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We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsäcker
functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-
Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response
function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic
energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give
as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the
functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are
capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results
for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral
in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computa-
tional cost can be achieved.

DOI: 10.1103/PhysRevA.77.022502 PACS number�s�: 31.15.E�, 31.15.bt, 31.15.�p, 71.10.Ca

I. INTRODUCTION

Modern density functional theory �DFT� was originally
developed by Hohenberg and Kohn �HK� �1�, who proved
that the density contains all the information needed for the
ground state of an electron system, and that the total energy
functional E�n� could be minimized by using the Euler
equation

�E�n�/�n = 0. �1�

As E�n� is unknown, DFT usually follows the Kohn and
Sham �KS� �2� method, which relies on the concept of a
noninteracting system of KS orbitals that yields the same
electron density as the interacting one and allows one to
write

E�n� = TS�n� + V�n� + J�n� + EXC�n� , �2�

where TS�n� is the kinetic energy density functional �KEDF�
of the KS noninteracting system, V�n� is the interaction en-
ergy of the electron density with the external potential, J�n�
is the classical electrostatic energy of the charge distribution
�Hartree energy�, and finally EXC�n� is the so-called
exchange-correlation �XC� energy. We will use atomic units
in this paper.

There is a close relation between the response function of
an electron system and the KEDF, because the second
functional derivative of E�n� yields the total response
function �1�. For a homogeneous gas this second derivative
equals the linear response function of the free electron gas,
and can be written in the momentum space as

F�� �TS�n�r��
�n�r1��n�r2��

n0

� = −
1

�̃Lind�q�
=

�2

kF
FLind��� , �3�

where F indicates the Fourier transform. The function
FLind���, known as the Lindhard function �3�, has the ana-
lytical expression

FLind��� = �1

2
+

1 − �2

4�
ln�1 + �

1 − �
��−1

, �4�

which depends only on the scaled momentum �=q /2kF, kF
being the Fermi wave vector of the electron gas.

On the other hand, the evaluation of fully nonlocal
KEDFs �i.e., those that use the density of the whole system
for calculating the contribution to the kinetic energy from
each point of the space� usually needs two integrations in
real space because it is assumed that the contributions come
from every pair of points r and r� �see �4��. The general form
of these nonlocal functionals is

F�n� =� dr	 f1„n�r�…f12�� dr�f2„n�r�,n�r��,r,r�…�
 , �5�

where f1(n�r�), f12��dr�f2(n�r� ,n�r�� ,r ,r�)�, and
f2(n�r� ,n�r�� ,r ,r�) are arbitrary functions with the require-
ment that they have all together the correct dimensionality
for F�n�. The Chacón-Alvarellos-Tarazona �CAT� functional
�5� was the first constructed along these lines.

Another useful and simpler expression for fully nonlocal
functionals is

F�n� =� dr� dr�f„n�r�,n�r��,r,r�… , �6�

where f(n�r� ,n�r�� ,r ,r�) is a function with the correct di-
mensionality. The Thomas-Fermi �TF� functional �6,7� can
be rewritten in this way as
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TTF�n� = CTF� dr� dr�n5/3−��r���r − r��n��r�� , �7�

where CTF= 3
10�3�2�2/3 is the TF constant. We have recently

proposed a family of functionals which includes a nonlocal
simplified term with a TF-like structure �NLS-TF function-
als� �4�, by introducing a kernel for linking the contributions
at r and r�:

Tnl
NLS-TF�n� = CTF� dr� dr�n5/3−��r�

��„	�r,r��, �r − r��…n��r�� . �8�

The kernel � is constructed by forcing the functional to
reproduce the linear response of the free electron gas.

We can use three different scaling factors 	�r ,r�� in the
kernel of Eq. �8�.

�a� References �8–10� use a constant Fermi wave vector,
calculated in terms of a reference uniform density; these
functionals are labeled density-independent kernel
functionals.

�b� In Ref. �5�, which proposes a functional of the type of
Eq. �5�, the local Fermi wave vector kF�r� was used; these
functionals have a density-dependent kernel.

�c� References �11–16� use a two-body Fermi wave vector
defined as the simple form

	�r,r�� = � kF

�r� + kF


�r��
2

�1/


. �9�

These functionals have double density-dependent kernels.
Some of these nonlocal KEDFs reproduce the linear re-

sponse function of the free electron gas and include both the
von Weizsäcker �vW� term �17� and a fully nonlocal term
with the mathematical structure of the TF functional. The
vW functional appears because it is needed to reproduce the
linear response of the electron gas—see the discussion in
�5�—and the fully nonlocal term is introduced following the
classical extension of the TF functional, by including the
electron densities powered to 5

3 : the density itself �as in the
TF approach�, some weighted density ��18–20�, though this
functional does not reproduce the linear response; see �21��,
or averaged or generalized densities �see �5,14��.

Trying to go a step ahead in the development of fully
nonlocal KEDFs we can ask if the TF functional is the only
mathematical form adequate to construct nonlocal terms for
KEDFs. An obvious candidate for this role is the vW func-
tional. The aim of this paper is to study whether nonlocal
terms with the structure of the vW functional are adequate
for constructing KEDFs. A very preliminary scheme of this
study was presented in Ref. �22�.

II. THE VON WEIZSÄCKER FUNCTIONAL

The von Weizsäcker functional �17� was originally pre-
sented as a correction to the TF functional. Later on, it was
conjectured that it must appear multiplied by a factor of 1

9 , to
make the correction consistent with the limit of small mo-
ments in the linear response function of the free electron gas.

This functional, the TF+ 1
9 vW or second-order gradient ex-

pansion approximation �GEA2�, has been widely applied for
estimating the total kinetic energy and yields energies with a
relative error of about 1% when applied to atoms and mol-
ecules using good densities, i.e., those obtained with accurate
methods like the Hartree-Fock or KS methods. Despite the
success of the GEA2 in the estimation of total energies,
many authors have proposed that the full von Weizsäcker
functional, without any prefactor, should always appear in
the expression of a KEDF �5,10,11,14,15,23–30�. There are
several arguments these authors point out in order to justify
the vW functional as the starting point in the KEDF �see a
general review in �31��: �i� it is the correct one for systems
with one or two electrons in the same spatial state; �ii� it
gives the correct kinetic energy density in those spatial zones
where the contribution of only one spatial orbital is dominant
over all the others �these regions are very important in atoms,
and include the cusps near the nuclei and the falling density
tails far away from them; moreover, it is well know that
density decays in those zones are related to the chemical
potential of the system�; �iii� the full vW functional is needed
in order for functionals with a TF-like nonlocal term to re-
produce the large-momentum limit of the linear response of
the free electron gas; �iv� it naturally arises when the most
naive approximation to the density matrix is made, i.e., when
the matrix is assumed to be the product of the square root of
the electron density evaluated in different points of the
space; �v� it is a lower bound to the total kinetic energy of a
fermionic system; �vi� it gives the correct kinetic energy for
a system of bosons in their ground state; �vii� the vW func-
tional includes derivatives, similar to the evaluation of the
kinetic energy density via the KS orbitals.

