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Christandl et al. have noted that the d-dimensional hypercube can be projected to a linear chain with d+1
sites so that, by considering fixed but different couplings between the qubits assigned to the sites, the perfect
state transfer (PST) can be achieved over arbitrarily long distances in the chain [Phys. Rev. Lett. 92, 187902
(2004); Phys. Rev. A 71, 032312 (2005)]. In this work we consider distance-regular graphs as spin networks
and note that any such network (not just the hypercube) can be projected to a linear chain and so can allow PST
over long distances. We consider some particular spin Hamiltonians which are the extended version of those of
Christandl er al. Then, by using techniques such as stratification of distance-regular graphs and spectral
analysis methods, we give a procedure for finding a set of coupling constants in the Hamiltonians so that a
particular state initially encoded on one site will evolve freely to the opposite site without any dynamical
control, i.e., we show how to derive the parameters of the system so that PST can be achieved. It is seen that
PST is only allowed in distance-regular spin networks for which, starting from an arbitrary vertex as reference
vertex (prepared in the initial state which we wish to transfer), the last stratum of the networks with respect to
the reference state contains only one vertex; i.e., stratification of these networks plays an important role which
determines in which kinds of networks and between which vertices of them, PST can be allowed. As examples,
the cycle network with even number of vertices and d-dimensional hypercube are considered in details and the

method is applied for some important distance-regular networks.
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I. INTRODUCTION

The transfer of a quantum state from one part of a physi-
cal unit, e.g., a qubit, to another part is a crucial ingredient
for many quantum information processing protocols [1]. Cur-
rently, there are several ways of moving data around in a
quantum computer. In a quantum-communication scenario,
the transfer of quantum states from one location A to another
location B, is rather explicit, since the goal is the communi-
cation between distant parties A and B (e.g., by means of
photon transmission). Equally, in the interior of quantum
computers good communication between different parts of
the system is essential. The need is thus to transfer quantum
states and generate entanglement between different regions
contained within the system. There are various physical sys-
tems that can serve as quantum channels, one of them being
a quantum spin system. This can be generally defined as a
collection of interacting qubits (spin-1/2 particles) on a
graph, whose dynamics is governed by a suitable Hamil-
tonian, e.g., the Heisenberg or XY Hamiltonian. Quantum
communication over short distances through a spin chain, in
which adjacent qubits are coupled by equal strength has been
studied in detail, and an expression for the fidelity of quan-
tum state transfer has been obtained [2,3]. Similarly, in Ref.
[4], near perfect state transfer was achieved for uniform cou-
plings provided a spatially varying magnetic field was intro-
duced. The propagation of quantum information in rings has
been also investigated in [5]. After the seminal paper by
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Bose [2], in which the potentialities of the so-called spin
chains have been shown, several strategies were proposed to
increase the transmission fidelity [5] and even to achieve,
under appropriate conditions, perfect state transfer [6—11].
All of these proposals refer to ideal spin chains in which only
nearest-neighbor couplings are present. In Refs. [6,7], the
d-dimensional hypercube with 27 vertices has been projected
to a linear chain with d+1 sites so that, by considering fixed
but different couplings between the qubits assigned to the
sites, the PST can be achieved over arbitrarily long distances
in the chain. In fact this is possible since the hypercube is a
graph which is contained in an important category of graphs
called distance-regular graphs. These graphs possess very
useful properties, for instance, for these graphs one can clas-
sify the vertices in terms of a distance called shortest path
distance so that the graph is stratified into distinct strata
(these strata have been called in Refs. [6,7] as columns for
the hypercube). The other preference of distance-regular
graphs is that, these graphs are underlying graphs of associa-
tion schemes [12] and so possess some useful algebraic prop-
erties. In fact, the theory of association schemes [12] has its
origin in the design of statistical experiments. The connec-
tion of association schemes to spin models [13,14], algebraic
codes, strongly regular graphs, distance regular graphs, de-
sign theory, etc., further intensified their study. In this paper
we use the algebraic properties of distance-regular networks
to note that any distance-regular network (not just the hyper-
cube) with diameter d=N-1 (which contains d+1=N
strata), can be projected to a linear chain with N sites and so
can allow PST over long distances. This is due to the fact
that, the adjacency matrix corresponding to a given distance-
regular network takes a tridiagonal form in the so-called
“stratification space” spanned by stratification basis (this
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space has been also called “column space” by Christandl et
al. in [6,7] and “walk space” by Jafarizadeh et al. in Ref.
[15]). The more realistic case of long-range couplings, in
particular magnetic-dipole-like couplings, has been studied
[16,17]. In Ref. [16], it has been demonstrated that one can
incorporate additional terms in the Hamiltonian by solving
an inverse eigenvalue problem. Also in [16], Kay has shown
that PST or, at least, high transmission fidelity can be ob-
tained by appropriately choosing the system parameters,
such as local magnetic fields and interspin distances.

In this work we focus on the situation in which state
transference is perfect, i.e., the fidelity is unity. We will con-
sider distance-regular graphs as spin networks in the sense
that with each vertex of a distance-regular graph a qubit or a
spin is associated (although qubits represent generic two
state systems, for convenience of exposition we will use the
term spin as it provides a simple physical picture of the net-
work). Then, we use some techniques such as stratification
and spectral analysis methods, in order to find suitable cou-
pling constants in some particular spin Hamiltonians so that
perfect transference of a quantum state between antipodes of
the networks can be achieved. More clearly, for a given
distance-regular spin network first we stratify the network
with respect to an arbitrary chosen vertex of the network
called reference vertex (for details about stratification of
graphs, see [15,18,19]). Then, we consider coupling con-
stants so that vertices belonging to the same stratum with
respect to the reference vertex possess the same coupling
strength with the reference vertex whereas vertices belonging
to distinct strata possess different coupling strengths. Then
we give a method for finding a suitable set of coupling con-
stants so that PST over antipodes of the networks is possible.
It is seen that PST is only allowed in distance-regular spin
networks for which, starting from an arbitrary vertex as ref-
erence vertex (prepared in the initial state which we wish to
transfer), the last stratum of the networks with respect to the
reference state contains only one vertex (node); i.e., stratifi-
cation of these networks plays an important role which de-
termines in which kinds of networks and between which ver-
tices of them, PST can be allowed. As examples we will
consider the cycle networks with even number of vertices
and d-dimensional hypercube networks in details and some
important distance-regular networks in Appendix C.

