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We study the importance of interference for the performance of Shor’s factoring algorithm and Grover’s
search algorithm using a recently proposed interference measure. To this aim we introduce systematic unitary
errors, random unitary errors, and decoherence processes in these algorithms. We show that unitary errors
which destroy the interference destroy the efficiency of the algorithm, too. However, unitary errors may also
create useless additional interference. In such a case the total amount of interference can increase, while the
efficiency of the quantum computation decreases. For decoherence due to phase flip errors, interference is
destroyed for small error probabilities, and converted into destructive interference for error probabilities ap-
proaching 1, leading to success probabilities which can even drop below the classical value. Our results show
that in general, interference is necessary in order for a quantum algorithm to outperform classical computation,
but large amounts of interference are not sufficient and can even lead to destructive interference with worse
than classical success rates.
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I. INTRODUCTION

Quantum algorithms differ from classical stochastic algo-
rithms by the fact that they have access to entangled quan-
tum states and that they can make use of interference effects
between different computational paths �1�. These effects can
be exploited for spectacular results. Shor’s algorithm factors
large integers in a time which is polynomial in the number of
digits �2�, and Grover’s search algorithm finds an item in an
unstructured database of size N with only ��N queries �3�.
Many other quantum algorithms have building blocks similar
to those developed in those two seminal papers �e.g., �4–6��.
But more than twenty years after the discovery of the first
quantum algorithm �7� it is still not clear what exactly is at
the origin of the speedup of quantum algorithms compared to
their classical counterparts. Large amounts of entanglement
must necessarily be generated in a quantum algorithm that
offers an exponential speedup over classical computation �8�,
and tremendous effort has been spent to develop methods to
detect and quantify entanglement in a given quantum state
�see �9,10� for recent reviews�. However, the creation of
large amounts of entanglement does certainly not suffice for
getting an efficient quantum algorithm, and it remains to be
elucidated what are both necessary and sufficient require-
ments.

While there seems to be general agreement that interfer-
ence plays an important role in quantum algorithms �11–13�,
surprisingly, it has remained almost unexplored in computa-
tional complexity theory. Recently we introduced a measure
of interference in order to quantify the amount of interfer-
ence present in a given quantum algorithm �or, more gener-
ally, in any quantum mechanical process in a finite dimen-
sional Hilbert space� �14�. It turned out that both Grover’s
and Shor’s algorithms use an exponential amount of interfer-
ence when the entire algorithm is considered. Indeed, many
useful quantum algorithms start off with superposing coher-
ently all computational basis states at least in one register,
which is a process that makes use of massive interference
�the number of i–bits, a logarithmic unit of interference,

equals the number of qubits of the register �14��. Both algo-
rithms differ substantially, however, in their exploitation of
interference in the subsequent nongeneric part: Shor’s algo-
rithm uses exponentially large interference also in the re-
maining part of the algorithm due to a quantum Fourier
transform �QFT�, whereas the remainder of Grover’s algo-
rithm succeeds with the surprisingly small amount of
roughly three i–bits, asymptotically independent of the num-
ber of qubits.

Recently it was shown that the QFT itself on a wide va-
riety of input states �with efficient classical description� can
be efficiently simulated on a classical computer, as the
amount of entanglement remains logarithmically bounded
�15–17�. As the QFT taken by itself creates exponential in-
terference, it follows that an exponential amount of interfer-
ence alone does not prevent an efficient classical simulation.
This is in fact obvious already from the simple �if practically
useless� quantum algorithm which consists of applying a
Hadamard gate once on each qubit and then measuring all
qubits. By definition, this algorithm uses exponential inter-
ference �I=2n−1 for n qubits�. When applied to an arbitrary
computational basis state, one gets any output between 0 and
2n−1 with equal probability, p=1 /2n. According to Jozsa
and Linden’s result �8� this algorithm cannot provide any
speedup over its classical counterpart �as it creates zero en-
tanglement�, and indeed, it can evidently be efficiently simu-
lated with a simple stochastic algorithm that spits out a ran-
dom number between 0 and 2n−1 with equal probability,
which can be done by choosing each bit randomly and inde-
pendently equal to 0 or 1 with probability 1/2. We note that
the same phenomenon exists also for entanglement: the state
��000¯000�+ �111¯111�� /�2 has a lot of entanglement,
but the corresponding probability distribution can be effi-
ciently simulated classically with two registers.

