in model II; and triangle—in model III. The
value of a�5− i5 a.u. marked by the star corresponds to the lim-
iting case of strong absorption �I�1.
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not be treated as true form of the effective short-range H

−H̄ interaction—but it captures its localization. The ab initio
calculations of complex nonlocal optical potential �so far re-
stricted by approximations� can be found in �5,8,26�. These
optical potentials are constructed by projecting the Hamil-
tonian on the subspace of open Pn and Ps channels and there-
fore their characteristic range is equal to the “size” of the Pn
states with energetically highest possible principal quantum
numbers �N�24�. Because of that such ab initio optical po-
tentials are localized below Rs and this property is reflected
in the r dependence of the simple model potential Vopt�r�.

To calculate the short-range phase shift we will use the
semiclassical approximation for the phase

� � �
0

Rs �− 2M�Vloc�r� + Vopt�r��dr − �/4. �25�

The term � /4 is the quantum correction to account for the
correct behavior of the Coulomb wave function at small dis-
tances r�1 /M, where semiclassical approximation is no
longer valid. Expecting Vopt�r�� Vloc�r� we get from Eq.
�25� for �,

� = �0 + �opt, �26�

�0 = �
0

Rs �− 2MVloc�r�dr , �27�

�opt = − �M�
0

Rs Vopt�r�
�− 2Vloc�r�

dr . �28�

In the above expression �0 is a phase shift produced by the
local potential Vloc alone, while �opt is the variation of that
phase shift due to the presence of the optical potential. Using
the adopted expressions for Vloc and Vopt we come to the
following numbers: �0=72.45, �opt=−�v− iw�6.38.

The corresponding variation of the scattering length can
be obtained from Eq. �14� as follows:

�a = − a0
�opt

sin2��/8 + � + �0 + �opt�
. �29�

From the above numbers we can conclude that the value of
inelasticity parameter �I, consistent with models I–III, corre-
sponds to the value of the imaginary part of the optical po-
tential w, which lies in between 0.05 and 0.1 a.u.

In Figs. 5 and 6 we plot the elastic and inelastic cross
sections as a function of the real part of the model optical
potential Vopt. Even a small and confined real part produces
large variations of the cross sections. For the optical potential
given by Eq. �24�, the mean variation of the ratio

Re Vopt

Vloc

within the interval �0,Rs� is on the order of 1%, yet it pro-
duces more than 100% change of elastic and inelastic scat-
tering cross sections. This result makes clear the relative im-

portance of the real part of the effective H−H̄ short-range
interaction and puts obvious restrictions on the accuracy of
calculations. It means, in particular, that the nonperturbative
account of additional decay channels could result in signifi-
cant changes of the elastic and inelastic cross sections. We

will show in the following that such “instability” of model
calculations �for relatively small values of inelasticity param-
eter �I� is due to the existence of the spectrum of narrow

near-threshold states in the H−H̄ channel.

B. Sensitivity to the nuclear interaction

An important consequence of the weak absorption in the

H1S−H̄1S interaction is the possibility of observing the
nuclear effects on the molecular scale. The effect of the
nuclear forces was reported in Refs. �5,21,23,27� for the case
of hydrogen-antihydrogen scattering and in Ref. �30� for
antihydrogen-helium scattering. In calculations �21,22� no
rearrangement effects were taken into account.

The strong force effects can be studied by inclusion of the
complex short-range nuclear potential in the nonrelativistic

FIG. 5. �Color online� Elastic cross section as a function of the
real part v of the optical potential �24�, calculated at the energy E
=10−6 a.u.