The organization of the paper is as follows: In Sec. II, we
review some preliminary facts about distance-regular graphs,
their stratifications and spectral analysis techniques. Section
IIT is devoted to PST over antipodes of distance-regular spin
networks, where a method for finding suitable coupling con-
stants in particular spin Hamiltonians so that PST is possible,
is given. The paper is ended with a brief conclusion and three
appendixes.

II. PRELIMINARIES
A. Distance-regular graphs and their stratifications

Distance-regular graphs lie in an important category of
graphs which possess some useful properties. In these
graphs, the adjacency matrices A; are defined based on short-
est path distance denoted by d. More clearly, for a given
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finite graph I'=(V,E) where V denotes the finite set of its
vertices and E the set of its edges [two vertices a, BE V are
adjacent if (a, B) EE], if d(«,B) (distance between the ver-
tices a, BE V) be the length of the shortest walk connecting
a and B (recall that a finite sequence ag,q;,...,qa,EV is
called a walk of length n if a;_;~ «; for all k=1,2,...,n,
where a;_; ~ a; means that o;_, is adjacent with a;), then
the adjacency matrices A; for i=0,1,...,d in distance-
regular graphs are defined as (A;),z=1 if and only if
da,B)=i and (A),z=0 otherwise, where d:
=max{d(a, B): a, BE V} is called the diameter of the graph.

Definition. An undirected connected graph I'=(V,E) is
called distance-regular graph with diameter d if it satisfies
the following distance-regularity condition.

For all i,j,k€{0,1,...,d}, and «, B8 with d(a, B)=k, the
number

pi=HyeVia(ay)=i and a(v.0)=j} (2.1)
is constant in that it depends only on k,i,j but does not
depend on the choice of « and . This number is called the
intersection number.

In Appendix B 1 some properties of distance-regular
graphs have been given, where it has been noted that for the
corresponding adjacency matrices A; we have

A;=Pi(A),

i=0,1,....d, (2.2)

where, P; is a polynomial of degree i. As an immediate con-
sequence of (2.2), one can show that the eigenvalues of the
adjacency matrix A; denoted by P for j=0,1,...,d are
polynomials of eigenvalues P;;=\; (eigenvalues of the adja-
cency matrix A=A,), i.e., one can write P;;=P;(\;), where P
is the eigenvalue matrix associated with the graph which is
defined as a d X d matrix such that its entry at jth row and ith
column is the jth eigenvalue of the ith adjacency matrix of
the graph. As it has been illustrated in Appendix B 2, in
distance-regular graphs polynomials P; are easily obtained
via three-term recursion relations so that we need only to
know the intersection array (defined in Appendix B 1) of the
graphs.

In the rest of this section, we recall the notion of stratifi-
cation in distance-regular graphs which will play an essential
role in our investigation of PST over these graphs.

For a given vertex a€V, let I'(a):={BEV:d(a, B)=i}
denote the set of all vertices being at distance i from «. Then,
the vertex set V can be written as disjoint union of I';(«) for
i=0,1,2,....d, ie.,

d

V=UT\(a), (2.3)
=0

In fact, by fixing a point 0 €V as an origin of the graph,
hereafter referred to as reference vertex, the relation (2.3)
stratifies the graph into a disjoint union of associate classes
I';(0) (called the ith stratum or ith column with respect to o).
Let [>(V) denote the Hilbert space of C-valued square sum-
mable functions on V. With each associate class I';(0) we
associate a unit vector in [>(V) defined by
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)= S |a),

(2.4)
VK; €T j(0)

where |@) denotes the eigenket of ath vertex at the associate
class T;(0) and «;=|T';(0)| is called the ith valence of the

graph.
We will refer to the space spanned by unit vectors |¢;),
i=0,1,...,d as “stratification space.” This space has been

called “column space” in [7] and “walk space” in [15].
Childs et al. [20] note that the evolution with the adjacency
matrix A=A, (which is considered in continuous-time quan-
tum walks on graphs [19-24]) for the class of networks with
this stratification, starting in |¢y), always remains in the
stratification space because every vertex in stratum (column)
i is connected to the same number of vertices in stratum i
+1 and every vertex in stratum i+ 1 is connected to the same
number of vertices in stratum i.

Now, let A; be the ith adjacency matrix of the graph
I'=(V,E). Then, for the reference state |¢y) (|¢y)=|0), with
0 €V as reference vertex), one can write

Algd= 2 |B). (2.5)
BET;(0)
Then, by using (2.4) and (2.5), we obtain
I
Al = Vil b)) (2.6)

One should notice that, the above introduced stratification is
reference state independent, namely one can choose any ar-
bitrary vertex as reference vertex (site). In this paper, we will
deal with PST over particular distance-regular graphs (as
spin networks) for which starting from an arbitrary vertex as
reference vertex (prepared in the initial state which we wish
to transfer), the last stratum of the networks with respect to
the reference state contains only one vertex of the networks.
Therefore, stratification of these networks plays an important
role which determines in which kinds of distance-regular
graphs and between which vertices of them, PST can be
allowed. In Appendix B 1, it has been also noted that the
adjacency matrix A=A, of distance-regular graphs takes a
tridiagonal form in the stratification space, so that, for this
type of network, we can restrict our attention to the stratifi-
cation space for the purpose of PST from |¢,) (state associ-
ated with reference vertex) to |¢,) (state associated with the
last stratum of the graph); for more details, see Sec. III A.

It has been shown in Ref. [15] that for any arbitrary graph
(not just for distance-regular graphs), one can employ a
modified version of the classical Gram-Schmidt orthogonal-
ization process called Lanczos algorithm in order to give a
tridiagonal form to the adjacency matrix of the graph. One of
the preferences of this structure is the ability of determining
the spectral distribution associated with the graph by using
the so-called Stieltjes-Hilbert transform introduced in
Appendix B 2.