Giving the deserved importance to these ideas, it can be
argued that a functional approximation to the kinetic energy
must be written as the full vW functional corrected with
additional terms. In this sense Levy, Perdew, and Sahni �32�
�see also �5,11,25� and references therein� proposed a final
form for the KEDF as

TS�n�r�� = TvW�n�r�� + T��n�r�� , �10�

where the unknown T��n� is the so-called Pauli functional
�33,34�. For a boson system, the Pauli functional would be
zero, but it appears in any fermion system as a consequence
of the Pauli exclusion principle. Defining the Pauli potential
as the functional derivative of T��n�, v��r�=�T��n� /�n�r�,
the Euler equation becomes an equation similar to a KS
equation for the square root of the total electron density:

�−
1

2
�2 + v��r� + vKS�r��n�r� = �n�r� . �11�

Here − 1
2�2 corresponds to the vW functional, vKS�r� is the

KS potential, and � is the chemical potential.
We define �r�=n�r�, and call �r� a pseudo-orbital

because it shares the following characteristics with regular
orbitals �like the KS or Hartree-Fock ones�: �i� The squared
orbitals, summed over all the occupied states, yield the total
electron density; the squared pseudo-orbital gives by itself
the total electron density ��r��2=n�r�; �ii� the square of the
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orbitals is normalized to unity, while the square of the
pseudo-orbital is normalized to the number of electrons,
���r��2dr=�n�r�dr=N.

A. Some different expressions for the von Weizsäcker
functional

The vW functional can be written in some different ways.
The most common in the literature is

TvW�n� =
1

8
� dr

��n�r��2

n�r�
, �12�

which is not adequate for its manipulation to get a fully
nonlocal form. But TvW�n� can be written as

TvW
Is �n� =

1

2
� ���r��2dr =

1

2
� ���r�����r��dr ,

�13�

or, keeping the scalar product of the gradients of �r�,

TvW
Iv �n� =

1

2
� ��r� · ��r�dr . �14�

On the other hand, the Laplacian of n�r� has the correct
dimensionality and the scaling properties to be a kinetic en-
ergy density, and integrates to zero in the whole space. That
allows a new expression for the vW functional:

TvW
II �n� = −

1

2
� �r��2�r�dr = −

1

2
� n1/2�r��2n1/2�r�dr .

�15�

B. Relation to the kinetic energy density

The integrand of the first functional form TvW
I �n� is posi-

tive definite but that corresponding to the second TvW
II �n� is

not—their difference is one-fourth of the Laplacian of the
electron density—but both expressions always yield the
same kinetic energy. The kinetic energy density �KED� can
be defined as any function tS�r� that integrates to the exact
total kinetic energy,

TS�n� =� dr tS�r� . �16�

The KED of an electron system is not univocally defined
�see �35� for a discussion� and two definitions are usually
employed:

tS
I �r� =

1

8�
i=1

N ��ni�r��2

ni�r�
=

1

2�
i=1

N

��ni
1/2�r��2

=
1

2�
i=1

N

�ni
1/2�r� � ni

1/2�r� , �17�

tS
II�r� =

1

2�
i=1

N

ni
1/2�r��2ni

1/2�r� =
1

8�
i=1

N ��ni�r��2

ni�r�
−

1

4�
i=1

N

�2ni�r�

= tS
I �r� −

1

4
�2n�r� , �18�

where ni�r�= ��i�r��2 is the partial density corresponding to
the ith KS orbital �i of an N-electron system. The first defi-
nition of the KED, tS

I �r�, is related to TvW
I �n�, and can be seen

as the application of TvW
I �n� to each of the partial densities

ni�r� of the electrons of the system. By simple inspection, the
second definition tS

II�r� has a close relation to the second
form TvW

II �n� of the vW functional. We will use these two
forms to propose fully nonlocal terms for the KEDF, with a
vW-like structure and closely related to the usual definitions
of the KED.

III. KINETIC ENERGY FUNCTIONALS
WITH NONLOCAL SIMPLIFIED TERMS

THAT HAVE THE VON WEIZSÄCKER
STRUCTURE: DENSITY-INDEPENDENT KERNEL

In this work we are going to present, following the sim-
plified expression suggested by Eq. �8�, three families of
KEDFs, all with fully nonlocal terms with the structure of
the vW functional. In order to simplify the discussion, and
even though we are not going to develop any functional of
this type here, we first show how to construct the simpler
density-independent kernel functionals. We will extend these
ideas for the construction of KEDFs with density-dependent
kernels in Sec. IV.

A. First nonlocal functional (vectorial)

The first form of the fully nonlocal term with the vW
structure is vectorial �NLS-vW-Iv functional� and can be
constructed by introducing in Eq. �14� a second integral that
couples the gradients of the pseudo-orbital through a Dirac
delta function:

TvW
Iv �n� =

1

2
� dr� dr� � �r� · ��r����r − r�� , �19�

and the nonlocal term is obtained by substituting the � func-
tion by a kernel:

TS
NLS-vW-Iv�n� =

1

2
� dr� dr� � �r� · ��r���„n0, �r − r��… .

�20�

In order to be sure that the functional reproduces the lin-
ear response of the free electron gas, the second functional
derivative must be calculated and the resulting expression
evaluated at the homogeneous limit. We can save a lot of
work by making the analysis presented in the Appendix.
When the homogeneous limit is taken, several terms �those
with any differential or gradient factor� yield a zero value
and only two terms remain: those that have the two func-
tional derivatives applied over the pseudo-orbital in two dif-
ferent points of space. Due to the symmetry of those terms it
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is possible to rewrite them as a double convolution product:

��2TS
NLS-vW-Iv�n�

�n�r1��n�r2�
�

n0

=
1

8n0
� dr� dr� � ��r − r1� · ���r� − r2���n0, �r − r���

+
1

8n0
� dr� dr� � ��r − r2� · ���r� − r1���n0, �r − r��� =

1

4n0
ˆ�� � �� � ���‰ . �21�

The scaling of the Lindhard function imposes a scaling on
the kernel of any functional constructed to reproduce the free
electron linear response. The kernels of any of these func-
tionals must scale with 2kF, so their dependence on the
position vector r must be written as 2kFr, i.e.,

��kF, �r − r��� = �2kF�3��2kF�r − r��� , �22�

and using the properties of the Fourier transform it is easy to
see that

F���kF, �r1 − r2��� = �� �q�
2kF

� = ���� , �23�

where �= �q� /2kF is the natural scaled variable in momentum
space. Only with that scaling is the second functional deriva-
tive of the functional able to reproduce the Lindhard func-
tion.

