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This paper analyzes the decoherence induced on a single qubit by the interaction with a spin chain with
nontrivial internal dynamics �XY-type interactions�. The aim of the paper is to study the existence and prop-
erties of the so-called universal regime, in which the decoherence time scale becomes independent of the
strength of the coupling with the environment. It is shown that, although such a regime does exist, as previ-
ously established by Cucchietti et al. �Phys. Rev. A 75, 032337 �2007��, it is not a clear signature of a quantum
phase transition in the environment. In fact, this kind of universality also exists in the absence of quantum
phase transitions. A universal regime can be related to the existence of an energy scale separation between the
Hamiltonian of the environment and the one characterizing the system-environment interaction. The results
presented also indicate that in the strong-coupling regime the quantum phase transition does not produce an
enhancement of decoherence �as opposed to what happens in the weak-coupling regime�.
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I. INTRODUCTION

Decoherence �2–4� is the main obstacle that prevents us
from taming the quantum world and taking advantage of its
remarkable properties. In fact, uncontrolled interactions of a
quantum system with its environment result in a dramatic
suppression of quantum phenomena such as interference and
entanglement within the system. The understanding of this
dynamical process is essential in order to devise quantum-
information processors �5�, not only to find ways to mini-
mize �or control� the effects induced by the environment but
also to design appropriate error-correction techniques �6–8�
or error-protection strategies �using, for example,
decoherence-free subspaces to encode quantum information
�9��.

In recent years the study of spin-bath environments has
attracted much attention �10–19� since for some qubit sys-
tems this type of environment could provide a quite realistic
model of the relevant decoherence process �when the model
of an environment as a collection of noninteracting harmonic
oscillators fails to describe the observed behavior�. The study
of decoherence induced by an environment with nontrivial
dynamics has attracted special interest. For bosonic environ-
ments, various recent studies focus on the influence of non-
linear and chaotic effects. In some cases, such effects seem
to enhance the capability of a given reservoir to efficiently
induce decoherence �20,21�. For spin baths, the problems
considered so far include, for example, the effect of intraen-
vironment interactions for a low-temperature spin bath �11�
and the decay of coherence caused by an environment of
independent spins, in regimes dominated by the interaction
Hamiltonian or the Hamiltonian of the system �12�. Other
authors have studied the consequences of quantum phase
transitions in the environment, in the central spin model
where a qubit interacts homogeneously with all spins in a
chain with XY Hamiltonian �1,13� and in a more general case
where the qubit interacts with an arbitrary number of sites in
the chain �14�. The loss of entanglement of a system formed
by two qubits has been examined in cases with homogeneous
couplings to the same XY chain �15�, and with nonhomoge-

neous couplings to chaotic, integrable, and mixed environ-
ments �16�. Other effects were analyzed using numerical
simulations �which are limited by the exponential scaling of
the required resources� �17,18�.

As remarked by Cucchietti, Fernandez-Vidal and Paz in
�1�, another interesting aspect of decoherence studies is the
following: it could be possible to profit from the decoherence
process using the quantum system as a probe to learn about
properties of the environment. In �1� an example was pro-
posed and analyzed: the main idea was to use one qubit as a
detector for a quantum phase transition taking place in the
environment, as this would become manifest in certain uni-
versality features of the decoherence process. In this paper
we shall examine more carefully the regime of universal de-
coherence that was the focus of that proposal. The system we
will consider is formed by one qubit interacting with an en-
vironment given by a chain of spins with XY Hamiltonian.
We will study the existence and features of the universal
regime in this problem and show that the conclusions in �1�
are not generic and must be taken with a grain of salt. We
will show that the universal regime is not always Gaussian,
as had already been noted in �14�. After discussing the prop-
erties of the Gaussian and non-Gaussian universal regimes,
we will analyze the connection between the universality and
the existence of a quantum phase transition in the environ-
ment.