FIG. 6. �Color online� Inelastic cross section as a function of the
real part v of the optical potential �24�, calculated at the energy E
=10−6 a.u.
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Hamiltonian describing the HH̄ system. This potential ac-
counts for the nuclear interaction of proton and antiproton on
the scale of a few fm �1.88�10−5 a.u.� and is chosen to
reproduce the nuclear pp̄ �spin-dependent� scattering length.
Incorporation of the short-range complex potential in the
model calculations results in the modification of �R and �I.
Strictly speaking, the effect of strong forces is not restricted
to “direct” annihilation and scattering on the nuclear poten-

tial in the H−H̄ channel. It appears also through modification
of the final states and energies of protonium. Neglecting for
the moment these “second order” effects, one can use the
well-known expression �31,32� for the nuclear phase shifts in
the presence of Coulomb interaction to extract directly the
phase shift of interest as follows:

k�C���cot �̃sc + 2�h���� = − 1/ãsc,

where ãsc is the Coulomb corrected nuclear scattering length,
�=−M /k �k is the c.m. proton-antiproton momentum� and
functions C���, h��� are given by

C��� =
2��

exp�2��� − 1
,

h��� = 1/2���− i�� + ��i�� − ln��2�� .

In the above, ��x�=���x� /��x�, where ��x� is a standard
gamma function. Neglecting the leptonic energy in compari-
son with the value of Coulomb pp̄ potential at the distance
around 1 fm, we can put k→0 and get

�̃sc � − 2�Mãsc.

The values of the strong-force scattering length ãsc in the
Kohno-Weise model �33,34� are

ãsc�S = 0� = �1.07 − i1.45� � 10−5 a.u., �30�

ãsc�S = 1� = �1.68 − i1.06� � 10−5 a.u. �31�

while the corresponding nuclear phase-shifts are

�̃sc�S = 0� = − 0.06 + i0.08, �32�

�̃sc�S = 1� = − 0.1 + i0.06, �33�

where S=0,1 are the values of total nuclear spin.
The models I–IV include no information about strong

forces. However, we will show that, once the value of scat-
tering length without any account of strong forces is known,
one can also obtain the corrected value of this scattering
length that includes the presence of strong forces. In fact,
adding the nuclear phase shifts �32� and �33� to the already
discussed phase shifts deduced from the rearrangement
calculation of models I–IV,

� → � + �̃sc,

one gets the values of the scattering lengths and cross sec-
tions, corresponding to the simultaneous account of rear-
rangement and strong force effects. The above mentioned
addition of phase shifts can be done due to the fact that

contributions to the phase from each of the effects �strong
force and rearrangement� come from very different distances.
This is true until the effect of strong force on the final Pn
states is not taken into account.

The results of our calculations for the elastic and inelastic
scattering cross sections with and without strong force, based
on the parameters deduced from models I–IV, are collected
in Table I. We note that the simultaneous account of the
rearrangement and strong force leads to the outcome that is
significantly different from the one obtained when these ef-
fects are treated separately.

The modification of cross sections due to the strong force
is significant when compared to the ratio of nuclear and
atomic scales, which is on the order of 10−5. One can also see
that this modification is model dependent. This fact is clear
from our previous considerations of the cross sections as a
function of the short-range phase-shift. In particular, the
change of the elastic cross section due to the strong force is
around 24% in model I, while it is 13% in model III. These
models differ by the inelasticity parameter �I, which is 2.3
times larger in model III as compared to model I. Conse-
quently, model III is less sensitive to any variation of phase,
in particular, the phase induced by strong interaction. The
physical reason for the lack of sensitivity to the details of the
short-range interaction with the increase of inelasticity pa-
rameter is clear. Indeed, the amplitude of the wave reflected

back into the H−H̄ channel that is generated at such small
distances and “carries back” information about the nuclear
forces is, in the case of strong absorption, exponentially
small. Hence, in the case of strong absorption the scattering
length only weakly depends on the details of the short-range
interaction.

Let us mention here that the effect of nuclear forces on

H−H̄ interaction would be strongly enhanced in the vicinity
of a certain value of the real part of the short-range phase.
According to Eq. �14� the largest variation of the scattering
length with small variation of the phase �R is achieved when
the following condition is fulfilled:

�/8 + � + �R = �v , �34�

where v is an integer number. As shown later in Sec. III D
this condition corresponds to the appearance of the loosely

bound HH̄ state. In particular, for the inelasticity parameter
of model I ��I=0.3� the modification of the elastic cross sec-
tion due to the strong force in the near-resonance situation
�Eq. �34�� would be from el=3800 a.u.2 without strong
force to el

sc�S=1�=2015 a.u.2 and el
sc�S=0�=2249 a.u.2 in-

cluding strong force, i.e., around 50%.