Thus the precise nature of the relationship between inter-
ference and the power of quantum computation is not yet
fully understood. Surprisingly, there are tasks in quantum
information processing which do not require interference in
order to give better than classical performance, as was shown
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in �18� for quantum state transfer through spin chains. In
order to shed light on this question, in this paper we study
both Grover’s and Shor’s algorithms in the presence of vari-
ous errors. As many other quantum algorithms are built on
these two algorithms, our results may apply to a larger class
of quantum algorithms. We analyze to what extent the inter-
ference in a quantum algorithm changes when the algorithm
is subjected to errors, and to what extent these changes re-
flect a degradation of the performance of the algorithm. We
will investigate this question for systematic and random, uni-
tary or nonunitary errors, where the latter include uncorre-
lated bit flip and phase flip errors. These errors can be taken
as representative of, respectively, correlated errors, random
unitary noise due to fluctuations of gate parameters, and
genuine decoherence, and therefore exhaust the main type of
errors which can occur in an experimentally realizable quan-
tum computer. We look at the “potentially available interfer-
ence” as well as the “actually used interference,” where the
former means the interference in the entire algorithm, the
latter the interference in the part of the algorithm after the
application of the initial Hadamard gates �14�.

II. GROVER’S AND SHOR’S ALGORITHMS AND THE
INTERFERENCE MEASURE

As we will use Grover’s and Shor’s algorithms throughout
the paper we first review shortly their main components.
Grover’s algorithm UG �3� finds a single marked item a in an
unstructured database of N items in O��N� quantum opera-
tions, to be compared with O�N� operations for the classical
algorithm. The algorithm starts on a system of n qubits �Hil-
bert space of dimension N=2n� with the Walsh-Hadamard
transform W, which transforms the computational basis state
�0¯0� into a uniform superposition of the basis states
N−1/2	x=0

N−1�x�. Then the algorithm iterates k times the same
operator U=WR2WR1, with an optimal value k= �� / �4���
�where �¯� means the integer part� and sin2 �=1 /N, i.e.,
UG= �WR2WR1�kW. The oracle R1 multiplies the amplitude
of the marked item � with a factor �−1�, and keeps the other
amplitudes unchanged. The operator R2 multiplies the ampli-
tude of the state �0¯0� with a factor �−1�, keeping the oth-
ers unchanged.

Shor’s algorithm �2� allows the explicit decomposition of
a large integer number R into prime factors in a polynomial
number of operations. The algorithm starts by applying 2L
Hadamard gates to a register of size 2L where L= �log2 R�
+1, in order to create an equal superposition of all computa-
tional basis states N−1/2	t=0

N−1�x� where N=22L. Then the val-
ues of the function f�x�=ax�mod R�, where a is a randomly
chosen integer with 0�a�R, are built on a second register
of size L to yield the state N−1/2	t=0

N−1�x��f�x��. The last quan-
tum operation consists in a quantum Fourier transform
�QFT� on the first register only which allows one to find the
period of the function f , from which a factor of R can be
found with sufficiently high probability. In the numerical
simulations, we did not take into account the workspace qu-
bits which are necessary to perform the modular exponentia-
tion, but are not used elsewhere. It is a reasonable simplifi-

cation in our case, since during this phase of modular
exponentiation interference is not modified, as the whole
process is effectively a permutation of states in Hilbert space
�14�. In order to study numerically the effect of errors for
different system sizes, we performed simulations for n=12
qubits, which corresponds, respectively, to factorization of
R=15 �with a=7�, and also for n=9 and n=6. The cases n
=9 and n=6 correspond to order-finding for R=7 �with a
=3� and R=3 �with a=2� and do not exactly correspond to
an actual factorization, although the algorithmic operations
are the same, and a period is found at the end. In the case
n=9 the period found does not divide the dimension of the
Hilbert space, so the final wave function is not any more a
superposition of equally spaced � peaks, but is composed of
broader peaks. This enables reaching the more usual regime
of the Shor algorithm, where in general the period is not a
power of 2 �although it does not happen for R=15�. In one
case the result was different enough to warrant the display of
the corresponding curve for a different value of a �a=6� for
which the period is a power of 2 �see the end of Sec. III C�.