The paper is organized as follows. In Sec. II we introduce
the model. We describe both the system and the environment
by defining their Hamiltonians, and we present the main for-
mulas we will use to determine the decay of quantum coher-
ence. Section III is devoted to the regime of universal deco-
herence in the Gaussian case considered in �1�; in Sec. IV we
study the non-Gaussian case; in Sec. V we discuss the rea-
sons for the existence of the universal regime. Finally, in
Sec. VI we summarize our results.

II. THE MODEL: ONE CENTRAL QUBIT INTERACTING
WITH A SPIN CHAIN

We will study the decoherence induced on a spin-1 /2 par-
ticle �which we shall call “the system” or “the qubit”� by the
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coupling to an environment formed by a chain of N spin-1 /2
particles. We neglect the self-Hamiltonian of the system, and
consider that the qubit interacts equally with all the spins in
the chain �Fig. 1�. The Hamiltonian of the environment chain
will be taken as

HC = − �
j
�1 + �

2
XjXj+1 +

1 − �

2
Y jY j+1 + �Zj� , �1�

where periodic boundary conditions are imposed, and the
three Pauli operators acting on the jth site of the chain are
denoted as Xj, Y j, and Zj. The parameter � determines the
anisotropy in the x-y plane and � gives a magnetic field in z
direction ��=1 corresponds to the Ising chain with transverse
field�. This model is critical for �=0, �� � �1, and for
�= �1, which corresponds �in the limit N→�� to a quantum
phase transition from a ferromagnetic to a paramagnetic
phase. Throughout the paper, we shall discuss the effects of
this phase transition on the decoherence of the system.

The interaction Hamiltonian is chosen as

Hint = − g�1	
1� � �
j

Zj �2�

with �0	 and �1	 the two eigenstates of the Pauli operator for
the qubit ZS. Thus, depending on the state of the system, the
environment evolves with a different effective Hamiltonian
Ha, a=0,1, given by

Ha = HC − ag�
j

Zj ,

which is an effective change of the external field as �
→��a�=�+ag.

We assume the initial state of the universe formed by the
system and the environment to be pure and separable �i.e.,
the environment is not correlated with the system�:

�SE�0� = ��	
�� � �E0	
E0� �3�

with ��	=� �0	+	 �1	. Our goal is to study the evolution of
the reduced density matrix of the system �obtained from the
state of the universe by tracing out the environment�. Be-
cause of the special form of the Hamiltonian, the temporal
dependence of the reduced density matrix � can be formally
obtained as follows. In the computational basis of the system
�formed by the eigenstates of ZS�, � can be written as

��t� = �
ab=0,1

�a,b�t��a	
b� . �4�

The evolution of the matrix elements of � is given by

�a,b�t� = �a,b�0�
E0�eiHbte−iHat�E0	 �5�

�we are using units such that 
=1�. As the total Hamiltonian
commutes with ZS, the diagonal terms �a,a remain constant.
The amplitude of each off-diagonal term is instead multiplied
by the overlap between two states of the environment that
correspond to the two different evolutions of the chain ac-
cording to the different system states. To analyze the deco-
herence induced by the spin chain we will consider the
square modulus of this factor, which following �14,22� we
shall call the Loschmidt echo:

L�t� = �
E0�eiH0te−iH1t�E0	�2. �6�

This echo is simplified if we assume the environment to be
initially in its ground state. In such a case, one of the evolu-
tion operators in the expression acts trivially, and the echo is
then equal to the survival probability of the initial state after
being evolved with the effective Hamiltonian H1.