Taking advantage of this scaling the aforementioned con-
volution products in Eq. �21� have a simpler expression in
momentum space. After taking the Fourier transform, and
using the scaled Fourier transform ���� of the kernel �, we
obtain

F�� �2TS
NLS-vW-Iv�n�

�n�r1��n�r2� �
n0

� =
1

4n0
q2����

= −
1

�̃Lind�q�
=

�2

kF
FLind��� ,

�24�

and an explicit relationship between ���� and the Lindhard
function appears:

���� =
FLind���

3�2 . �25�

This expression for the kernel is much simpler than those
corresponding to any functional with a TF-like nonlocal
term, such as the CAT functional �see �4,11��. It is now nec-
essary to clarify whether this kernel is adequate to perform
calculations for both extended and localized systems. This
kernel has a very strong singularity in the limit �→0, due to
the behavior of the leading factor 1 / �3�2�. The singularity
can be eliminated by redesigning the kernel in order to have
a finite value in the low-� limit. And if we include a full vW
functional in TS�n�, extracting the contribution of the vW
term from the nonlocal kernel, its second functional deriva-
tive exactly cancels this singularity for �→0. So, as in many
other functionals �5,11–14�, the full vW term naturally ap-

pears in nonlocal functionals if we choose a definite math-
ematical form and force the functional to reproduce the lin-
ear response of the free electron gas. The new kernel ����
then becomes

���� =
FLind��� − 1

3�2 . �26�

On the other hand, the asymptotic behavior of the kernel for
large values of � is very important for obtaining a kernel
suitable for calculations on localized systems. As in the
NLS-TF functionals �4�, the kernel must go to zero as �
→�. The kernel in Eq. �26� tends to 1 for �→�, giving a
nondesirable Dirac � contribution in position space. To avoid
this inconvenience it is necessary to explicitly include in
TS�n� the complete TF functional, without any prefactor. The
final form of the modified kernel is then

���� =
FLind��� − 3�2 − 1

3�2 , �27�

which has an adequate behavior, without any singularity in
the limit �→0 and going to zero as �→�. This has been
accomplished by including both the TF and vW functionals
in the fully nonlocal functional.

For the sake of comparison, Fig. 1 shows the behavior of
the possible kernels with or without explicitly extracting the
TF and the vW contributions, i.e., the kernels given by Eqs.
�25�–�27�.

As a summary, we require our functional TS�n� to have the
following characteristics �see �4� for a similar discussion of
functionals with TF-like nonlocal terms�.

�i� TS�n� includes a nonlocal term that has the structure of
the vW functional, coupling the contributions coming from
different points of the space through a kernel �:

Tnl
NLS-vW-Iv�n� =

1

2
� dr� dr� � �r� · ��r����n0, �r − r��� .

�28�

�ii� The functional must reproduce the linear response of
the electron gas �the scaling properties of the kernel are then
fixed by the Lindhard function, and are the same as for the
CAT functional �5� and for any functional that reproduces the
linear response of the electron gas�.

�iii� Even though the kernel is not necessarily normalized,
we assume ���� to have a finite value for �→0 and that
lim�→� ����=0; with these properties ���� becomes an ad-
equate kernel in position space, with no undesirable long-
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range effects. The functional must include both a TF and a
vW term and gives the correct kinetic energy in the homo-
geneous limit.

These three requirements are satisfied by the functional

TS
NLS-vW-Iv�n� = TvW�n� + TTF�n� + Tnl

NLS-vW-Iv�n� �29�

with the algebraic kernel given by Eq. �27�.

B. Second nonlocal functional

Using the expression given in Eq. �15� we can proceed in
the same way to construct a second local functional with a
vW-like nonlocal term �NLS-vW-II functional�. Equation
�15� can be recast as

TvW�n� = −
1

2
� dr� dr��r��2�r����r − r�� , �30�

and writing a kernel � instead of the Dirac � function we
have

Tnl
NLS-vW-II�n� = −

1

2
� dr� dr��r��2�r����n0, �r − r��� .

�31�

It is convenient to extract again the complete TF and vW
functionals, and the KEDF becomes

TS
NLS-vW-II�n� = TvW�n� + TTF�n� + Tnl

NLS-vW-II�n� . �32�

In the homogeneous limit we have

��2Tnl
NLS-vW-II�n�

�n�r1��n�r2�
�

n0

= −
1

8n0
� dr� dr���r − r1��2��r� − r2���n0, �r − r��� −

1

8n0
� dr� dr���r − r2��2��r� − r1���n0, �r − r���

−
1

8n0
� dr� dr��2���r� − r1���r� − r2����n0, �r − r��� . �33�

As a result of the kernel normalization

� dr ��n0, �r − r��� = C�r�� = C �34�

�it must have the same value for any point of the space; remember we are in the homogeneous limit�, the third term of the
right-hand side of this equation can be integrated over r, giving a constant value. So this third term now involves a product of
Dirac � functions with a zero result:

−
1

8n0
C� dr��2���r� − r1���r� − r2�� = −

1

8n0
C2� dr� � ��r� − r1� � ��r� − r2� −

1

8n0
C� dr��2��r� − r1���r� − r2�

−
1

8n0
C� dr���r� − r1��2��r� − r2�

= −
1

8n0
C�− 2�2��r1 − r2� + �2��r1 − r2� + �2��r1 − r2�� = 0. �35�

For the two other terms in Eq. �33� two convolution products are obtained; these products become the same by reordering
the subindices

FIG. 1. �Color online� Different kernels for the NLS-vW func-
tionals as functions of the scaled momentum �. They show the role
played by the TF and vW terms.
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��2Tnl
NLS-vW-II�n�

�n�r1��n�r2�
�

n0

= −
1

8n0
ˆ� � �� � �2��‰

−
1

8n0
ˆ�� � �� � �2�‰

= −
3�2

4kF
3 ˆ� � �� � �2��‰ , �36�

and when Fourier transforming we get an expression for the
kernel,

F�� �2Tnl
NLS-vW-II�n�

�n�r1��n�r2� �
n0

� =
3�2

kF
�2����

=
�2

kF
�FLind��� − 3�2 − 1� . �37�

We have obtained the same kernel given by Eq. �27�, even
though the functionals have a different structure. An equiva-
lent result was also obtained for the kernels of the NLS-TF
family of functionals �4�.

C. First nonlocal functional (scalar)

We now develop a first scalar nonlocal functional �NLS-
vW-Is functional�. Rewriting Eq. �14� in the form

TvW�n� =
1

2
� ���r��2dr

=
1

2
� dr� dr����r�����r�����r − r�� , �38�

we obtain a new nonlocal term for T�n� by introducing a

kernel � instead of the Dirac � function, i.e.,

Tnl
NLS-vW-Is�n� =

1

2
� dr� dr����r�����r�����n0, �r − r��� .