The interference measure for a propagator P of a density
matrix � ��ij� =	k,lPij,kl�kl� derived in �14� is defined as

I�P� = 	
i,k,l

�Pii,kl�2 − 	
i,k

�Pii,kk�2, �1�

where Pij,kl are the matrix elements of the propagator in the
computational basis 
�k�� �k=0, . . .2n−1�, and �kl= �k���l�.
While the interference measure is certainly not unique, it
quantifies the two basic properties of interference: the coher-
ence of the propagation, and the “equipartition” of the output
states, i.e., to what extent the computational basis states are
fanned out during propagation. Indeed, the second term in
Eq. �1� can be understood as a sum over matrix elements of
a classical stochastic map �the map which propagates the
diagonal matrix elements of the density matrix, thus the
probabilities in the computational basis�. This term is sub-
tracted from the more general first term, where the elements
Pii,kl of the propagator are responsible for the propagation of
the coherences in the density matrix and their contribution to
the final probabilities. Therefore if all coherences get de-
stroyed during propagation �i.e., the map is purely classical�,
interference vanishes. The squares in Eq. �1� are important,
as they allow us to measure the equipartition. The number of
i–bits is defined as nI=log2�I�P��. One Hadamard gate pro-
vides one i–bit of interference �14�.

In quantum information theory the propagation of mixed
states is generally formulated within the operator sum for-
malism �1�: A set of operators 
El� acts on � according to
��=	lEl�El

†= P�, where the Kraus operators El obey
	kEk

†Ek=1 for trace-preserving operations. The interference
measure then becomes �Eq. �1��

I = 	
i,k,m

	
l

�El�ik�El
��im2

− 	
i,k

�	
l

��El�ik�2�2
. �2�

In the case of unitary propagation presented by a matrix U,
the interference measure reduces to
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I„P�U�… = N − 	
i,k

�Uik�4. �3�

This form makes it obvious that the interference is bounded
by 0�I(P�U�)�N−1. The interference measure is invariant
under permutations of the computational basis states.

III. PERTURBED QUANTUM ALGORITHMS

In the following we examine the amount of interference in
perturbed versions of Grover’s algorithm and Shor’s algo-
rithm. We will distinguish between “potentially available”
and “actually used” interference �14�. These names are mo-
tivated by the fact that both algorithms start from the single
computational basis state �0�, such that only the first column
of the unitary matrix U, which represents the algorithms in
the computational basis, determines the outcomes and suc-
cess probabilities. The interference measure, however, counts
the interference for all possible input states, i.e., the contri-
butions from all columns in U—thus the “potentially avail-
able” interference is in general much larger than what is
needed in the algorithms. The actually used interference on
the other hand is the interference in the remainder of an
algorithm after all the initial Hadamard gates have been ap-
plied. At that point a coherent superposition of all computa-
tional basis states has been built up �in the case of Shor’s
algorithm: a coherent superposition of all computational ba-
sis states of the first register�, and therefore all the interfer-
ence measured by I(P�U�) is actually used. Another motiva-
tion to look at these two different measures is the fact that
the latter focuses on the “nongeneric” part of the algorithm.

A. Systematic unitary errors

We start by replacing each Hadamard gate with a per-
turbed gate, parametrized with an angle �, as

H��� = �cos � sin �

sin � − cos �
� . �4�

The unperturbed Hadamard gate corresponds to �=� /4,
while the cases �=0 and �=� /2 replace the Hadamard gates
by the Pauli matrices �z and �x, respectively, which create no
interference. Thus the replacement of Hadamard gates by Eq.
�4� amounts to destroying the interference produced in the
course of the algorithm in a controllable fashion. This allows
us to compare the loss of interference with the efficiency of
the algorithm in a systematic way. We measure this effi-
ciency through the success probability S. For Grover’s algo-
rithm the natural definition of S is the probability to find the
searched state ���, S=tr�� f�������, where the density matrix
� f describes the final state at the end of the computation,
which may be a mixed state if decoherence strikes during the
calculation �see Sec. III C�. For Shor’s algorithm there are in
general many “good” final states which allow us to compute
the period of the function f , and it is therefore more appro-
priate to define S through the loss of probability on these
“good” final states compared to the unperturbed algorithm.
Thus if 	i	i�i� is the final state of the unperturbed algorithm
and 	i	i

err�i�, we define S for Shor’s algorithm as

S = 1 − 	
i

��	i�2 − �	i
err�2�/2. �5�

Figure 1 shows the dependence of the potentially avail-
able interference and of the success probability S of Grover’s
algorithm on �, as well as the success probability as function
of the interference. All curves are averages over all values of
�, �=0, . . . ,2n−1. Both interference and success probability

0 0.5 1 1.5 2
θ/(π/4)

0

50

100

150

200

250

300

I

0 0.5 1 1.5 2
θ/(π/4)

0

0.2

0.4

0.6

0.8

1

P

0 50 100 150 200 250 300
I

0

0.2

0.4

0.6

0.8

1

P

(b)

(a)

(c)