C. Isotope effect

The oscillatory behavior of the cross sections gives rise to
the strong isotope effect. Simple changing of the reduced
mass alters the phases � and � in Eq. �14�. The mass depen-
dence of the phases can be easily established in the WKB
approximation �25�, from which it follows that the semiclas-
sical phase is scaled as the square root of the reduced mass
M. The change of the reduced mass from Mp /2 to 2 /3Mp
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�where Mp is the proton mass� corresponds to the replace-
ment of hydrogen by deuterium and results in multiplication
of the semiclassical phase by the factor �4 /3.

�d = �4/3� ,

�d = �4/3�� − �/4� + �/4.

Here the subscript d refers to deuterium. In the above for-
mula we took into account the Coulomb quantum correction
−� /4.

The numerical calculation of the scattering length while
neglecting rearrangement and strong force �i.e., using poten-

tial Vloc�r� as the D−H̄ interaction for r�Rs� gives

aDH̄ = − 41.07 a.u.

to be compared with the corresponding scattering length

�without rearrangement and strong force� in the H−H̄ case

aHH̄ = 7.69 a.u.

The account of rearrangement effects dramatically changes
the situation.

The model calculations by Voronin and Carbonell �5�
show that the scattering length changes from a=5.2.1

− i1.8 a.u. for H−H̄ to 15.0− i11.6 a.u. for the H−D̄ case.
In view of the demonstrated high sensitivity of the results to
the short-range interaction, very accurate calculations are re-
quired to obtain the reliable values of the cross sections.
However, the prediction of a strong isotope effect has a gen-
eral character and is a consequence of “weak absorption” in

the H−H̄ interaction. Note that in the opposite case of
“strong absorption” the expression �19� predicts only weak
monotonous dependence of the scattering length on the
reduced mass via a0��42MC6.

D. Near-threshold quasimolecular states of H−H̄

The oscillating behavior of the scattering cross section as
a function of the phase � has a clear physical meaning. The
long-range character of the attractive atom-antiatom interac-
tion combined with the weak absorption supports the exis-

tence of long-lived highly excited H−H̄ states �3,8,20,26�.
They manifest themselves as near-threshold singularities of
the S-matrix and thus strongly affect the low-energy scatter-
ing. By changing the phase through varying the strength of
interaction, changing the reduced mass of the system, includ-
ing additional decay channels, etc., the position of such
states can be tuned to be at the threshold, inducing a rapid
increase of the cross sections as a function of the tuning
parameter. The S -matrix of the finite range potential can be
expressed through the position of all its poles via the follow-
ing expression �35�:

S = �
k

zk + k

zk − k
exp�− 2ikā� , �35�

where zk is the pole of the S -matrix and ā is independent on
k.

If there is a S--matrix pole z, situated much closer to the
threshold than other poles, we can approximate the infinite
product by one term only

S�k� �
z + k

z − k
exp�− 2ikā� . �36�

In the limit of small k the expression �36� becomes S�k�=1
+2k /z−2ikā, from where one gets the connection between
the scattering length and z.

a = i/z + ā . �37�

When there are two �or more� poles at similar distance from
the threshold �bound and virtual states� one should take into
account the contribution of the number of equidistant poles
of the S-matrix so that the expression for the scattering
lengths becomes a= i�k1 /zk+ ā.

It was shown in �12,36� that the above expression is ap-
plicable in the case of scattering on potentials with a 1 /r6

tail. In such a case the constant ā in the one-pole expansion
is ā=a0, with a0 given by Eq. �8�. Therefore the position of
the pole in the one-pole expansion of the S-matrix is given
by

z = i/�a − a0� .