B. Spectral techniques

In this section, we recall some preliminary facts about
spectral techniques used in the paper, where more details
have been given in Appendix B 2 and Refs. [19,25,26].
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One of the most important applications of spectral analy-
sis method is to analyze a set of two-state diffusion equa-
tions, which was first used by Zusman [27] to treat solvent
effects on three-electron transfer in the nonadiabatic limit. In
[28], the spectral analysis approach developed in [29] has
been employed to study the electron transfer dynamics in
mixed-valence systems. Also, since the advent of random
matrix theory (RMT), there has been considerable interest in
the statistical analysis of spectra [30-32]. RMT can be
viewed as a generalization of the classical probability calcu-
lus, where the concept of probability density distribution for
a one-dimensional random variable is generalized onto an
averaged spectral distribution of the ensemble of large, non-
commuting random matrices. Such a structure exhibits sev-
eral phenomena known in classical probability theory, in-
cluding central limit theorems [33].

Actually the spectral analysis of operators is an important
issue in quantum mechanics, operator theory and mathemati-
cal physics [34,35]. As an example u(dx)=|y(x)[>dx

[u(dp)=|#(p)|2dp] is a spectral distribution which is as-

signed to the position (momentum) operator X(P). Moreover,
in general quasidistributions are the assigned spectral distri-
butions of two Hermitian noncommuting operators with a
prescribed ordering. For example, the Wigner distribution in
phase space is the assigned spectral distribution for two non-
commuting operators X (shift operator) and P (momentum
operator) with Wyle ordering among them [36,37].

It is well known that, for any pair (A,|¢,)) of a matrix A
and a vector |¢), one can assign a measure u as follows:

p(x) = (ol E(x)| by 2.7)

where E(x)=2,|u;){u;| is the operator of projection onto the
eigenspace of A corresponding to eigenvalue x, i.e.,

A:fxE(x)dx. (2.8)
Then, for any polynomial P(A) we have
P(A):fP(x)E(x)dx, (2.9)

where for discrete spectrum the above integrals are replaced
by summation. Therefore, using the relations (2.7) and (2.9),
the expectation value of powers of adjacency matrix A over
reference vector |¢,) can be written as

<¢0|Am|¢o>=f XMuldx), m=0,1,2,.... (2.10)
R

Obviously, the relation (2.10) implies an isomorphism from
the Hilbert space of the stratification onto the closed linear
span of the orthogonal polynomials with respect to the mea-
sure f.
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III. PERFECT STATE TRANSFER OVER ANTIPODES OF
DISTANCE-REGULAR SPIN NETWORKS

A. State transfer in quantum spin systems

The perfect state transfer algorithm was proposed by
Christandl et al. [6,7], and it can be implemented in the XY
chain. The algorithm can transfer an arbitrary quantum state
between the two ends of the chain in a fixed period time,
only using XY interactions. For one-dimensional fermionic
chains, the model of a system consisting of spinless fermions
(or bosons) hopping freely in a network of N lattice sites can
be mapped to spin chains in which spins are coupled through
the XY Hamiltonian

N-1

N
1 1 .
= 52 J(05ot,, + oo, ) + 52 N(gS+1), (3.1)
J=1 Jj=1

J

by the Jordan-Wigner transformation, where J; is the time-
independent coupling constant between nearest-neighbor
sites j and j+1, and N, represents the strength of the external
static potential at site j.

A quantum spin system associated with a simple, con-
nected, finite graph G=(V,E) as a spin network is defined by
attaching a spin-1/2 particle to each vertex of the graph so
that with each vertex i € V one can associate a Hilbert space
H,==C>. The Hilbert space associated with G is then given by

He=® H;= (Cz)@v,

iev

(3.2)

where N:=|V/| denotes the total number of vertices in G. On
the other hand, quantum state transfer over a network is simi-
lar to the quantum random walk problem, where a variety of
networks are equivalent to one-dimensional chains [6,22].
Therefore, it can be focused on a chain of N sites. For
j=1,2,...,N, let |j) be the state where a single fermion (or
boson) is at the site j but is in the empty state |0) for all other
sites and let |0) be the vacuum state where all sites are
empty. For spin chains, |0) corresponds to the state where all
the spins are in the spin-down state || ) and |j) corresponds
to a spin-up state |{) for the jth spin and spin-down for all
other spins. The Hamiltonian in this single-particle subspace
can be written in a tridiagonal form, which is real and sym-
metric,

N 0 0
I\ 0

H=| 0 7, A 0 (3.3)
: In-1
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As regards the arguments of Sec. II A, the evolution with the
adjacency matrix H=A=A, for distance-regular networks
starting in | ¢), always remains in the stratification space. If
we consider particular distance-regular networks for which
the last stratum, i.e., |¢y_;) contains only one site, then PST
between the antipodes |¢y) and |¢y_,) is allowed [the
(N—1)-dimensional hypercube with 2 N-1) vertices is a well-
known example of such networks where |¢,)=|00...0) and
=

|pn_1)=|11...1)). Thus, we can restrict our attention to the
NI

stratification space for the purpose of PST from |¢,) to

|pn_1). As Eq. (B7) of Appendix B indicates, the matrix el-

ements of the adjacency matrix restricted to the stratification

space are given by

(pilH|py=;, i=0,1,....,N-1,

(|H|pis1)=Bir1, i=0,1,...,N=2,

where the parameters «; and §;,; for i=0,1,...,d—1 depend
on the characteristics of the network such as its size (the
number of vertices) and its intersection array, as they have
been defined in Eq. (B6). Hence, the above graph exhibits
the same behavior as the XY chain with “engineered” param-
eters \;=a,_;, Ji=0;

N-1

N
1 1
=32 B0} + 00} + 2 4 (a7 1),

(3.4)

The above argument notes that, any distance-regular network
with diameter d=N-1 (which contains d+1=N strata), can
be projected to a chain with N sites.