FIG. 1. �Color online� Potentially available interference in the
Grover algorithm with systematic unitary errors in the Hadamard
gates, parametrized by the angle �, Eq. �4� �a�; success probability S
of the algorithm �b�; and success probability as function of interfer-
ence �c�. Black circles mean n=4, red squares n=5, green diamonds
n=6, blue triangles up n=7, gray triangles left n=8. All curves are
averaged over all values of the searched item �.
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peak at �=� /4. For a small number of qubits, S��� shows
some additional modulation in the wings of the n curve,
which are pushed further and further out for increasing n.
The broad maxima of I��� lead to steep increases of S�I�
close to the maximum possible value for the interference I
=2n−1. At �=0 or �=� /2, the interference vanishes, as in
that case the algorithm degenerates to a combination of per-
mutations and phase shifts, so that no two computational
states get superposed. Figure 1 shows that for this example
an exponential amount of interference is necessary even in
order to obtain a success probability of the order 1/2, and by
squeezing out a small additional amount of interference, S
can be boosted to its optimal value.

The actually used interference gives a similar picture: For
�=0 or �=� /2 the interference vanishes, and interference
reaches its maximum value I�4 for �=� /4. As the success
probability remains unchanged whether we calculate the in-
terference for the entire algorithm or only after the initial
Hadamard gates, we find again that the success probability
increases with increasing interference �see Fig. 2�.

Figure 3 shows the potentially available interference and
the success probability for Shor’s algorithm. Again, both in-
terference and success probability peak at �=� /4. The addi-
tional modulation in the wings of the curve for S��� for a
small number of qubits is much less pronounced than for
Grover’s algorithm, but the main fact remains that the broad
maximum of I��� corresponds to a sharp peak for S���, lead-

ing to the same steep increase of S�I� close to the maximum
possible value of the interference. However, the exact algo-
rithm does not lead to the maximum possible amount of
interference. Close to �=� /4, the interference slightly in-
creases while the success probability goes down, indicating
that some interference which is “useless” in terms of the
algorithm efficiency is generated. When � increases and the
interference is reduced by a large amount, the algorithm has
a low success probability. Even though the success probabil-
ity globally goes down with an increasing number of qubits,
it is not the case for all � values. This can be attributed to the
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FIG. 2. �Color online� Same as Fig. 1, but for actually used
interference.
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FIG. 3. �Color online� Potentially available interference in the
Shor algorithm with systematic unitary errors in the Hadamard
gates, parametrized by the angle �, Eq. �4� �a�; success probability S
of the algorithm �b�; and success probability as a function of inter-
ference �c�. Black circles mean n=6 �f�x�=2x�mod 3��, red squares
n=9 �f�x�=3x�mod 7��, green diamonds n=12 �f�x�=7x�mod 15��.
The inset is a closeup of the case n=12 close to the maximum.
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fact that the three curves on the figure do not exactly de-
scribe the same problem for different numbers of qubits, but
are instances of order-finding for different values of the num-
ber R. Thus when different values of the number of qubits
are used, the precise problem investigated depends on the
number theoretical properties of the integers chosen, which
can be different. On the contrary, Grover’s algorithm run on
different numbers of qubits is essentially the same problem
run on a computer of different size.

In �14�, it was pointed out that Grover’s and Shor’s algo-
rithms use a very different amount of actually used interfer-
ence. Indeed, for Grover’s algorithm it remains bounded for
all values of the number of qubits n, while for Shor’s algo-
rithm it grows exponentially with n. This may be related to
the fact that Shor’s algorithm is exponentially faster than all
known classical algorithms, while Grover’s is only quadrati-
cally faster. In Fig. 4 the actually used interference is plotted
for Shor’s algorithm, showing that for �=� /4 it reaches its
maximal value which grows exponentially with the number
of qubits. In this case, any decrease in the interference cor-
responds to a decrease of the success probability.

B. Random unitary errors

Let us now consider what happens if we replace each
Hadamard gate with a gate given by Eq. �4�, where each � is
chosen randomly, uniformly, and independently from all
other gates in an interval � /4−
 /2,� /4+
 /2.