While the initial state is pure and separable, as a conse-
quence of the interaction the qubit becomes entangled with
the chain, and its reduced density matrix becomes mixed.
The purity of the qubit as a function of time can be computed
from the Loschmidt echo as:

Tr��2�t�� = 1 − 2��	�2�1 − L� . �7�

To find the solution L�t� for this problem we first note that
the Hamiltonians Ha of the chain can be mapped onto a
fermion system by means of the Jordan-Wigner transforma-
tion �23�:

Xj = exp�i��
k=1

j−1

ck
†ck��cj + cj

†� , �8�

Y j = i exp�i��
k=1

j−1

ck
†ck��cj − cj

†� , �9�

Zj = 2cj
†cj − 1. �10�

Using this, up to a correction term associated with boundary
effects, the Hamiltonians can be written as

Ha = − �
j

�cj
†cj+1 + cj+1

† cj� + ��cj
†cj+1

† + cj+1cj�

+ ��a��2cj
†cj − 1� . �11�

Because the qubit interacts homogeneously with the
chain, the Hamiltonians Ha are translationally invariant and
can be diagonalized by a standard method. First we Fourier-
transform the creation and annihilation operators c, c†. Then
we define new operators by a Bogoliubov transformation that
preserves momentum, mixing only the Fourier-transformed
operators c̃k and c̃−k

† :

FIG. 1. The model: a one-qubit system equally coupled to all
sites of a spin chain.
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c̃k = �k
�a� cos�k

�a�

2
� − �−k

†�a� sin�k
�a�

2
� . �12�

The Bogoliubov coefficients obey the relation

tan�k
�a�� =

� sin�2�k/N�
��a� + cos�2�k/N�

�13�

and the particle energies are

Ek
�a� = 2��� sin�2�k/N��2 + ���a� + cos�2�k/N��21/2.

�14�

The mixing between creation and annihilation operators
thus depends on angles that change when the external field is
varied as a consequence of the interaction with the central
system. Because this mixing preserves momentum, the
square modulus of the factor modulating the off-diagonal
terms of � can be factorized, giving

L�t� = �
1�k�N/2

�1 − sin2��k�sin2�Ek
�1�t�� �15�

with �k=k
�1�−k

�0�.

III. THE GAUSSIAN UNIVERSAL REGIME

The problem under study was analyzed in �1� for an Ising
��=1� environment chain. In that paper, the existence of a
universal decoherence regime was discovered, for ��1 and
g�1. This regime was later observed and discussed by other
authors �14�. The universal regime found in �1� �illustrated in
Fig. 2� is characterized by the fact that the echo has a Gauss-
ian envelope whose width is independent of the strength of
the coupling to the environment, parametrized by g. The ex-
istence of a universal �i.e., g-independent� Gaussian enve-
lope was shown in �1� to be a consequence of certain prop-
erties of the distribution of the Bogoliubov coefficients
appearing in Eq. �12�. In particular, it was related to the fact
that for �=1, ��0, and large enough g, the angles �k are
uniformly distributed.

In what follows we shall examine in more detail the fea-
tures of this Gaussian universal regime. The observed uni-
versality is reached when the strength g of the interaction is
above a certain threshold. The value of this threshold seems
to be independent of the length of the chain N, but it depends
on �. The Gaussian envelope behaves as exp�−�t2N /4�; the
asymptotic value of �, the parameter determining the decay
width, is roughly 1. The dependence of � on the strength of
the perturbation g is analyzed in Fig. 3, for � between 0 and
0.9. We must note, however, that as � approaches 1 the en-
velope acquires a slowly decaying tail, so that the Gaussian
fit is not good at long times. It is clear from the figure that,
for �=0 �top curve�, the universality is reached faster than
for �=0.9 �bottom curve�. The dependence of the threshold
on � is not surprising: by considering � close to unity we are
taking an initial state which approaches the critical vacuum
state from below. In such a case, the effect of the perturba-
tion must be smaller than for ��0, as the overlap between
the two ground states of the effective Hamiltonians is ex-
pected to be larger. Nevertheless, it must be noted that the
dependence of � on g is rather weak. As seen in the figure,
for �=0.9 the changes in � are only of the order of 10% for
g varying from 10 to 75. Besides, the fact that � decreases
with � indicates that, contrary to the weak-coupling case, the
proximity to the quantum phase transition is not responsible
for an enhancement of decoherence. Decoherence is actually
weaker for larger �, because the spins tend to align with the
external field.