�39�

As for the NLS-vW-Iv functional, when evaluating the
functional derivative of the functional only those terms with
a functional derivative of the absolute value of the gradient
will not be zero. Deriving

����r��
�n�r1�

=
�

�n�r1�
���r��2

=
1

2

1
���r��2

2 � �r� · �� 1

2�r�
��r − r1��

= u��r� � � 1

2�r�
��r − r1�� , �40�

where u��r� is the unit vector along the gradient of the
pseudo-orbital. In the homogeneous limit we get

�����r��
�n�r1�

�
n0

=
1

2n0
1/2u��r� � ��r − r1� , �41�

and the second functional derivative of the nonlocal term in
the homogeneous limit is

��2Tnl
NLS-vW-Is�n�

�n�r1��n�r2�
�

n0

=
1

8n0
� dr� dr��u��r� � ��r − r1���u��r�� � ��r� − r2���„	�r,r��, �r − r��…

+
1

8n0
� dr� dr��u��r� � ��r − r2���u��r�� � ��r� − r1���„	�r,r��, �r − r��… ,

which can be arranged as two double convolution products,

��2Tnl
NLS-vW-Is�n�

�n�r1��n�r2�
�

n0

=
3�2

8kF
3 ˆu��r� � � � �� � u��r�� � ��‰

+
3�2

8kF
3 ˆ�u��r� � � � �� � u��r�� � �‰ .

�42�

We have an indetermination, because the direction of the unit
vector is not uniquely defined in the homogeneous limit �and
we must multiply it by the gradient of a Dirac � function�.
We decide that the unit vectors must have the same direction
as in the NLS-vW-Iv functional: parallel to the gradients of

the Dirac � functions. In that case, the Fourier transform is
quite similar to that used for obtaining the kernel of the
NLS-vW-Iv functional. We have also extracted the contribu-
tions that come from the TTF and TvW functionals, and the
kernel becomes the same one obtained for the two other
types of functional,

��2

kF
�−1

F�� �2Tnl
NLS-vW-Is�n�

�n�r1��n�r2� �
n0

�
= 3�2���� = FLind��� − 3�2 − 1. �43�

We stress that indeterminations have been solved using an
argument based on the similarity with the NLS-vW-Iv func-
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tional, which has a similar structure. We propose this func-
tional here because it is much easier to evaluate than the
NLS-vW-Iv functional in three-dimensional systems with
spherical symmetry. So we must wait for the results we will
present below to get confidence in using the functional.

IV. KINETIC ENERGY FUNCTIONALS
WITH A NONLOCAL SIMPLIFIED TERM

THAT HAVE THE VON WEIZSÄCKER
STRUCTURE: DENSITY-DEPENDENT KERNEL

In order to take a step ahead in the description of nonlocal
KEDFs, we want to study density-dependent kernels via the
use of the two-body Fermi wave vector 	�r ,r��. As the be-
havior of the kernel ���� for both large and small values of
� is the same as in the case of the density-independent ker-
nels, the previous discussion about how the TF and vW terms
must be included in TS�n� is also pertinent. But we now
expect to get differential equations for the kernels, as yielded
by the functionals with a TF-like nonlocal term �see �4��. In
any case, we also expect kernels with a similar behavior to
their density-independent counterparts, obtained by means of
an algebraic equation.

A. First nonlocal functional (vectorial)

The procedure is the same that we used in Sec. III A for
the density-independent kernel, verifying the three properties
mentioned, and the nonlocal term is now given by

Tnl
NLS-vW-Iv�n� =

1

2
� dr� dr� � �r� · ��r��

��„	�r,r��, �r − r��… , �44�

with the new scaling factor 	�r ,r��.
The evaluation of the Fourier transform of the second

functional derivative in the homogeneous limit gives an un-
usual result. Any term that contains a functional derivative of
the kernel and 	�r ,r�� gives a zero value in the homogeneous
limit �see the Appendix�, because they always appear multi-
plied by the gradient of the electron density—which is con-
stant in this limit. As a consequence, the kernel is the same
one that we obtained for the density-independent functional.
We then get an algebraic equation for the kernel, and not the
differential equation usually obtained for density-dependent
functionals �4�. Moreover, the kernel does not depend on the
way we define the scaling factor 	�r ,r��.

B. Second nonlocal functional

The nonlocal term is now written as

Tnl
NLS-vW-II�n� = −

1

2
� dr� dr��r��2�r��

��„	�r,r��, �r − r��… . �45�

For the second functional derivative of Tnl
NLS-vW-II�n� we get

two new terms, both with first functional derivatives of the
kernel:

��2Tnl
NLS-vW-II�n�

�n�r1��n�r2�
�

n0

= −
1

8n0
� dr� dr���r − r1��2��r� − r2���n0, �r − r��� −

1

8n0
� dr� dr���r − r2��2��r� − r1���n0, �r − r���

−
1

4
� dr� dr��2��r� − r2�

d��n0, �r − r���
dkF

��	�r,r��
�n�r1�

�
n0

−
1

4
� dr� dr��2��r� − r1�

d��n0, �r − r���
dkF

��	�r,r��
�n�r2�

�
n0

. �46�

These last two terms �which did not appear for the NLS-vW-II density-independent functional� equal each other and include
a first functional derivative of 	�r ,r��. But we have

��	�r,r��
�n�r1�

�
n0

=
�3�2�1/3

6n0
2/3 ���r − r1� + ��r� − r1�� , �47�

and these terms are evaluated as
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−
1

4
� dr� dr��2��r� − r2�

d��n0, �r − r���
dkF

��	�r,r��
�n�r1�

�
n0

= −
1

4
� dr� dr��2��r� − r2�

d��n0, �r − r���
dkF

�3�2�1/3

6n0
2/3 ���r − r1� + ��r� − r1��

= −
1

4

�3�2�1/3

6n0
2/3 � dr� dr��2��r� − r2�

d�„n0, �r − r��…
dkF

��r − r1�

−
1

4

�3�2�1/3

6n0
2/3 � dr���r� − r1��2��r� − r2�� dr

d�„n0, �r − r��…
dkF

= −
1

2

�2

4kF
2��� �

d�

dkF
� � �2�� , �48�

where we have used that the kernel is normalized and that

� dr
d��n0, �r − r���

dkF
=

d

dkF
� dr ��n0, �r − r��� =

d

dkF
C = 0.

�49�

We get the final expression

��2Tnl
NLS-vW-II�n�

�n�r1��n�r2�
�

n0

= −
3�2

4kF
3 ˆ� � �� � �2��‰

−
�2

4kF
2��� �

d�

dkF
� � �2�� , �50�

which gives the relation with the Lindhard function,

F�� �2Tnl
NLS-vW-II�n�

�n�r1��n�r2� �
n0

� =
�2

kF
�3�2���� − �3������ �51�

=
�2

kF
3�2����� −

1

3
�������

=
�2

kF
�FLind��� − 3�2 − 1� , �52�

and the first-order differential equation for the kernel of this
functional is

���� −
1

3
������ =

FLind��� − 3�2 − 1

3�2 . �53�

Note that we have obtained a first-order differential equation,
much simpler than the second-order ones that are usually
obtained for functionals with a TF-like nonlocal term
�4,11,15�. For the numerical solution of Eq. �53� we have
chosen a Runge-Kutta method, starting the integration at in-
finity to avoid numerical problems.