Figure 5 shows the interference and success probability of
Grover’s algorithm as a function of 
. All curves are aver-

aged over all possible values of � as well as over nr random
realizations of the algorithm �nr=1000 for n=4, nr=100 for
n=5, . . . ,7�. Again, the maximum amount of interference is
obtained for the unperturbed algorithm, 
=0, but the maxi-
mum is not very prominent. It is followed by a shallow mini-
mum close to 
=� /4, which gets shifted to smaller values
for increasing n. Altogether, the interference is little affected
by the random unitary errors. This can be understood from
the fact that the unitary matrix U representing the algorithm
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FIG. 4. �Color online� Same as Fig. 3, but for actually used
interference.
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FIG. 5. �Color online� Potentially available interference in the
Grover algorithm with random unitary errors in the Hadamard
gates, parametrized by the interval 
, Eq. �4� �a�; success probability
S of the algorithm �b�; and success probability as function of inter-
ference �c� for n=4 to n=7. Same symbols as in Fig. 1.
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is already almost full in the unperturbed algorithm �14�, with
the exception of the first column, which propagates the initial
state �0�, and presents a strong peak on the searched item.
Randomly replacing the Hadamard gates by H��� increases
the equipartition in the first column, as is witnessed by the
decay of S, but reduces on average the equipartition in the
other columns, leading to a slight overall decrease of inter-
ference close to 
=0. This means again that a very large
amount of interference is necessary in order to get even a
modest performance of the algorithm, and a very steep in-
crease of the success probability occurs when interference is
boosted to its maximum value.

The situation for the actually used interference is quite
different, as shown in Fig. 6. For 
=0, we have an interfer-
ence I�4 at the end of the algorithm �after the first diffusion
gate it reaches its maximum value of I�8–24 /N and then
oscillates and decays with each subsequent diffusion gate to
the final value I�4 �14��. Thus the unperturbed algorithm
leads to remarkably low equipartition in the entire matrix U,
a highly unlikely situation for any random matrix. Indeed it
was shown in �19� that a random unitary N�N matrix drawn
from the circular unitary ensemble �CUE� gives, with almost
certainty, an interference I�N−2. Thus it is not surprising
that with growing 
, I rapidly increases to a value I�N. As
the success probability decreases with 
, this leads to the

counterintuitive situation that the success probability decays
with increasing actually used interference.

Figures 7 and 8 display the effect of random unitary errors
on Shor’s algorithm with the number of random realizations
nr=5000 �n=6�, nr=1000 �n=9�, and nr=100 �n=12�. Be-
sides changing the Hadamard gates, random phases with the
same distribution were added to the two-qubit gates in the
quantum Fourier transform. In this way in both algorithms,
all Fourier transforms and Walsh-Hadamard transforms are
randomized in a comparable way. Figure 7 shows that the
potentially available interference oscillates slowly as a func-
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FIG. 6. �Color online� Actually used interference in the Grover
algorithm with random unitary errors in the Hadamard gates, pa-
rametrized by the interval 
, Eq. �4� �a�, and success probability S as
a function of interference �b�. Same symbols as in Fig. 1. The suc-
cess probability as a function of 
 is the same as in Fig. 5.
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FIG. 7. �Color online� Potentially available interference in
Shor’s algorithm with random unitary errors in the Hadamard gates,
parametrized by the interval 
, Eq. �4� �a�; success probability of the
algorithm �b�; and success probability as a function of interference
�c�. Symbols as in Fig. 3. The inset shows a closeup of the curve for
n=12.
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tion of 
, on a scale which seems independent of the number
of qubits and also larger than for Grover’s algorithm. The
situation is similar to the one in Fig. 6 �although Fig. 6 deals
with actually used interference�, since interference increases
for small values of 
 and reaches a maximal value around

=0.6–0.7, while the success probability decreases.

The situation is different in the case of actually used in-
terference, shown in Fig. 8. Indeed, interference starts from
its maximum possible value and decreases with increasing 

at the same time as the success probability decreases. In the
same way as for potentially available interference, the varia-
tion of interference is relatively small compared to the case
of systematic errors, which were explicitly designed to de-
stroy interference. Nevertheless, Fig. 8 shows that contrary
to the case of Grover’s algorithm, interference and success
probability decrease in a correlated way.

C. Decoherence

We finally consider a class of errors which create true
decoherence. We distinguish between phase flips and bit
flips, and consider a �somewhat artificial� situation, where
the errors occur only during the first Walsh-Hadamard trans-
formation, i.e., the sequence of Hadamard gates on all qubits
at the beginning of the algorithm in the case of Grover’s
algorithm, and on all qubits of the first register of length 2L

in the case of Shor’s algorithm. We will assume that nf out of
n qubits are affected by errors, and study interference and
success probability as a function of nf, nf =1, . . . ,n. Note that
if all Hadamard gates in the entire algorithm were prone to
error, one would need to calculate 2�2k+1�n Kraus operators
for Grover’s algorithm �see Sec. II�, each of which is a 2n

�2n matrix, which makes the numerical calculation rapidly
too costly. The former number is reduced to a more bearable
2nf in our case. For Shor’s algorithm, the number of Had-
amard gates depends on the implementation of the modular
exponentiation and the calculation of the function f , but
grows exponentially with the number of qubits as well, if all
qubits can be affected by the decoherence process. Contrary
to the calculations for unitary errors, in the simulation of
Grover’s algorithm we restricted ourselves to a fixed value of
the searched item �, but checked for a few different values of
� that the results are insensitive to the value of �.