The quantum state transfer protocol involves two
steps: initialization and evolution. First, a quantum state
|)a=a|0),+ B 1), E Hy (With a, BEC and |af*+|B[>=1) to
be transmitted is created. The state of the entire spin system
after this step is given by

|[(1=0))=[¢40 - 00p) = @|0,0 -~ 005) + B|1,0 - -- 00
= af0) + BlA), (3.5)
with |0):=]0,0---005). Then, the network couplings are
switched on and the whole system is allowed to evolve under

U(t)=e M for a fixed time interval, say f,. The final state
becomes

N
1)) = al0) + B fialto) 1)), (3.6)
j=1
where f4(ty) : =(jle""|A). Any site B is in a mixed state if
|fa5(to)| <1, which also implies that the state transfer from
site A to B is imperfect. In this paper, we will focus only on
PST. This means that we consider the condition

[fa(to)| =1

which can be interpreted as the signature of perfect commu-
nication (or PST) between A and B in time f,. The effect of

for some 0 <1y <oo (3.7)
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the modulus in (3.7) is that the state at B, after transmission,
will no longer be ), but will be of the form

a|0) + ¢'¢p|1). (3.8)

The phase factor ¢'? is not a problem because ¢ is indepen-
dent of & and 8 and will thus be a known quantity for the
graph, which we can correct for with an appropriate phase
gate (for more details see, for example, [6,7,10,11]).

The model we will consider is a distance-regular network
consisting of N sites labeled by {1,2,...,N} and diameter d.
Then we stratify the network with respect to a chosen refer-
ence site, say 1, and assume that the network contains only
the output site N in its last stratum (i.e., =|N)). At time
t=0, the qubit in the first (input) site of the network is pre-
pared in the state |¢;,). We wish to transfer the state to the
Nth (output) site of the network with unit efficiency after a
well-defined period of time. Although our qubits represent
generic two state systems, for the convenience of exposition
we will use the term spin as it provides a simple physical
picture of the network. The standard basis for an individual
qubit is chosen to be {|0)=||), |[1)=]T)}, and we shall as-
sume that initially all spins point “down” along a prescribed
z axis; i.e., the network is in the state |0)=]0,00---00).
Then, we consider the dynamics of the system to be gov-
erned by the quantum-mechanical Hamiltonian

E I, > Hy, (3.9)
m 0 (i.))ER,,
with HU as
Hl'j=0-l"0-j’ (3'10)

where, o, is a vector with familiar Pauli matrices o7, %, and
o7 as its components acting on the one-site Hilbert space H;,
and J,, is the coupling strength between the reference site 1
and all of the sites belonging to the mth stratum with respect
to 1.

The total spin of a quantum-mechanical system consisting
of N elementary spins d; on a one-dimensional lattice or
better-called chain is given by

g =

™=

Il
—_

G, (3.11)

One can easily see that, the Hamiltonian (3.9) commutes
with the total spin operator (conservation). That is, since the
total z component of the spin given by o}, =2,cy0; is con-
served, i.e., [o7,,H;]=0, hence the Hilbert space Hg de-
composes into invariant subspaces each of which is a dis-
tinct eigenspace of the operator o7, (this property would be
important to use its symmetry to diagonalize the Hamiltonian
in the well-known Bethe ansatz approach).

For the purpose of perfect quantum state transfer, we
write the Hamiltonian (3.9) in terms of the adjacency matri-
ces A;, i=0,1,...,d of the underlying graph in order to use
the techniques introduced in Sec. II such as stratification and
spectral distribution associated with the graph. To do so, we
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recall that the kets |i1,i,,...,iy) with iy,...,iy€{T, |} form
an orthonormal basis for Hilbert space Hs. Then, one can
easily obtain

i J l J

+2[- l T> (3.12)

where we have used the facts that o 1)=|1), a.||)=-[]),
aID=I1), ofD=I1), and  a1)=il1), o l)=—iT).
Equation (3.12) implies that the actlon of H;; on the basis
vectors is equivalent to the action of the operator 2P;—1y
i.e., we have

Hl]=2Pij_IN’ (313)

where, P;; denotes the permutation operator which permutes
ith and jth sites and I is N X N identity matrix, where N is
the number of vertices (N:=|V|). Now, let |I) denote the
vector state where all components are T except for /, i.e.,
[)=|T---TLT---1). Then, we have

1

S =y 3

Pij+2 2 Pil)|l>

(ij)ER,, i€T,,(j):i.j#1 i€, (1)
Nk, .
:< 2m_Km)|l>+ 2 |J>s
JE€L, (0

which implies that

> P,,=<

(i.))ER,,

M1+Am). (3.14)

2

Then, by using (3.13) and (3.14), the Hamiltonian in (3.9)
can be written in terms of the adjacency matrices A;, i

=0,1,...,d as follows:
d Nogd
H= E I 2 (2Pz/ IN) 22 A + E Il
m=0  (i,j))ER,, m=0
(3.15)

Actually the PST suitable Hamiltonians which are associated
with permutations [38], can be considered within the present
theoretical framework. For the purpose of the perfect transfer
of state, we consider distance-regular graphs with
k,=|T0)|=1, i.e., the last stratum of the graph contains
only one site. Then, we impose the constraints that the am-
plitudes {¢;le”™|¢p,) be zero for all i=0,1,...,d—1 and
(pyle ™| ppy=e'’, where @ is an arbitrary phase. Therefore,
these amplitudes must be evaluated. To do so, we use the
stratification and spectral distribution associated with
distance-regular graphs [Egs. (2.6) and (B4)] to write
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Lod
(e ) = = V-2l o2 g

1
— — —1(N—4)l/22m_0 m m<¢ |A e—ZzzEm —o/m

VK;

£ po).

Let the spectral distribution of the graph be w(x)
=34 98x-x,) [see Eq. (B15) in Appendix B 2]. Then,
(le™ ™| ¢py)=0 implies that

d
. d
2 ,ykPi(xk)e—ZtZEmzoJum(xk) =0, i=0,1,....,d—1.
k=0
Lod
Denoting e~%"n=0/nPnd) by 7, the above constraints are re-

written as follows:

d

> P mey =0,
=0

i=0,1,....d-1,

d

2 P my=e”. (3.16)
k=0

As it was discussed in Sec. Il A, P,(x;) are entries of the
eigenvalue matrix P [P;;=P;(x;)] which is invertible [see Eq.
(A3)], i.e., the Eq. (3.16) can be written as

00 0
MY 2yt (3.17)
: 0
NaYa e'’
The above equation implies that 7y, for k=0,1,...,d are

the same as the entries in the last column of the matrix
(P’)‘I:iQ’ multiplied with the phase e, i.e., for the pur-
pose of PST, the following equations must be satisfied:

eﬁ

MV = Vi€ ZztoEm o/ mPmxr) =—(Q )kd for k=0,1, ....d.
v
(3.18)

In the following, we investigate PST between antipodes of
some distance-regular networks such as cycle networks with
even number of nodes and d-dimensional hypercube
networks.