C. First nonlocal functional (scalar)

In the way as for the other two functionals, the density-
dependent kernel is introduced through the two-body Fermi

wave vector 	�r ,r��. Using the same procedure explained for
the density-independent case, the nonlocal term is now given
by

Tnl
NLS-vW-Is�n� =

1

2
� dr� dr����r�����r���

��„	�r,r��, �r − r��… . �54�

As obtained for the NLS-vW-Iv functional, the evaluation
of the Fourier transform of the second functional derivative
in the homogeneous limit gives again the result that the ker-
nel coincides with that obtained for the density-independent
functional. As a consequence, we get an algebraic equation
instead of the differential equation usually found for density-
dependent functionals.

So for the three NLS-vW functionals �in both the density-
dependent and density-independent cases� we have obtained
the same kernel, except for the density-dependent kernel of
the NLS-vW-II functional. Figure 2 shows the kernels for all
the functionals. All density-independent functionals share the
kernel with the density-dependent type I functionals
�NLS-vW-I�. Note that type-II density-dependent functional
�NLS-vW-II� has a softer structure.

D. Evaluation in momentum space

The NLS-vW functionals have another important advan-
tage that must be pointed out. By construction, these nonlo-
cal functionals can be evaluated as a single integral in mo-
mentum space if an adequate reference density is defined,
following the method developed by Wang, Govind, and
Carter for their functional �15�. The expression that evaluates
the nonlocal term with the vW-like structure can be easily
obtained through

Tnl
NLS-vW�n� =

1

2
� dq�q�q��2���� , �55�

where �q� is the Fourier transform of the pseudo-orbital
�q�=F��r��. Using this numerical approach, quasilinear
scaling for the computational cost can be achieved and large
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extended systems may be calculated. Note that all the func-
tional forms previously presented in the paper yield the same
expression in momentum space, namely, Eq. �55�.

V. CLOSED-SHELL ATOMS: TOTAL KINETIC ENERGIES

We must point out that all calculations presented in this
paper have been done with double density-dependent kernel
functionals, i.e.,

TS
NLS-vW�n� = TvW�n� + TTF�n� + Tnl

NLS-vW�n� ,

where the kernel of the nonlocal term Tnl
NLS-vW�n� uses a two-

body Fermi wave vector 	�r ,r�� as the scaling factor. We
will not present any test of the simpler density-independent
functionals.

We first check the quality of our proposal for the devel-
opment of KEDFs by making an evaluation of the total ki-

netic energy of atoms using good electron densities. The
NLS-vW functionals depend only on the parameter 
, which
defines the power in the scaling factor 	�r ,r�� of the double
density-dependent kernel. So the comparison of the total ki-
netic energy with the exact one �i.e., the solution of the KS
method� can be used as a first step to fix the best value of 
.
With this aim, we have evaluated the kinetic energy with the
NLS-vW functionals using the output densities obtained by
the solution of the KS scheme through the GAUSSIAN pack-
age �36�. We have performed total energy calculations for
some closed-shell atoms, from He to Xe, with the basis set 6-
311+ +G�d , p� for all atoms �for Sr and Xe the basis 3-
21G** was used instead�. These basis sets are big enough to
yield quality electronic densities and energies within the lo-
cal density approximation for the XC. Note that all the cal-
culations were performed for the most sophisticated func-
tionals with the double density-dependent kernels.

In Table I we present the relative errors of the total kinetic
energies obtained with the NLS-vW-Iv functional, as com-
pared with the KS exact results, as well as the average of the
absolute values of the errors. We get relative errors close to
4%, and these large errors slightly depend on 
. In any case,
the improvement saturates for 
�−0.6. The results show
that this functional yields accurate energies for some atoms
of intermediate size �Ne to Ca�, but gives large errors for the
other cases. We think this functional is not useful for evalu-
ating the kinetic energies because the average errors for any
value of 
 are too large �the results for the best semilocal
functionals �35� and for the CAT and NLS-TF families �4�
are less than 1%�.

In Table II the relative errors of the total kinetic energies
obtained with the NLS-vW-II functional are shown. Again,
the errors vary slightly with 
. In this case we get small
values of relative errors, with an accuracy close to that of the
semilocal �35� and fully nonlocal functionals �4� studied be-
fore. The best results are found for 
� �−0.2,−0.3�, where
the mean of relative errors is 0.5%, smaller than for any
functional of the CAT and NLS-TF families �4�.

Table III summarizes the relative errors of the total kinetic
energies as obtained with the NLS-vW-Is functional. We get
small relative errors, the smallest of any functionals we have
studied, in this paper and in Refs. �35,4�. But we must re-

TABLE I. Relative errors for the functional NLS-vW-Iv.


 He Be Ne Mg Ar Ca Kr Sr Xe Av.

0.5 −0.058 −0.050 −0.011 −0.012 0.001 0.006 0.075 0.045 0.123 0.042

0.3 −0.052 −0.046 −0.009 −0.010 0.002 0.007 0.076 0.046 0.124 0.041

0.1 −0.047 −0.042 −0.007 −0.008 0.003 0.008 0.076 0.046 0.125 0.040

�0.2 −0.043 −0.037 −0.003 −0.006 0.004 0.009 0.077 0.047 0.125 0.039

�0.3 −0.043 −0.036 −0.003 −0.006 0.004 0.009 0.077 0.047 0.126 0.039

�0.4 −0.043 −0.035 −0.002 −0.005 0.004 0.008 0.078 0.047 0.126 0.039

�0.5 −0.043 −0.034 −0.001 −0.005 0.003 0.008 0.078 0.047 0.126 0.038

�0.6 −0.044 −0.032 −0.001 −0.005 0.003 0.008 0.078 0.047 0.126 0.038

�0.7 −0.045 −0.031 0.000 −0.004 0.003 0.007 0.078 0.047 0.127 0.038

�0.8 −0.045 −0.031 0.001 −0.003 0.003 0.007 0.077 0.047 0.127 0.038

KS 2.761 14.350 128.155 198.885 524.829 675.535 2749.055 3123.615 7174.034

FIG. 2. �Color online� Kernels for the NLS-vW functionals as
functions of the scaled momentum �. Label I indicates all density-
dependent and density-independent kernels, except the density-
dependent NLS-vW-II.
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member that this functional is not completely justified, be-
cause we found an indeterminancy when evaluating its ker-
nel, but it yields really good values for the total kinetic
energies. For 
=1 �relative error 0.4%� the two-body scaling
factor 	�r ,r�� is the arithmetic average of the Fermi mo-
menta at r and r�.

Summing up, of all the functionals we have tested, the
NLS-vW-II and NLS-vW-Is functionals appear to be the
nonlocal functionals that yield the best total kinetic energies
�about 0.5%�. Slighter larger errors �0.8%� are found for the
CAT and NLS-TF functionals �4� and the best semilocal
functionals also achieve mean errors smaller than 1%. The
NLS-vW-Iv functional shows bigger errors when evaluating
the total kinetic energies and we think it is not a reliable
KEDF.