A Hadamard gate prone to errors is followed with prob-
ability p by a bit flip �or by a phase flip—we consider only
one type of error at a time�, and we calculate again both the
potentially available and actually used interference. In the
latter case, only the Pauli operators �p�z and �p�x which
represent the phase flip and bit flip errors, respectively, with
probability p on a given qubit are included in the Kraus
operators, but not the initial Hadamard gates themselves.

For Grover’s algorithm, Fig. 9 shows the result in the case
of bit flip errors, and Fig. 10 for phase flip errors. For both
types of error, the interference has maximal value for p=0 or
p=1, which corresponds to completely coherent propagation,
and minimal value for p=0.5. The minimal value decreases
rapidly with the number of qubits prone to error. The poten-
tially available interference reaches zero in the case of bit flip
errors on all n qubits, whereas for phase flip errors a finite
value remains. The actually used interference shows the op-
posite behavior. It has zero minimal value for phase flip er-
rors on all n qubits, whereas it remains finite for bit flip
errors even with probability 0.5. Phase flip errors rapidly
destroy the operability of the algorithm. The success prob-
ability decreases linearly with p for nf =1 to reach a value
close to zero for p=1, and more and more rapidly for in-
creasing nf. In fact, for n=4, S�p=1��0.0025, independent
of nf, which is even smaller than the classical value 1 /16
=0.0625. The algorithm is completely coherent in this case,
and the large amount of interference is used in a destructive
way, subtracting probability from the searched item.

Remarkably, bit flip errors do not affect the success prob-
ability at all, such that S�p� remains constant at the optimal
value, independently of the number of qubits affected. The
behavior is easily understood, as in fact the bit flip errors
leave the state obtained after applying the Hadamard gates
invariant �and in particular: pure�. The interference goes
down to zero, nevertheless, as it measures coherence using
superpositions of all computational states �14�, and not pure-
ness of the final state. We have therefore the peculiar situa-
tion where in spite of decoherence processes one particular
state remains pure �the perfectly equipartitioned superposi-
tion of all computational basis states�, and since it is that
state which is used in the algorithm, the success probability
remains unaffected. On the other hand, the interference mea-
sure was constructed to measure coherence by the sensitivity
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FIG. 8. �Color online� Actually used interference in Shor’s al-
gorithm with random unitary errors in the Hadamard gates, param-
etrized by the interval 
, Eq. �4� �a�, and success probability as a
function of interference �b�. Same symbols as in Fig. 3. The inset
shows a closeup of the curve for n=12. The success probability as
a function of 
 is the same as in Fig. 7.
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of final probabilities to relative initial phases between the
computational basis input states, and it correctly picks up
that the phase coherence between all states got lost. Thus in
this particular situation, one can have a perfectly well work-
ing algorithm which uses, according to our measure, zero
potentially available interference. We believe, however, that
this case where the coherence of the propagation cannot be
measured by the influence of relative phases but only

through the purity of the final state is highly exceptional and
should not exclude a proof that exponential speedup needs
exponential interference, if one restricts attention to unitary
algorithms, or gives special attention to the exceptional
single pure state mentioned. It is also important to note that
the actually used interference remains finite at p=0.5 and
nf =n, and below the already small value I�4 for the unper-
turbed algorithm and thus never goes to zero for bit flip
errors.

Figures 11 and 12 show the result of decoherence due to
bit flips in the Shor algorithm for n=12, n=9, and n=6 qu-
bits. As for the Grover algorithm, bit flips are performed
after each of the initial Hadamard gates. However, as these
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FIG. 9. �Color online� Potentially available interference in the
Grover algorithm with decoherence through bit flips during the first
Walsh-Hadamard transformation, as a function of the bit flip prob-
ability p after each Hadamard gate �a�. Same but for actually used
interference �b�. Success probability as a function of p �c�. All
curves are for n=4, �=2; nf =1 black circles, nf =2 red squares,
nf =3 green diamonds, nf =4 blue triangles.