B. Examples
1. Cycle graph C,,,

A well-known example of distance-regular networks, is
the cycle graph with N vertices denoted by Cy (see Fig. 1 for
even N=2m). For the purpose of perfect transfer of state, we
consider the cycle graph with even number of vertices, since
as it can be seen from Fig. 1, in this case the last stratum
contains a single state corresponding to the mth vertex. From
Fig. 1 it can be seen that, for even number of vertices N
=2m, the adjacency matrices are given by
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FIG. 1. Denotes the cycle network C,,,, where the m+1 vertical
dashed lines show the m+1 strata of the network.

A0=I2m’ Ai=Si+S—i’ i=1,2,... Am=Sm’

(3.19)

7m_17

where, § is the NXN circulant matrix with period N
(SV=1y) defined as follows:

01 0 - 0
s=|o 0 1 0 (3.20)
00 - 0 1
1 0 0 0

By using (3.19), one can obtain the following recursion re-
lations for C,,,:
AA=Ap + Ay,

i=0,1,....m—-1; AA,=A,_,

(3.21)
(the graph C,,, consists of m+ 1 strata). By comparing (3.21)

with three-term recursion relations (B3), we obtain the inter-
section arrays for C,,, as

=121, ..., 1,151, ..., 1,2},

(3.22)

{bo,... ml’cl""

Then, by using (B6), the QD parameters are given by
a; = 0,

w,=2, w-=1,

i=0,1,....m; w = ;
(3.23)

i=2,....,m—1.

By using the recursion relations (B10), one can show that

Qo(x) = Py(x) =1, Q,(x) = Pi(x) =2T,(x/2),
(3.24)

i=1,....m—1, Q,(x)=2P,(x)=2T,(x/2),

where T;’s are Tchebychev polynomials of the first kind.
Then, the eigenvalues of the adjacency matrix A=A,
[roots of Q,,.1(x)=2T,,.(x/2)] are given by
xi=w +w'=2cos(2mi/N), i=0,1,....m

with w:=e>™VN. Also, one can show that y;’s (degeneracy’s
of eigenvalues x;) are given by
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Yo=Yu=12m, y=1m, i=1.2,...,m—1. (3.25)
Now, as regards Eq. (A5), the matrix P’ associated with cycle graph C,,, reads as
1 1 1 1
2 2 cos(2m/N) 2 cos[2(m—1)@/N] 2™
p=|: N : : : (3.26)
2 2cos[2(m=1)@/N] -+ 2cos[(m—1)2m/N] 2™
1 o™ "

One can see that (P")?=NI, so the inverse of P’ is given by
(PhH! =]%,P’. Therefore, by using (3.17) and (3.25), we obtain

= pmifZLg2J T leos(2milN)] _ (- 1)iei®,

7 i=0,1,...,m.
(3.27)
For instance, for N=4, we obtain
o= e—izo(J0+ZJ]+Jz) — eiﬂ’
= emioUomT2) = _ 4if,
7= e—ito(J0—2.11+Jz) — eiﬂ’ (328)
which gives us the following equations:
- t(J0+ 2J1 +]2) =60+ 2177,
- t(.]o —Jz) =60+ (2[’ + 1)’77,
—t(.lo—z.]] +.]2)= 0+ 21"7T. (329)
For [=1'"=1"=0, one can obtain
20+ T
J0=_ > J1=07 J2=_7 (330)
41, 41,

whereas by choosing [=1"=0, ["=1, the solution to (3.29) is
given by

O+ T

=—, J,=0.
4ty 2

3.31)
In the first case, the time #, at which the state |¢y)=|0)
=[1000) is perfectly transferred to the vertex [¢y)=[2)
=|0010) is given by

20+ 0w
tg=- =—, (3.32)
4J, 4J,
whereas in the latter case #, is given by
0+m w
tg=— =—. (3.33)
2], 44,

2. Hypercube network

The hypercube of dimension d [known also as binary
Hamming scheme H(d,2)] is a network with N=2¢ nodes,

each of which can be labeled by a d-bit binary string. Two
nodes on the hypercube described by bit strings x and y are
connected by an edge if [x—y|=1, where |x| is the Hamming
weight of x. In other words, if X and y differ by only a single
bit flip, then the two corresponding nodes on the network are
connected. Thus, each of the 2¢ nodes on the hypercube has
degree d. For the hypercube network with dimension d we
have d+1 strata with

d!

Ki:m, 0=si=d-1. (3.34)
The intersection numbers are given by
bi=d—-i, 0=i=d-1; c¢=i, l=i=d.
(3.35)

Furthermore, the adjacency matrices of this network are
given by
A= 0,00, ©0,0L® i=0,1,....n, (3.36)
AN
-

perm

®1,
J

i n—i

where, the summation is taken over all possible nontrivial
permutations.

It has been shown that the eigenmatrices P and Q for the
Hamming scheme H(d,2) are the same, i.e., this scheme is
self-dual [39]. Also, Delsarte [40] showed that the entries of
the eigenmatrix P=Q for the Hamming scheme H(d,2) can
be found using the Krawtchouk polynomials as follows:

Py=0Qy=K(i), (3.37)

where K;(x) are the Krawtchouk polynomials defined as

! x\(d—-x )
K(x)=2 ; (=1
i=0

i (3.38)

Therefore, we have ((P’)_l);/=$Ql,'=2%,K,-(l).
The eigenvalues x; of the adjacency matrix A=A, and

corresponding degeneracy’s 7; are given by

x,=2l-d,

d!

:2dl|(cé_l)" l=0,1,...,d. (339)

Y

By using (3.37), we have
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oy @.n

(LL,D

FIG. 2. Shows the cube or Hamming scheme H(3,2) with ver-
tex set V={(ijk): i,j,k=0,1}, where the vertical dashed lines de-
note the four strata of the cube.