But these results must be corroborated by some other cri-
terion in order to ensure the general quality of the KEDFs
and to propose a value for 
. We are now going to put our
attention on the local behavior of the functionals, by study-
ing their kinetic energy density �KED�, following the ideas
presented in �35�.

VI. LIGHT ATOMS: TOTAL KINETIC ENERGIES
AND THE QUALITY OF THE FUNCTIONALS’

LOCAL BEHAVIOR

Section V showed that the nonlocal functionals NLS-
vW-II and NLS-vW-Is give very good results for the total
kinetic energies in closed-shell atoms. In order to assess the
local performance of the KEDFs, in two previous papers we
have presented a comparative study of the KED for a number
of semilocal functionals �35� and for the CAT and NLS-TF
functional families �4�. We concluded that all the semilocal
functionals but those with a full vW term place the KED not
included in the TF functional in wrong regions of space �35�,
whereas the functionals with a TF-like nonlocal term �the
CAT and NLS-TF families� give better KEDs than the TF
and semilocal functionals. Since this result is a positive out-
come of adding fully nonlocal terms into the KEDF, we now
present the results for the quality of the KED for the func-
tionals we are studying in this paper.

Following Ref. �35�, an infinite set of valid KEDs tS
L�r�

can be used �see, e.g., Ref. �37��

TABLE II. Relative errors for the functional NLS-vW-II.


 He Be Ne Mg Ar Ca Kr Sr Xe Av.

0.5 0.032 0.042 0.019 0.019 0.016 0.015 0.010 0.007 0.005 0.018

0.3 0.024 0.036 0.016 0.017 0.014 0.013 0.009 0.006 0.004 0.015

0.1 0.011 0.029 0.011 0.013 0.011 0.010 0.007 0.004 0.003 0.011

�0.1 −0.005 0.021 0.006 0.009 0.007 0.006 0.005 0.002 0.001 0.007

�0.3 −0.019 0.015 −0.003 0.001 0.001 0.001 0.002 −0.001 −0.002 0.005

�0.5 −0.032 0.008 −0.007 −0.003 0.000 0.000 −0.001 −0.004 −0.003 0.006

�0.7 −0.042 −0.005 −0.006 0.001 0.001 0.000 0.000 −0.003 −0.002 0.007

�0.9 −0.050 −0.020 −0.004 0.003 0.004 0.003 −0.001 −0.004 −0.002 0.010

�1.1 −0.057 −0.034 −0.006 0.002 0.007 0.007 −0.002 −0.005 −0.005 0.014

�1.3 −0.062 −0.045 −0.010 −0.001 0.008 0.008 −0.002 −0.005 −0.007 0.016

KS 2.761 14.350 128.155 198.885 524.829 675.535 2749.055 3123.615 7174.034

TABLE III. Relative errors for the functional NLS-vW-Is.


 He Be Ne Mg Ar Ca Kr Sr Xe Av.

1.6 0.012 0.028 0.007 0.008 0.004 0.002 −0.001 −0.001 −0.003 0.007

1.4 0.008 0.024 0.006 0.006 0.003 0.001 −0.002 −0.002 −0.003 0.006

1.2 0.004 0.021 0.004 0.004 0.002 0.000 −0.003 −0.003 −0.004 0.005

1.0 −0.001 0.017 0.002 0.003 0.000 −0.001 −0.004 −0.003 −0.004 0.004

0.8 −0.008 0.012 −0.001 0.001 −0.001 −0.003 −0.005 −0.004 −0.005 0.004

0.6 −0.015 0.006 −0.003 −0.001 −0.003 −0.004 −0.006 −0.005 −0.005 0.005

0.4 −0.025 −0.002 −0.006 −0.004 −0.005 −0.006 −0.007 −0.006 −0.006 0.007

0.2 −0.039 −0.011 −0.009 −0.006 −0.007 −0.008 −0.008 −0.007 −0.007 0.011

�0.2 −0.080 −0.033 −0.017 −0.014 −0.013 −0.014 −0.011 −0.010 −0.009 0.022

�0.4 −0.099 −0.043 −0.023 −0.018 −0.017 −0.017 −0.014 −0.012 −0.010 0.028

KS 2.761 14.350 128.155 198.885 524.829 675.535 2749.055 3123.615 7174.034
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tS
L�r� =

1

2�
i=1

N

���i�r��2 + a�2n�r� , �56�

where tS
L�r� is constructed as an orbital-based KED plus the

Laplacian of the electron density multiplied by a prefactor a
that can have any real value. For each a we define a quality
factor

� =
� dr�tS

L�r� − tS
func�r��

TS�n�
, �57�

where tS
func�r� is the approximate KED for a given functional.

The value of � can be interpreted as the amount of the ap-
proximated KED that is misplaced when compared to the
distribution tS

L�r�. To test every functional in the best condi-
tions for itself, we have compared its approximate KED with
its closest tS

L�r�, minimizing the value of � when varying the
parameter a, using a golden search algorithm �38�. After the
minimization process, each functional has a given value of a
that yields the lowest value of �. The closest tS

L�r� is then
constructed by substituting this value of the parameter a in
Eq. �56�.

As commented in Refs. �4,35�, we will represent the ap-
proximate orbitals of an atom by orthogonalized Slater orbit-
als as we need correct evaluation of the atomic electron den-
sities and KEDs, and these Slater orbitals do not add any
spurious behavior when the Laplacian of the density is evalu-

ated, and the correct cusp conditions and density decay for
r→� can be achieved. The values of the exponents for the
Slater orbitals we have used in this paper are presented in
Table IV �39,40�.

For a simpler presentation we will discuss only atoms
with complete shells and complete half shells, from He to Ar,
and we discuss results corresponding to the functionals that
gave the best total kinetic energies in Sec. V. For that reason,
we do not present any result obtained with the NLS-vW-Iv
functional.

Table V shows the percent relative errors for the total
kinetic energies when evaluated with the NLS-vW-II func-
tional using the density corresponding to the orthogonalized
Slater orbitals. The best errors are smaller than 1% �as found
in Sec. V�, close to the best semilocal �35� and also to the
CAT and NLS-TF results �4�. We present the optimized val-
ues for the quality factor � in Table VI. They are smaller
than, but close to, those obtained with the TF functional,
meaning a better description of the KED than any semilocal
functional. The best values for � are for 
�−1 /4, a value
that also corresponds to the best values of the energy ob-
tained for the closed-shell atoms �Sec. V�, whereas the best
results obtained with the orthogonalized Slater orbitals are
closer to 
�−1 /2.

The NLS-vW-Is functional presents its larger errors for
the lightest atoms, but for a range of values of 
 the func-
tional yields errors smaller than 1% �see Table VII�, i.e., has
the same level of accuracy as the best semilocal and CAT
and NLS-TF families �4,35�. When 
 is about 0.2 we obtain
a mean error of about 0.4%, the best result we have found up

TABLE IV. Values of the Slater orbital exponents.