This relation is valid in the case when the distance between
poles is much bigger than z. Substituting the expression for
the scattering length given by Eq. �7� we get

z =
i

a0
tan�� + � + �/8� . �38�

Taking into account that the near-threshold states are pos-
sible only in case of weak absorption ��I�1� we obtain

z =
i

a0
tan��R + � + �/8� −

�I

a0 cos2��R + � + �/8�
. �39�

The above equation is valid only for the expansion with re-
spect to the single nearest-threshold pole, which gives the
dominant contribution to the scattering length.

From the above equation it is clear that due to the inelas-
ticity of scattering characterized by �I, the near-threshold
S--matrix poles are shifted to the left from the imaginary axis
of the complex k-plane. These shifted poles in the second
quadrant of the complex k-plane can be interpreted as local-
ized �bound� states with an inelastic width, while the poles in
the third quadrant are the virtual states or resonances with
inelastic width. �The distinction between resonances and vir-
tual states can be obtained by a continuous decrease of in-
elasticity. In the limit of zero inelasticity the virtual states
come to the negative imaginary axis of the k-plane, while the
resonances are manifested as pairs of poles in the third and
fourth quadrants.�

The condition for the appearance of the new state now
means that the pole comes from the third to the second quad-
rant of the complex k-plane. At the moment when the pole of
the S-matrix crosses the real �negative� axis of the complex
k-plane one has Im z=0. According to Eq. �39� this is
equivalent to condition �34� i.e.
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�R + � + �/8 = �v

where v is an integer number. Numerical integration of the
adiabatic potential Vad gives the WKB phase �=19.383 so
that the numerical value of �R �by modulus �� corresponding
to the resonance is �R=−0.926.

We have shown that the previously introduced “reso-
nance” condition �34� is indeed the condition for the appear-
ance of a new state at the threshold. At the moment of
appearance of the new state the scattering length is

ares = a0	1 − i
cosh��I�
sinh��I�


 , �40�

and its imaginary part attains its maximum value. In the case
of weak absorption ��I�1� it can be written as

Im ares = −
a0

�I
. �41�

At the same time, the variation �a due to a small change of
the real part of the phase shift ��R attains its maximum value
given by

�a =
2a0��R

cosh��I�
.

Hence the effect of additional interactions �e.g., the account
of additional decay channels, strong force, etc.� in the near-
resonant situation will result in a fast change of the real part
of the scattering length. The point at which the pole of the
S-matrix crosses the real axis of the complex k-plane can be
obtained by comparing formulas �39� and �41� as follows:

zres = −
�I

a0
.

It is determined entirely by the inelasticity parameter. The
larger is the inelasticity parameter, the larger is the shift of
the S-matrix pole to the left from the origin of the complex
k-plane, and the smaller is its influence on the scattering
cross sections.

The energy of the near-threshold state is

Eb =
z2

2M
= −

tan2��R + � + �/8�
2Ma0

2 −
i�I tan��R + � + �/8�

Ma0
2 cos2��R + � + �/8�

.

�42�

If the pole z is very close to the real axis of the complex
k-plane, so that �R+�+� /8=�v+� and ���I, the expres-
sion �42� should be modified as follows:

E0 =
�− �I + i��2

2Ma0
2 . �43�

Here � measures the detuning of the phase from the exact
resonance. The state at the threshold is extremely extended
spatially and has a very small width

� =
2��I

2Ma0
2 .

The detailed study of the near-threshold states in 1 /R6 po-
tential can be found in �17,36�. In the above cited papers the
higher order expansion in a0 / �a−a0� for the energy of the
near-threshold state is given as follows:

E0 = −
1

2M�a − a0�2	1 +
0.918a0

a − a0
−

0.947a0
2

�a − a0�2
 .