. d
— e—21t2m=OJme(l),

” 1=0,1,....d. (3.40)

Now, in order to evaluate the time #, at which PST takes
place, the following equations must be satisfied:

olf ol?
mvy= del: FKl(d), V l=0,1, ...,d,
which are equivalent to

d!

i sd :
e e/l = K (d),

vV [=0,1,....d.

(3.41)

For instance, in the case of d=3 (see Fig. 2), we must solve
the following equations:

e—2it0(Jo+3jl+312+J3) — eia’
o~ 2itolor) =Ip=J3) _ _ ¢t
¢~ 2it0o~T1=12+73) — 40
o 2ito(Ig=311+315=13) _ _ ,if (3.42)

By solving Egs. (3.42) one can obtain the following solution:

20+3m wJy ™
0:— . 1:——:—’ J2=J3=O;
4t 20+3m 4ty
0+ —3m/2 (3.43)

that is the time 7, at which PST takes place is given by

20+ 377_ T
41, 44,

to = (344)

In Appendix C we consider PST over antipodes of some
important finite distance-regular networks [46-49].

IV. CONCLUSION

It was noted that any distance-regular network (not just
the hypercube which was discussed by Christandl et al. in

PHYSICAL REVIEW A 77, 022315 (2008)

[6,7]) as a spin network can be projected to a linear chain
and so can allow PST over arbitrarily long distances. By
using spectral analysis techniques and algebraic combina-
toric structures of distance-regular graphs such as stratifica-
tion and Bose-Mesner algebra, a method for finding a suit-
able set of coupling constants in some particular spin
Hamiltonians associated with spin networks of distance-
regular type was given so that PST between antipodes of the
networks can be achieved. As examples, the cycle network
with even number of vertices and d-dimensional hypercube
were considered in details and some other important
distance-regular networks are discussed in Appendix C.

APPENDIX A: SOME USEFUL ALGEBRAIC PROPERTIES
OF DISTANCE-REGULAR GRAPHS

In this appendix we recall some more algebraic properties
of distance-regular graphs which are necessary for obtaining
the essential results of the paper.

First, we note that the algebraic structure of distance-
regular graphs has its origin in the fact that these graphs are
underlying graphs of so-called association schemes [12]. As
a consequence of this fact, the adjacency matrices A; of a
given distance-regular graph with diameter d fulfill the rela-
tion

d

AiAj:AjAszgAkv (A1)

k=0
which indicates that A; for i=0,1, ... ,d form a commutative
algebra called Bose-Mesner algebra (this algebra is defined
not only for any distance-regular graph but also for any un-
derlying graph of association schemes). The Bose-Mesner
algebra has a second basis Ey, ...,E; such that, E;E;=6;E;
and 3% E;=I with Ej=1/vJ, (v:=|V] is the size of the
graph). The matrices E; for 0=<i=d are known as primitive
idempotents of the graph. Furthermore, there are matrices P
and Q such that the two bases of the Bose-Mesner algebra
can be related to each other as follows:

d
Al':EPjiEj? OSde’
Jj=0

d
E;= 12 QA, 0=j=d. (A2)
Vi
Then, clearly we have
PO=0P=vl. (A3)
It also follows that
AE;=PjE;, (A4)

which indicates that P;; is the ith eigenvalue of A; and that
the columns of E; are corresponding eigenvectors (some
times the matrix P is called eigenvalue matrix).

As it will be seen in Appendix B 1, in the case of
distance-regular graphs, the adjacency matrices A; are poly-
nomials of the adjacency matrix A=A, ie., A;=P;(A),
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where P; is a polynomial of degree j, then the eigenvalues
P;; in (A4) are polynomials of eigenvalues P; =\; (eigen-
values of the adjacency matrix A). This indicates that in
distance-regular graphs, the matrix P’ is a polynomial trans-
formation [41] as

Pi(Ng) Pi(N\)) Pi(\y)
7)[= Pz()\o) P2(7\1) PZ()\d) (AS)
P (Nog) Py\y) P,(\y)

or le=Pl()\j)

APPENDIX B: THREE-TERM RECURSION STRUCTURE
OF DISTANCE-REGULAR GRAPHS AND SOME
SPECTRAL TECHNIQUES

1. Three-term recursion structure of distance-regular graphs

In this section, we note that distance-regular graphs pos-
sess a three-term recursion structure, in the sense that their
adjacency matrices take tridiagonal form in the stratification
basis. To do so, first we note that, for these graphs, the non-
zero intersection numbers [defined in Eq. (2.1)] are given by

ai=P§1’ bi=I’§'+1,1’ Ci=l’§'-1,1’ (B1)

respectively. The intersection numbers (B1) and the valences
k; with k; =k [=deg(a), for each vertex «] satisfy the fol-
lowing obvious conditions:

Cll‘+bl‘+cl‘:K, Ki—lbi—l:Kici’ i=1,...,d,

K0=C1=1, b0=K1=K (C0=bd=0). (BZ)

Thus all parameters of a distance-regular graph can be ob-
tained from its intersection array {by,...,b,_1;Cy,...,Ca}-
Then, it can be shown that the following recursion relations
are satisfied:

A1A5=b[—1A[—1+aiAi+ci+1Ai+l’ i=1,2,...,d—1,
AA =baAgs + (K= cgAy. (B3)
The recursion relations (B3) imply that
A;=P(A), i=0,1,....d, (B4)

where, P; is a polynomial of degree i. Then, one can easily
obtain the following three-term recursion relations for the
unit vectors |¢,), i=0,1,...,d:

Al b)) = Bistl i) + il b)) + Bl biz1) (B5)
where, the coefficients ¢; and 3; are defined as
a=0, g=aq=k-b-c, o= Bizbk—lck»
(B6)

k=1,....d.

Following Ref. [18], we will refer to the parameters a; and
w; as QD (quantum decomposition) parameters (see Refs.
[19,25,26] for more details).
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The three-term recursion relations (B5) indicate that the
adjacency matrix A=A, is represented as a tridiagonal ma-
trix in the stratification space, i.e., we have

aO :Bl O “en O
Bi a B = 0O

A = 0 ,82 ay O (B7)
. . . . IBd

0 0 0 ﬁd a,y

2. Spectral techniques

In this section we recall some facts about spectral tech-
niques used in the paper and define the Stieltjes-Hilbert
transform associated with a distance-regular graph.