Atom He Be N Ne Mg P Ar

1s 1.6875 3.6848 6.6651 9.6421 11.6089 14.5578 17.5075

2s 0.9560 1.9237 2.8792 3.6960 4.9125 6.1152

2p 1.9170 2.8792 3.9129 5.4806 7.0041

3s 1.1025 1.8806 2.5856

3p 1.6288 2.2547

TABLE V. Relative errors in the kinetic energies obtained with the functional NLS-vW-II.


 He Be N Ne Mg P Ar Av.

0.5 0.046 0.047 0.018 0.031 0.027 0.021 0.019 0.030

0.3 0.036 0.042 0.013 0.027 0.024 0.019 0.017 0.025

0.1 0.024 0.035 0.008 0.022 0.020 0.015 0.014 0.020

�0.1 0.011 0.026 0.001 0.017 0.015 0.010 0.009 0.013

�0.3 −0.001 0.020 −0.006 0.008 0.007 0.004 0.003 0.007

�0.5 −0.011 0.013 −0.008 0.003 0.004 0.002 0.003 0.006

�0.7 −0.019 0.001 −0.009 0.002 0.006 0.004 0.004 0.006

�0.9 −0.026 −0.013 −0.012 0.002 0.008 0.008 0.007 0.011

�1.1 −0.031 −0.027 −0.018 0.002 0.007 0.010 0.010 0.015

�1.3 −0.036 −0.038 −0.026 0.000 0.005 0.010 0.011 0.018

TF 0.082 0.091 0.102 0.076 0.074 0.072 0.069 0.081

GEA2 −0.029 −0.013 0.012 −0.004 −0.001 0.003 0.003 0.009
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to now in our studies. The results for the KED are presented
in Table VIII, where the minimized values of � after varying
the parameter a are given. We get better results than with the
NLS-vW-II functional, with ��0.151 for 
�−0.35. This
best value of 
 is different from that obtained from the re-
sults of the total kinetic energy in Sec. V �
�0.9� or with
the density coming from the orthogonalized Slater orbital in
this section �
�0.2�.

The NLS-vW functionals we have studied in this section
yield in general better results than the best semilocal func-
tionals �35�, improving also the results of the fully nonlocal
CAT and NLS-TF functionals �4�. Specifically, they present a
better description of the global behavior of the KED than any
semilocal functional. In relation to the value of the parameter

 to be used, the NLS-vW-II functional is more stable in its
results, and the value 
=−1 /2 can be considered as the best
choice: it gives very good results for the energies �with mean
errors about 0.6%� and a not so good result for the mean
value of � �quite close to the TF one�. For the NLS-vW-Is

functional the best results in each case correspond to differ-
ent values of 
, and the 
 to be recommended is −1 /4, with
errors in the energies of about 2.5% and a smaller value of �.
These values of 
 are used in Figs. 3 and 4.

When the approximated KED of the CAT and NLS-TF
functionals were tested they improved the description of
those atomic regions close to the neighborhood of the nuclei,
as explained in �4�. But the NLS-vW functionals behave dif-
ferently: when the Laplacian contribution is introduced, we
have a quite different KED due to the effects of the differ-
ential operators in the nonlocal terms that correct the full vW
functional �no such operators appear in any nonlocal term
constructed with a TF-like functional�. So, KEDs coming
from the NLS-vW functionals are not so closely related to
the first term in Eq. �56�; for that reason, whereas the CAT
and NLS-TF functionals correctly describe regions in the
neighborhood of the atomic nuclei, Fig. 3 shows that the
NLS-vW functionals seem to better describe the decay of the
main peak of the KED. This can also be seen in Fig. 4, where
we present the differences among the approximate KEDs and
the orbital-based one. We see that the NLS-vW functionals
make a good description of the intermediate region between
s and p shells, r� �0.2,0.4�, whereas the CAT and NLS-TF
functionals give a better description of regions close to the
“core” electrons �r�0.1�.

VII. CONCLUSIONS

Our proposal for the construction of fully nonlocal kinetic
energy functionals suggests a structure for the nonlocal term
that follows that of the vW functional by modifying it
through a universal kernel tailored to reproduce the linear
response function of the free electron gas. In the nonlocal
terms we have allowed nonspherical averaging by introduc-
ing the two-body Fermi wave vector 	
�r ,r��, a mean of the
Fermi wave vectors raised to the power 
 at r and r�. We
must point out that the equations for the kernel are much
simpler than the differential equations obtained for the fully
nonlocal functionals like CAT �5�, NLS-TF �4�, and those

TABLE VI. Values of � obtained with the functional
NLS-vW-II.


 He Be N Ne Mg P Ar Av.

0.5 0.160 0.161 0.161 0.164 0.161 0.153 0.147 0.158

0.3 0.156 0.159 0.159 0.163 0.160 0.153 0.147 0.157

0.1 0.154 0.157 0.157 0.163 0.160 0.152 0.146 0.156

�0.1 0.154 0.157 0.153 0.160 0.157 0.150 0.145 0.154

�0.3 0.155 0.160 0.154 0.158 0.158 0.151 0.146 0.155

�0.5 0.157 0.160 0.156 0.161 0.162 0.155 0.149 0.157

�0.7 0.159 0.159 0.156 0.163 0.165 0.158 0.151 0.159

�0.9 0.160 0.157 0.155 0.163 0.165 0.160 0.152 0.159

�1.1 0.162 0.157 0.154 0.163 0.164 0.161 0.154 0.159

�1.3 0.164 0.157 0.153 0.163 0.162 0.161 0.154 0.159

TF 0.166 0.168 0.172 0.160 0.155 0.148 0.141 0.158

GEA2 0.187 0.190 0.190 0.186 0.180 0.171 0.163 0.181

TABLE VII. Relative errors for the kinetic energy for the functional NLS-vW-Is.


 He Be N Ne Mg P Ar Av.

1.0 0.042 0.030 0.004 0.014 0.010 0.005 0.003 0.015

0.8 0.035 0.025 0.000 0.012 0.008 0.003 0.001 0.012

0.6 0.027 0.019 −0.004 0.008 0.005 0.001 −0.001 0.009

0.4 0.015 0.011 −0.008 0.005 0.003 −0.002 −0.003 0.006

0.2 −0.003 0.001 −0.014 0.001 −0.001 −0.004 −0.005 0.004

�0.2 −0.044 −0.022 −0.029 −0.010 −0.009 −0.011 −0.012 0.020

�0.4 −0.060 −0.032 −0.036 −0.018 −0.014 −0.016 −0.015 0.027

�0.6 −0.074 −0.043 −0.041 −0.023 −0.017 −0.017 −0.017 0.033

�0.8 −0.086 −0.056 −0.044 −0.026 −0.017 −0.016 −0.016 0.037

�1.0 −0.096 −0.069 −0.048 −0.028 −0.016 −0.013 −0.013 0.041

TF 0.082 0.091 0.102 0.076 0.074 0.072 0.069 0.081

GEA2 −0.029 −0.013 0.012 −0.004 −0.001 0.003 0.003 0.009
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discussed in �14�, being in all cases independent of the value
of the parameter 
. Even more, we have found that a density-
dependent kernel can be obtained through an algebraic equa-
tion.