0 0.2 0.4 0.6 0.8 1
p

0

5

10

15

I

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

5

I

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

S

(b)

(a)

(c)

FIG. 10. �Color online� Same as Fig. 9, but for phase flip
errors.
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Hadamard gates concern only one of the registers, the deco-
herence process affects only the first two-thirds of qubits.
The curves show the effect of decoherence on a growing
number of qubits, from nf =1 to nf = �2 /3�n, with data aver-
aged over the choice of the nf affected qubits. The success
probability S is computed as in Eq. �5� where now �	i

err�2 is
replaced by the probability for state i in the final mixed state.

The success probability is constant equal to 1 for all val-
ues of p �data not shown�. In contrast, both potentially avail-
able and actually used interference are strongly affected by
the decoherence. Both quantities decrease from their maxi-
mum value at p=0 and p=1 to a minimum at p=0.5, the
potentially available interference decreasing faster. However,
the interference never goes down to zero in this setting, as
can be seen in the insets of Figs. 11 and 12, contrary to the
case of the Grover algorithm above.

In Figs. 11 and 12, only two-thirds of the qubits are af-
fected by the decoherence. This may appear to be the main
reason why the potentially available interference does not
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FIG. 11. �Color online� Potentially available interference in the
Shor algorithm with decoherence through bit flips during the first
Walsh-Hadamard transformation, as a function of the bit flip prob-
ability p after each Hadamard gate, for n=12 �a�, n=9 �b�, n=6 �c�.
The symbols are nf =1 black circles, nf =2 red squares, nf =3 green
diamonds, nf =4 blue up triangles, nf =5 cyan down triangles, nf

=6 brown stars, nf =7 gray �, nf =8 violet +. The corresponding
success probability S is a constant equal to p=1 for all values of p
�data not shown�. Here and in the following figures all quantities are
averaged over all possible choices of the nf qubits in the first
register.
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FIG. 12. �Color online� Actually used interference in the Shor
algorithm with decoherence through bit flips during the first Walsh-
Hadamard transformation, as a function of the bit flip probability p
for n=12 �a�, n=9 �b�, n=6 �c�. The corresponding success prob-
ability S is a constant equal to S=1 for all values of p �data not
shown�; symbols as in Fig. 11.
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decrease to zero in the presence of bit flip decoherence, con-
trary to the case above with the Grover algorithm. In order to
investigate this question in more detail, we studied the inter-
ference produced when all n qubits are affected by bit flip
decoherence. The results are shown in Fig. 13 for n=6. Al-
though the two types of interference decrease faster than in
Figs. 11 and 12, none of them reaches exactly zero over the
whole interval of p values. Contrary to the case of Figs. 11
and 12, the success probability is now strongly affected by
the decoherence and is not preserved: the initial superposed

state is no longer protected against this type of decoherence,
since the second register is not supposed to be in an equal
superposition state in the exact algorithm. The data displayed
in Figs. 11–13 suggest that for Shor’s algorithm, although it
is possible to decrease the interference by a large amount
while keeping the success probability constant, it does not
seem possible to perform efficiently the computation with
zero interference.