From orthonormality of the unit vectors |¢;) given in Eq.
(2.4) (with |¢) as unit vector assigned to reference vertex)
we have

1
3,=(810) ==l o = | PioP|ua.
AY Kin R

(B8)

with P](A): =%Pi(A) where, we have used the Egs. (2.6)
and (B4) to write

1 1
[d) = =Alldo) = =PiA)|pp) = P{(A)dp). (BI)
VK; VK;

Now, by substituting (B9) in (B5) and rescaling P; as Oy
=B, BP;., the spectral distribution u under question will
be characterized by the property of orthonormal polynomials
{O.} defined recurrently by

Q) =1, Q) =x,

XQu(x) = Opp1 (¥) + Qi) + B Qi1 (x), k= 1.
(B10)

If such a spectral distribution is unique, the spectral distribu-
tion u is determined by the identity

d 1
G, ) = pdy) _ .
R XY r—a Bi
- -
e B
—a -
B
X—az—
X—a3—
d
_Qt(zl)(x)_ Y

- - , B11
Qu1(x) 15 x—x (B

where, x; are the roots of polynomial Q,,(x). G,(x) is called
the Stieltjes-Hilbert transform of spectral distribution w or
Stieltjes function and polynomials {Q,(cl)} are defined recur-
rently as

o’ =1, o) =x-a,
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20 () = 0 () + e 0 ) + B 0D ), k=1,
(B12)

respectively. The coefficients 7y, appearing in (B11) are cal-
culated as

¥ = im{(x = x)G, ().

X*)Xl

(B13)

Now let G,(z) be known, then the spectral distribution u can
be recovered from G,(z) by means of the Stieltjes-Hilbert
inversion formula as

u(y) — u(x)=- 1 lim fy Im[G ,(u + iv)]du. (B14)

v~>0+

Substituting the right-hand side of (B11) in (B14), the spec-
tral distribution can be determined in terms of x;,/=1,2,...
and Gauss quadrature constants y;,/=1,2,... as

d

p=2 %8(x—x) (B15)
1=0

(for more details see Refs. [42—45]).

APPENDIX C: PST OVER SOME IMPORTANT FINITE
DISTANCE-REGULAR NETWORKS

In this appendix we consider some important finite
distance-regular networks such that their last stratum con-
tains only one node. Then by using the prescription of Sec.
III, we investigate PST over antipodes of these networks.

1. Icosahedron [46]
The intersection array is
{by,b\,by;c1,05,¢3 =1{5,2,1;1,2,5}.
The sizes of the strata and the QD parameters are
kKo=1, k=K =5,

K2=5, K3=1,

a0=0, a1=a2=2, 013=0; (,01=5, (02=4, (l)3=5.

The polynomials P;(x) are

1
Py=1, Pix)=x, Py(x)= E(xz— 2x-5),

1
P;(x) = F)(x3 —4x2 = 5x+10).

The Stieltjes function is

X —4x2=5x+10
—4x3 = 10x% + 20x + 25~

Gu(x) = A
The spectral distribution [u(x) =24 y,8(x—x))] is
1 ~
plx) = 500+ 1) + 8= 5) + 300 =\5) + 38(x + Vs)1.

Now, one can obtain the matrix P’ and its inverse. Then by
solving Eq. (3.18), the solution is obtained as follows:
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60+ _ (5—3\"%)77
0T 2y, T 60t
(5+3\/§)7T S5

pm— " J=—— (C1)
601, 12¢,

Then, the time 7, at which PST takes place is given by

20+
- =— (C2)
47, 4]

a
ty= .
3

2. Desargues graph [46]

The intersection array is
{bo,bl,bz,b3,b4;cl,C2,C3,C4,C5}={3,2,2,1,1;1,1,2,2,3}.

The sizes of the strata and the QD parameters are

ko=1, k=kK=3, Ky=6, Kk3=06, k;=3, k;5=1,
ai=0, i=0,1,...,5; w1=3, (1)2=2, (,l)3=4,
(1)4:2, w5=3.
The polynomials P;(x) are
Po=1, P,(x)=x, P,(x)=x>-3,

1 1
P5(x) = 5()63 -5x), Pux)= Z(X4_ 9x% + 12),

1
Ps(x) = E(x5 —11x° +22x).

The Stieltjes function is

X =11+ 22x
X0 — 14x* +49x% - 36

G,x) =
The spectral distribution is
1
u(x) = %[55()( +1)+58x—-1)+48(x+2)+48(x-2)

+8(x+3)+ 8x-3)].
The solution to Eq. (3.18) is given by

300+ 51 T 4
0=" 601y 1=Fto’ 2=—Ft0’
T T
J3=0, J4=Ft0, JS:E.

3. Dodecahedron [46]

The intersection array is
{bo,bl,b2,b3,b4;C1,C2,C3,C4,C5} = {3,2, 1, 1, 1 5 1, 1, 1,2,3}
The sizes of the strata and the QD parameters are

ko=1, k=K =3, K=6, K3=6, K;=3, K;5=1,
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(l)2=2, (1)321, (1)422, w5=3.
The polynomials P,(x) are

Py=1, P,(x)=x, P,y(x)=x>-3,

1
Py(x)=x*—5x—x*+3, P,x)= E(X4 —5x2=2x + 8x),

1
Ps(x) = g(x5 —7x% = 2x* + 10x2 + 10x - 6).

The Stieltjes function is

=T = 2x* +10x2+ 10x - 6
X0 = 10x* = 2x° + 16x° + 255> = 30x

G,x)=
The spectral distribution is
1
mlx) = %[45@) +58(x—1)+48x+2)+ x-3)

+38(x=\5) +38(x +15)].
The solution to Eq. (3.18) is given by

_+2m . (2+3\Sm 17w
07 gy YT 60, T TP 60t
B o _(2—3\#%)77

T 601, YT 608,

4. Taylor graph over the Paley graph [P(13)] [47]

The intersection array is
{bo,b1,by;cq,¢9,05={13,6,1;1,6,13}.
The sizes of the strata and the QD parameters are
ko=1, k=K =13, K,=13, K3=1,
ap=0, a=a,=6, a3=0; w; =13,
w, =36, w3=13.