The kernels we have obtained for all the functionals are
adequate for calculations in position space �for both local-
ized and extended systems�, with no undesirable long-range
effects. The functionals explicitly include the TF and the vW
terms. We must remark that all the proposed NLS-vW func-
tionals verify that lim�→0 ����=−8 /9 �see Fig. 1�; this
means that these approximations not only give the TF func-
tional in the homogeneous limit, but naturally include the
second-order gradient correction for slowly varying density
regions. Note also that the kernels are negative for all values
of �, but with �����−8 /9. For that reason, all the proposed
functionals T�n� are bounded between the TF+ 1

9vW and the
TF+vW functionals.

Moreover, these nonlocal NLS-vW functionals can be
evaluated as a single integral in momentum space if an ad-
equate reference density is defined. That means a quasilinear
scaling for the computational cost, and may allow the calcu-
lation of large systems.

We have checked these functionals using good atomic
densities, obtaining for the functionals NLS-vW-II and NLS-
vW-Is the most accurate total kinetic energies �about 0.5%�
in the literature. We have also studied the KEDs by means of
the quality factor �, which allows us to make a quantitative
test of the local behavior of the functionals �4,35�. With the
same trend as in the CAT and NLS-TF families, the NLS-vW
functionals clearly improve the values of �, giving better
KEDs than any semilocal or the TF functional. The behavior
of the KEDs shows that they better describe the decay of the
main peak and make a good description of the intermediate
region between the s and p shells, whereas the CAT and

TABLE VIII. Values of � obtained with the functional NLS-vW-Is.


 He Be N Ne Mg P Ar Av.

1.0 0.158 0.162 0.172 0.175 0.170 0.164 0.158 0.166

0.8 0.157 0.159 0.170 0.173 0.169 0.162 0.156 0.164

0.6 0.156 0.156 0.167 0.172 0.167 0.161 0.155 0.162

0.4 0.152 0.153 0.165 0.170 0.166 0.159 0.154 0.160

0.2 0.147 0.151 0.162 0.168 0.164 0.158 0.152 0.157

�0.2 0.146 0.148 0.156 0.161 0.157 0.151 0.146 0.152

�0.4 0.147 0.153 0.155 0.158 0.154 0.149 0.144 0.151

�0.6 0.149 0.157 0.156 0.158 0.154 0.148 0.144 0.152

�0.8 0.151 0.160 0.158 0.158 0.155 0.149 0.145 0.154

�1.0 0.152 0.162 0.161 0.160 0.158 0.152 0.146 0.156

TF 0.166 0.168 0.172 0.160 0.155 0.148 0.141 0.158

GEA2 0.187 0.190 0.190 0.186 0.180 0.171 0.163 0.181

FIG. 3. �Color online� Kinetic energy density of the Ne atom
�multiplied by 4�r2� for some selected functionals.

FIG. 4. �Color online� Differences of the kinetic energy density
of the Ne atom �multiplied by 4�r2� for some selected functionals,
when compared with the orbital-based kinetic energy density tS

I .
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NLS-TF functionals correctly describe regions closer to the
core electrons.

We can conclude that these functionals with a vW-like
nonlocal term give excellent results for the total kinetic en-
ergies of atoms and a much better description of the KED
than the semilocal functionals. These results allow strength-
ening of the concept that with highly nonlocal models for the
kinetic energy functionals good results for both the energies
and the KEDs can be obtained.
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APPENDIX

We will use in this appendix the general expression for
the nonlocal term of the NLS-vW-Iv density functional:

TS
NLS-vW�n� =

1

2
� dr� dr� � �r� · ��r��

��„	�r,r��, �r − r��… .

The second functional derivative yields

�2TS
vWnl�n�

�n�r1��n�r2�
=

1

2
� dr� dr�

� � �r�
�n�r1�

·
� � �r��

�n�r2�
��	�r,r��, �r − r��� + c.i. +

1

2
� dr� dr�

�2 � �r�
�n�r1��n�r2�

� �r����	�r,r��, �r

− r��� + c.i . +
1

2
� dr� dr�

� � �r�
�n�r1�

· ��r��
���	�r,r��, �r − r���

�n�r2�
+ c.i.

+
1

2
� dr� dr� � �r� · � � �r��

�2��	�r,r��, �r − r���
�n�r1��n�r2�

. �A1�

After each term, c.i. means all the equivalent terms, with the same structure as the term explicitly written, that come about by
changing the corresponding indices r1 and r2 of the derivatives and the points r and r� used in the evaluations of the integrals.

In the homogeneous limit we have

� �2TS
vWnl�n�

�n�r1��n�r2�
�

n0

=
1

2
� dr� dr��� � �r�

�n�r1�
�

n0

· �� � �r��
�n�r2�

�
n0

�„n0, �r − r��… + c.i.

+
1

2
� dr� dr�� �2 � �r�

�n�r1��n�r2�
�

n0

� n0
1/2�„n0, �r − r��… + c.i.

+
1

2
� dr� dr��� � �r�

�n�r1�
�

n0

· �n0
1/2���„	�r,r��, �r − r��…

�n�r2�
�

n0

+ c.i .

+
1

2
� dr� dr� � n0

1/2 � n0
1/2��2�„	�r,r��, �r − r��…

�n�r1��n�r2�
�

n0

+ c.i.

But ��n0
1/2�=0 and only two terms are nonzero:

� �2TS
vWnl�n�

�n�r1��n�r2�
�

n0

=
1

2
� dr� dr��� � �r�

�n�r1�
�

n0

· �� � �r��
�n�r2�

�
n0

�„n0, �r − r��…

+
1

2
� dr� dr��� � �r�

�n�r2�
�

n0

· �� � �r��
�n�r1�

�
n0

�„n0, �r − r��… . �A2�

On the other hand,

�� � �r�
�n�r1�

�
n0

= �� � n1/2�r�
�n�r1�

�
n0

and using the properties of the functional derivatives �see, e.g., Ref. �41�� we get a result with only two terms. Each of these
terms involves two coupled integrals, a double convolution product of gradients of Dirac � functions and the kernel of the
functional:
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� �2TS
vWnl�n�

�n�r1��n�r2�
�

n0

=
1

8n0
� dr� dr� � ��r − r1� · ���r� − r2��„n0, �r − r��…

+
1

8n0
� dr� dr� � ��r − r2� · ���r� − r1��„n0, �r − r��…

=
1

4n0
ˆ�� � �� � ���‰ . �A3�

An equivalent treatment, but involving more terms, is needed in the calculation of the second functional derivative of the
nonlocal part of the functional TNLS-vW-II�n�, which includes the Laplacian �2 operator.
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