Taking into account Eq. �7� we get

E0 = −
tan2�� + � + �/8�

2Ma0
2 �1 + 0.918 tan�� + � + �/8�

− 0.947 tan2�� + � + �/8�� . �44�

We observe that once the scattering length a is fixed by a
certain model, the spectrum of near-threshold quasimolecular

states is also fixed �up to the total number of H−H̄ states
with given hadron angular momentum�. Indeed, the value of
the scattering length uniquely determines the short-range
complex phase shift � and thus the boundary condition �1�,
while the solution of the Schrödinger equation with given
adiabatic potential and fixed boundary condition �1� gives
the spectrum �up to the number of states�. The validity of this
statement is restricted only by the approximation that our
boundary condition �1� is energy independent, i.e., it is valid
for energies E��m�0.05 a.u.. We calculate the positions
of the bound states nearest to the threshold, as they are fixed
by the scattering lengths of various models. These values are
collected in Table II. We also present the position of the same
states when the spin-dependent strong force is taken into

TABLE II. Energy of the state nearest to the threshold. The first row collects the values without account
of the strong force; the second and the third rows collect the values with account of the strong force in
nuclear spin states S=0 and S=1, respectively. The results were obtained by numerical solution of the
one-channel Schrödinger equation subject to the boundary condition given by Eq. �1� with the phase includ-
ing the strong force contribution, together with the square-integrability requirement.

Model I Model II Model III Model IV

E, 10−5 �a.u�. −10.1− i5.6 −2.2− i3.2 −3.8− i13.1 −4.9− i0

Esc�S=0�, 10−5 �a.u�. −8.4− i6.7 −1.4− i3.3 −0.7− i12.8 −4.3− i0.8

Esc�S=1�, 10−5 �a.u.� −7.8− i6.1 −1.3− i2.9 −0.8− i11.5 −3.9− i0.6
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account. One can see that the shift of the states due to the
account of nuclear forces is model dependent and is of order
10−5 a.u. for the first loosely bound state. The splitting �Esc

of the triplet and singlet spin states is on the order of
10−6 a.u., which is one order less than the inelastic width
due to rearrangement.

It is useful to see how the position of the pole that is
nearest to the threshold changes with the short-range phase
shift �. Such an evolution of the poles in models I–III is
presented in Fig. 7. Each of the shown trajectories corre-
sponds to a certain fixed value of inelasticity parameter �I.
The evolution of the S--matrix pole along the trajectory can
be understood as a gradual “switching on” of the real part of
effective interaction, responsible for rearrangement �while its
imaginary part is kept fixed�. At a certain value of the phase

�R the pole crosses the real axis of the k-plane, and the new
vibrational state �quasibound� appears in the spectrum of the

H−H̄ system. With increasing the real part of effective inter-
action �and correspondingly the phase �R� this pole goes far
away from the threshold, becoming a deeper bound state. At
the same time a new pole with the negative imaginary mo-
mentum �virtual state� is approaching the real axis. This is
reflected in the oscillatory behavior of the elastic and inelas-
tic cross sections.

We conclude by emphasizing that the resonant depen-
dence of the cross sections on the interaction parameters
�such as real and imaginary short-range phase shift� is of
purely quantum mechanical origin and occurs only in the
case of weak absorption. This resonance behavior reflects the
existence of the spectrum of narrow, near-threshold, quasi-

molecular states of H−H̄.

IV. CONCLUSIONS

We have presented an overview of the H−H̄ collisions
based on the analytical treatment of the asymptotic potential
tail in conjunction with the parametrization of the contribu-
tion from the inner part of the interaction. We show analyti-
cally that for a realistic value of the inelasticity parameter �I
�the imaginary part of the short-range scattering phase in-
duced by the rearrangement and strong-force interaction� a

rich spectrum of narrow near-threshold HH̄ states exists.
These states, corresponding to the near-threshold singulari-
ties of the S-matrix, determine the behavior of the elastic and
inelastic cross sections. The latter exhibit high sensitivity to

even a small perturbation of the H−H̄ interaction or its ap-
proximate treatment. This applies, e.g., to the approximate
treatment of the optical potential that incorporates the effect
of rearrangement. We predict important physical effects such
as a strong isotope effect �i.e., the resonance-like dependence
of elastic and inelastic cross sections on the reduced mass of
the system� and demonstrate a significant dependence of

both elastic and inelastic H−H̄ cross sections on the nuclear
potential.
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