The values of � shown in Fig. 3 correspond to Gaussian
fits of the peaks in the evolution of the echo as a function of
time. They can also be approximated by a simple analytical
formula as follows. In the expression of the echo �15� we
consider all energies to be Ek

�1�=E+�k with �k�E �which in
this model is satisfied for large g�. All the factors in the echo
thus oscillate with almost the same frequency, the differences
�k being responsible for the echo decay. Evaluating near the
peaks, t=n� /E+�t, and using Taylor expansions in �t and
�k, we find that the frequency of the peaks corresponds to an
energy E given by

0 0.2 0.4
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L

FIG. 2. Echo as a function of time for the case considered by
Cucchietti et al.: a central one-qubit system interacting equally with
all sites of a spin chain for �=1, �=0 �we take N=100�. In this
case, the universal regime is already reached for the curves shown,
corresponding to g=5 �dash-dotted�, 10 �dashed�, and 40 �full�; the
dotted line indicates the universal �Gaussian� envelope.

20 40 60
g

0.9

1

α

FIG. 3. The echo for a central one-qubit system interacting
equally with all sites of a spin chain displays, for the case �=1,
��1, g�1, a Gaussian envelope of the form exp�−�t2N /4�. The
value of � is plotted as a function of g for �=0 �full�, 0.3 �dashed�,
0.6 �dash-dotted�, and 0.9 �dotted�, and a chain length N=100. The
fits are taken considering peaks for which the echo is over 1 /e.
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E =

�
k

sin2��k�Ek
�1�

�
k

sin2��k�
, �16�

and the value of the echo at these peaks can be approximated
by exp�−�t2N /4� with

�
N

4
= �

1�k�N/2
sin2��k��Ek

�1� − E�2. �17�

This formula is similar to the one given in �1�. However,
there is a substantial difference: the approach described in
�1� basically takes into account the dispersion of the energies
about the mean value. This gives a good approximation for
the case �=0, which was the one analyzed in that paper. But
it fails to reproduce the behavior of the echo as � is increased
close to its critical value, wrongly predicting an enhancement
of decoherence by the quantum phase transition in the
strong-coupling case �as was asserted in �24��. This effect,
which can indeed be found for weak coupling, is not ob-
served here for large g. The weight sin2���k� inside the sum
appearing in �16� is essential in the estimation of the decay
width of the Gaussian for ��1. In Fig. 4 we show the com-
parison between our approximation, the one given in �1�, and
the Gaussian fit of the results. Both approximations are good
for ��0. For larger values of � our approximation underes-
timates decoherence, but displays the right behavior at the
critical point.

IV. A NON-GAUSSIAN UNIVERSAL REGIME

It is interesting to notice that the Gaussian nature of the
envelope disappears if we consider an environment with a
more complex evolution. In fact, the Gaussian envelope is
seen in the Ising ��=1� case. For other values of the aniso-
tropy parameter � there is a Gaussian regime for short times
which is followed by power-law decay �Fig. 5�. It is worth
mentioning that the transition from a Gaussian to a power-

law decay was also observed for the decoherence induced by
other spin baths when changing the Hamiltonian of the en-
vironment �10,12�.

Nevertheless, the universal behavior is similar to that in
the Gaussian case, namely, once the interaction strength g is
over a certain threshold the envelope becomes g indepen-
dent. Even though the study of the envelope is not as simple
as for �=1, as it cannot be characterized by a single param-
eter, it is possible to see that the value of the threshold in-
creases as � approaches unity, while it is not specially sen-
sitive to � or N, in accord with the previous results.