Figures 14–16 display data obtained for decoherence
through phase flips. As before, phase flips are introduced
with probability p on qubits of the first register after appli-
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FIG. 13. �Color online� Interference and success probability in
the Shor algorithm with decoherence through bit flips during the
first Walsh-Hadamard transformation, as a function of the bit flip
probability p after each Hadamard gate, with all n qubits flipped,
for n=6: potentially available interference �a�, actually used inter-
ference �b�, success probability �c�. The inset is a closeup close to
the minimum; symbols as in Fig. 11.
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FIG. 14. �Color online� Potentially available interference in the
Shor algorithm with decoherence through phase flips during the first
Walsh-Hadamard transformation, as a function of the phase flip
probability p after each Hadamard gate, for n=12 �a�, n=9 �b�, n
=6 �c�. The inset is a closeup of the case n=12 close to the mini-
mum; symbols as in Fig. 11.
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cation of the Hadamard gates. The data displayed in Figs. 14
and 15 show that interference, both potentially available and
actually used, decreases to a minimum at p=0.5. The mini-
mum is lower than in the case of bit flips, and reaches zero
for actually used interference. In the case of potentially avail-
able interference, some residual interference is still present
when all qubits of the first register are affected. Figure 16
shows that in contrast to the case of bit flip errors, success
probability is strongly affected for phase flip errors. It de-
creases with the number of qubits affected and the value of p
until the algorithm is totally destroyed. Comparison with
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FIG. 15. �Color online� Actually used interference in the Shor
algorithm with decoherence through phase flips during the first
Walsh-Hadamard transformation, as a function of the phase flip
probability p after each Hadamard gate for n=12 �a�, n=9 �b�, n
=6 �c�. The inset is a closeup of the case n=12 close to the mini-
mum, showing that the value I=0 is indeed reached for p=0.5.
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FIG. 16. �Color online� Success probability in the Shor algo-
rithm with decoherence through phase flips during the first Walsh-
Hadamard transformation, as a function of the phase flip probability
p after each Hadamard gate for n=12 �a�, n=9, a=3 �b�, n=9, a
=6 �c�, n=6 �d�; symbols as in Fig. 11.
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Figs. 14 and 15 shows that the increase of interference be-
tween p=0.5 and p=1 is not reflected in a similar increase in
success probability. The interference produced in this case is
useless and does not serve the algorithm. It is similar to the
one found for random algorithms in �19�, where it was
shown that random algorithms produce on average an inter-
ference close to the maximum value. The case n=9, a=3 is
peculiar: in this particular instance �second figure in Fig. 16�,
after an initial decrease for small values of p, the success
probability increases for larger values of p, although it never
reaches values close to 1. We think this is due to the fact that
in this case the period is not a power of 2, and therefore the
final wave function is composed of broad peaks which for
such small sizes have a significant projection on many basis
states of the Hilbert space. A random-type wave function
produced by the destroyed Shor algorithm therefore has a
much larger projection on such a state than on a state com-
posed of sharp � peaks as in the two other values of n. To
sustain this hypothesis, we computed the success probability
for n=9 and a=6, where the period does divide the Hilbert
space dimension, and the final wave function is composed of
� peaks. In this case �last figure of Fig. 16� the success prob-
ability indeed goes to zero for large p values.

IV. CONCLUSIONS

In this paper we have investigated the role interference
plays in quantum algorithms by analyzing its change when
errors affect the performance of the algorithms. To this end
we subjected Grover’s search algorithm and Shor’s factoring
algorithm to different kinds of errors, namely systematic uni-
tary errors, random unitary errors, and decoherence due to bit
flips or phase flips. The study of systematic unitary errors
showed that in both algorithms the controlled destruction of
interference goes hand in hand with the decay of the success
probability. This reinforced the idea that interference is an
important ingredient necessary for the functioning of these
algorithms.

The case of random unitary errors shows, however, that a
large amount of interference is by no means sufficient for the
success of a quantum algorithm, since in some cases the
interference increases with decreasing success probability.
This effect is particularly pronounced for the actually used
interference in the case of Grover’s algorithm, where the
interference increases from about two i–bits for the unper-
turbed algorithm to an amount of the order n i–bits, close to
the maximum possible value, for sufficiently strong errors.
The success probability may decrease even below the classi-

cal value corresponding to unbiased random guessing, mean-
ing that the interference has become destructive. This can
also be understood in the context of the recent result that a
randomly chosen quantum algorithm leads with very high
probability to an amount of interference close to the maxi-
mum value �19�, such that randomizing a given quantum
algorithm with limited interference is very likely to increase
the interference, even if the algorithm itself is destroyed in
the process. Thus as to be expected, interference needs to be
exploited in the proper way to be useful.

The study of decoherence led to more complex results.
Phase flip errors destroy interference and in parallel decrease
the success probability, in the same way as systematic errors.
Interference decreases for small error probabilities, and reap-
pears again as destructive interference for error probabilities
approaching 1, leading to success probabilities which can
even drop below the classical value. In contrast, bit flip er-
rors performed after each initial Hadamard gate do not re-
duce the success probability of the algorithm, while affecting
the interference produced. In the case of Grover’s algorithm,
the potentially available interference can even go all the way
down to zero while the performance of the algorithm is un-
affected. This surprising result is due to the symmetry of the
equipartitioned state used as the initial state in Grover’s al-
gorithm, which is invariant under bit flips. It should be re-
marked, however, that the actually used interference does not
go to zero for Grover’s algorithm. As concerns Shor’s algo-
rithm, the bit flips destroy part but not all of the interference,
both potentially available and actually used, while also keep-
ing constant the success probability of the algorithm. These
results show that in general it is possible to reduce substan-
tially the interference produced while keeping the efficiency
of the algorithm. Grover’s algorithm seems to run correctly
with zero potentially available interference, but not with zero
actually used interference. In contrast, in none of our simu-
lations was Shor’s algorithm found to run efficiently without
some interference left, potentially available or actually used.
Thus while the relationship between interference and success
probability is a complex one, our results show quantitatively
that interference is an important ingredient of a quantum
algorithm.
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