Taking into account the analysis in �1�, the non-Gaussian
character of the envelope is not surprising, as for ��0 the
conditions that were shown to lead to the Gaussian shape are
not satisfied: namely, the angles �k in �15� are not randomly
distributed, as most of the Bogoliubov coefficients do not
vary significantly when the transverse field changes. Besides,
the width of the envelope increases as �→0, as seen in Fig.
6. This should not be confused with the fact that the echo is
exactly equal to 1 for �=0, as in this case the perturbation
commutes with the chain Hamiltonian ��→0 is a singular
limit�. For small but nonzero �, it is the top of the envelope

0 0.5 1 1.5
λ

0

0.5

1

1.5

2

α

FIG. 4. The echo for a central one-qubit system interacting
equally with all sites of a spin chain displays, for the case �=1,
��1, g�1, a Gaussian envelope of the form exp�−�t2N /4�. The
value of � is plotted as a function of � for g=75 �full�, from Gauss-
ian fits considering peaks for which the echo is over 1 /e. These are
compared with our analytic approximation �dashed� and the one
from the formula given in �1� �dotted�.
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FIG. 5. Echo as a function of time for a central one-qubit system
interacting equally with all sites of a spin chain of length N=100,
for �=0.1, �=0. In this case, the universal regime is also reached
for the curves shown, corresponding to g=5 �dashed� and 20 �full�,
but the envelope is no longer Gaussian. The dotted lines indicate the
Gaussian behavior at short times, followed by a power-law decay
��t−1.1�.
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FIG. 6. Envelope of the echo for a central qubit interacting with
all sites of a spin chain of length N=100 ��=0, g=50�. Different
curves correspond to �=0.1 �full�, 0.2 �dashed�, 0.5 �dotted�, and 1
�dash-dotted�. The Gaussian regime is seen only for �=1, and the
width of the envelope decreases with increasing �.
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that approaches 1 as � is decreased. This can be qualitatively
explained by looking at the angles in �13�: when � is small,
all angles are close to zero, except those for which the de-
nominator is close to zero too �the low-energy excitations in
H0�. Only these low-energy states have large angle variations
when the perturbation is introduced, and they are the only
ones contributing to the echo decay in �15�. If we take a large
g and a small �, all the relevant frequencies will be very
similar �approximately 2g�, so that they will all oscillate at
the same time, preventing the decay of the envelope. We thus
find that, in the strong-perturbation regime, decoherence is
weaker for small �.

It is worth noticing that this is opposite to the case of
small perturbations, where the proximity to the critical re-
gion �=0, �� � �1 is responsible for the enhancement of de-
coherence �13�; the argument we have just outlined is no
longer valid here as for small � and g, the frequencies in-
volved will be small and with large dispersion. Once more,
we find that the relation between decoherence and quantum
phase transitions in the strong-coupling regime is very dif-
ferent from the weak-coupling case.

V. IS THE UNIVERSAL REGIME RELATED TO THE
QUANTUM PHASE TRANSITION?

In �1� it was argued that the universality of the envelope
may be taken as an indicator of the existence of a quantum
phase transition. However, the derivation of the universal
Gaussian decay in �1� does not explicitly use the existence of
such a transition but is based upon a simple hypothesis on
the distribution of the eigenstates of the two effective Hamil-
tonians H0 and H1. From the evidence presented in that paper
�confirmed by our studies here and by other authors �14�� the
universal behavior is observable for g�1, which, if ��1, is
enough to drive the system along the phase transition.

But from our studies a result becomes also evident: the
existence of a universal regime is not a good indicator for
detecting a quantum phase transition or structural unstability
of the environment. This can be seen from the following
example: by taking ��1, a regime where the envelope be-
comes independent of the strength of the perturbation also
appears �see, for example, Fig. 7�. The main difference be-
tween this regime and the one previously obtained for
��1 is that in this new case decoherence is weaker �the
bottom of the envelope is not L=0, and the decay is slower�.
In fact, decoherence becomes weaker and weaker as � is
increased, which is entirely natural as the spins tend to align
in the direction of the external field. But this new universal
regime cannot be related to the existence of a phase transi-
tion, as both effective Hamiltonians in this case lie on the
same side.

The fact that there are regimes of universal decoherence
that are not related to quantum phase transitions was already
discussed in �1� for complex systems. It is then not so sur-
prising that in the case of the Ising chain the universal re-
gime can be found for values of � such that no phase tran-
sition is involved. One might think that the transition is
related not to the mere existence of the regime, but to scaling
features, for instance how rapidly the regime is reached and

how the threshold depends on N. In Fig. 8 we study this
problem. We take �=1 fixed and different values for N and �
�0, 0.9, and 1.1�. We study the envelopes until they decay to
a value of 1 /e; in this range and for these values of � the
Gaussian shape, exp�−�t2N /4�, is a good approximation
�N /4 is used as a scaling factor for ��. The figure shows no
significant changes in the behavior between �=0.9 and 1.1,
even though these cases are at different sides of the critical
point. There is instead a clear distinction from the plots for
�=0, for which universality is reached much faster �as was
noted in Sec. III�.

We can present other examples of similar situations, for
instance, the case in which the one-qubit system is not cen-
tral, but is inhomogeneously coupled to the different sites of
the chain �a problem that has been treated in �14��: Figure 9
shows the upper and lower envelopes of the echo for a qubit
that interacts with only one site of the chain. In this case the
environment has a phase transition but the condition for criti-
cality is �i�i=1 �for �=1� �25�. Then, even for large values
of g the interaction with the system may not be strong
enough to drive the phase transition in the environment �in
the homogeneous case, the situation was quite the opposite�.
Of the three cases in Fig. 9 only in the second one
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FIG. 7. Envelope of the echo as a function of time for a central
one-qubit system, with N=100, �=1, �=2. The envelopes for
g=40 �full�, 60 �dashed�, and 80 �dotted� are very alike, even
though no phase transition is involved. We note that there is a
“bottom” of the envelope which is not zero, and which gets closer
to 1 when � is increased, as decoherence becomes weaker.
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FIG. 8. Envelope of the echo for �=1 is adjusted at short times
by a Gaussian fit exp�−�t2N /4�. The value of � is plotted as a
function of g for different values of �: 0 �left�, 0.9 �middle�, and
1.1. In each plot the curves correspond to N=40 �full�, 60 �dashed�,
80 �dash-dotted�, and 100 �dotted�.
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��=0.99� the perturbation can drive a phase transition. How-
ever, the fact that the curves are quite independent of g is
observed not only in that case but also in the other two
��=0.5, top, and �=1.05, bottom�.

These results suggest that the existence and features of the
universal regime are not clearly related to the phase transi-
tion. As this regime is reached for large coupling, it is natural
to think that, in this case, universality might instead be a
consequence of a separation of time scales. In the strong-
coupling limit, the fast oscillation �with frequency of order
g� is thus given by the system-environment interaction, and
the envelope is associated to the “perturbation” introduced
by the chain Hamiltonian. In what follows we shall give a
simple analytic derivation supporting this idea. For definite-
ness, we explain it in the central qubit case. We consider the
evolution of the chain under the Hamiltonian H1=HC−gZT,
with HC of order 1, g�1, and ZT=� jZj. We then decompose
the state of the chain in the form

���t�	 = e−iH1t�E0	 = eigtZT����t�	 �18�

where ����t�	 contains the slow evolution according to the
equation

d

dt
���	 = − ie−igtZTHCeigtZT���	 , �19�

which determines the time-dependent Hamiltonian in this in-
teractionlike picture. The formal solution is thus given by

����t�	 = exp�− i�
0

t

dt�e−igt�ZTHCeigt�ZT��E0	 . �20�

The exponent in the evolution operator for ���	 can be ex-
panded in the computational basis of the chain, formed by

the eigenstates of ZT. These are denoted as �k�	= �k1 , . . . ,kN	,
with kj =0,1, and have eigenvalues �k=� j�−1�kj. For g�1
we can approximate the exponent in the form

�
0

t

�
k�,k��

e−igt���k−�k���HC�k�,k���k�	
k���

� t�
k�,k��

��k,�k�
�HC�k�,k���k�	
k��� = tHC� , �21�

which means the slow evolution is, in the strong-coupling
limit, given by the chain Hamiltonian reduced to a block
diagonal form HC� , where blocks correspond to the different
eigenvalues of the interaction term. This derivation can be
repeated in more general situations, provided that all the en-
ergy differences ��k−�k�� are either zero or over a finite gap.
This approximation can now be inserted in the echo:

L�t� � �
E0�eigtZTe−itHC� �E0	�2, �22�

where we see that the evolution operator can be factorized
into a fast oscillation with frequency of order g, and a slow
evolution governed by an effective chain Hamiltonian HC� .
This slow evolution determines the envelope, and has a neg-
ligible dependence on g �for large enough g�. In this way, we
have found an example of a universal regime that has no
connection with phase transitions, and which is due to
energy-scale separation.

The approximation we have derived allows for short-time
expansions of the envelope only. This can be useful in cases
with no translation invariance, where the expressions of the
echo are not as simple as �15�; for example, the case of one
qubit interacting with one site of the chain shown in Fig. 9.
In the simplest approach, valid at very short times �compared
to the chain evolution scales� we can consider the chain
Hamiltonian only for the determination of the initial state
�E0	, and neglect its effect in the subsequent evolution. The
echo then takes the form

L�t� � 1 − �1 − 
Z	2�sin2�gt� , �23�

where the mean value is taken over one site, in the ground
state of the isolated chain. The short-time behavior is then
determined by the magnetization in the z direction, which is
somehow natural because this is the operator appearing in
the perturbation. From this formula we learn that at short
times the echo oscillates with frequency 2g, taking values
between 1 and 
Z	2. We can thus see that the differences in
the initial amplitudes of the envelopes in Fig. 9 are due to the
increasing alignment of the spins with the external field. Fur-
ther expansions of the operator exp�−itHC� � allow in the same
way for the description of the short-time decay of the enve-
lope.

VI. CONCLUSIONS

We have studied the decoherence induced on a one-qubit
system by the interaction with a spin chain with XY Hamil-
tonian. For this purpose we have analyzed the Loschmidt
echo, related to the decay of the off-diagonal terms in the
reduced density matrix of the system. We have confirmed the
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FIG. 9. Envelope of the echo as a function of time for a one-
qubit system interacting with one site of a spin chain with N=100,
�=1. The plot in the top shows the case �=0.5, the middle corre-
sponds to �=0.99, and the bottom to �=1.05. In each figure a full
curve is plotted for g=50, and a dashed curve for g=30; both are
very similar, regardless of the proximity to the critical point �=1.
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existence of a regime of universal decoherence, namely, the
fact that for large enough couplings the envelope of the echo
becomes independent of the coupling intensity. However, we
found that this behavior does not provide a clear indication
to assure the existence of a quantum phase transition in the
environment. As conjectured in �1� a quantum phase transi-
tion may produce, quite generally, a universal regime of de-
coherence. But such a regime also appears in other situa-
tions. Even though the threshold for the interaction to reach
the universal regime can vary depending on the problem un-
der study, it is not clear either whether this threshold can be
related to the phase transition. Furthermore, by simple ana-
lytic arguments we have shown that universality can be par-
tially explained by the large scale separation between the
energies of the environment and the energies, and energy
differences, of the interaction Hamiltonian.

We have also analyzed some features of the time envelope
of the echo for different values of the Hamiltonian param-
eters, corresponding to Gaussian and non-Gaussian decays.
For the Gaussian envelope �found in the Ising case, with

�=1,��0, and also in the short-time behavior in more gen-
eral cases�, we have derived a formula for the time width of
the decay which is an improvement of the one presented in
�1�. This formula is in better agreement with the exact results
for a wider range of values of �: in particular, it indicates
that there is no enhancement of decoherence on approaching
the quantum phase transition in the strong-coupling regime.
This is to be contrasted with the weak-coupling case, where
decoherence sharply increases in the proximity of the critical
point. Throughout the paper, we have found more examples
of this situation: we do not see a clear enhancement of de-
coherence at ��1 for a qubit interacting with only one site
of the chain, nor for a central qubit when we take � close to
0. This suggests that the relation between decoherence and
phase transitions is not the same in different coupling re-
gimes.
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