The polynomials P;(x) are

1
Pozls Pl(x):x9 PZ(x):g(x2_6x_13)s

1
P5(x) = %(f —12x* = 13x +78).

The Stieltjes function is

= 12x% - 13x+78
—12x3 = 26x% + 156x + 169

Gx) = N

The spectral distribution is

PHYSICAL REVIEW A 77, 022315 (2008)

u(x) = 21—8[135(x+ 1)+ 8(x—13)

+78(x = \13) + 78(x + V13)].

The solution to Eq. (3.18) is given by

404157 (13-713)7
0= 286, 364t,
(1347137 13w
T 3645, 0 281

5. Taylor graph [47]
The intersection array is
{bo,b\,by;c1,05,05 ={15,8,1;1,8,15}.
The sizes of the strata and the QD parameters are

ko=1, k=K =15 K =15 k3=1,

ay=0, a=a;=6, a3=0; w =15 w,=64,
(1)3215.

The polynomials P;(x) are

1
Py=1, Px)=x, Pz(x)=§(x2—6x—15),

1
P3(x) = E}(ﬁ — 12x% —43x +90).

The Stieltjes function is

X =12x* = 43x+90
1223 — 58x% + 180x + 225

Glx) = Ao
The spectral distribution is
1
u(x) = 3—2[155(x+ 1) +108(x —3) + 68(x + 5) + 8(x — 15)].

The solution to Eq. (3.18) is given by

160+ 157 T 7= 3_77 _13_77
20, 0 32 TP 32y T 321

6. Taylor graph over [T(6)] [47]
The intersection array is
{bo,b\,by;c1 05,05 ={15,6,1;1,6,15}.
The sizes of the strata and the QD parameters are

ko=1, k=K =15 K =15 k3=1,

a0=0, a1=a2=8, a3=O; (,U]=15, (1)2:36,
w3 = 15.

The polynomials P;(x) are
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1
Py=1, Pix)=x, Pz(x)=g(x2—8x—15),

1
P;3(x) = %(f - 16x> + 13x + 120).

The Stieltjes function is

X =16x*+13x + 120
—16x> = 2x% +240x + 225

Gx) = N
The spectral distribution is
1
u(x) = 5[155(x+ 1)+108(x+3) +68(x—5) + S(x - 15)].

The solution to Eq. (3.18) is given by

B 160+ 157 B 3_77

0T 3y, YT 324
T 137
J2=_, 3=_-
32t 32t

7. Wells [48]

The intersection array is
{bo,b],bz,b3;Cl,C2,C3,C4}2{5,4,1,1;1,1,4,5}.

The sizes of the strata and the QD parameters are

ko=1, k=K =5 k=20, k3=5, Ku=1,
a0=a1=0, (12=3, a3 =0y O, (l)1=5,
a)2=w3=4, 0)4—5
The polynomials P,(x) are
Po=1, P,(x)=x, P,(x)=x*>-5,

1
P5(x) = Z()c3 - 9x—3x*+15),

1
Py(x)= %(x4 — 13x% = 3x% + 15x + 20).

The Stieltjes function is

G0 = X =13 =307 + 155+ 20
w18 — 3 4 3002 4 655 — 75

The spectral distribution is
1
plx) = 511080~ 1) + 58 +3) + O = 5) + 85(x + Vs)

+88(x—15)].
The solution to Eq. (3.18) is given by

S l60+Ba (5-8\5)7

0= 32, YT 1601,
P L C R 1L L
T30, T 1601, YT 321y
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8. Hadamard network [49]

The intersection array is
{bo,b1.by, b33y, 00,03,¢41 ={8,7,4,1;1,4,7,8}.

The sizes of the strata and the QD parameters are

ko=1, k=kKk=8, K=14, Ky=8, k=1,
o;=0, i=0,1,....,4; =8, =28, w3=28,
(1)4=8.

The polynomials P;(x) are

P=1 PW=x Pa)= (28,

1
Py(x) = —(x* — 64x + 224).

1
P;(x) = g(f - 36x), A

The Stieltjes function is

Xt —64x? +224

G ()= ——t et
W= S s

The spectral distribution is

u(x) = 3%[145(;;) +8(x—8) + 8(x +8) + 88(x — 212)

+85(x+2\6)].
The solution to Eq. (3.18) is given by
166+ 197 _(1+2\2)w . 3w
0= 26, 0 32, 0 TP 321
(=27 13w
T30, 0 YT 324y

9. Taylor graph over the Paley graph [P(17)] [47]

The intersection array is
{bo,b\,by;c1 05,055 ={17,8,1;1,8,17}.

The sizes of the strata and the QD parameters are

ko=1, k=K =17,

K2=17, K3=1,

a3=0; w1=17, (,02=64,

The polynomials P;(x) are

1
Py=1, Pix)=x, Py(x)= g(xz— 8x—17),

1
Py(x) = E(XS — 16x% = 17x + 136).

The Stieltjes function is
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X —16x>=17x+ 136
—16x> = 34x> +272x + 289"

Glx) = N

The spectral distribution is
1 —
u(x) = £[175(x+ 1)+ 8x—17) +968(x — V17)

+980x +\17)].
The solution to Eq. (3.18) is given by

_ 1804197 (17-917)w
o 6L, 612t,
_ 17491Dw 17w
2 612t 7 361,

10. Hadamard network [47]

The intersection array is
{bo,b\,b1,b3;¢1,00,03,¢4y ={12,11,6,1;1,6,11,12}.

The sizes of the strata and the QD parameters are
ko=1, k=K =12, Kk,=22,

k=12, Kky=1,

a;=0, i=0,1,....,4; w =12, wy=w3=606, w,=12.

The polynomials P;(x) are

1

Po=1, Px)=x, Pz(x)=g(x2—12),
Py(x) = (2~ 78)
3x—66x X),

1
P,(x) = E(x“ — 144x> +792).

The Stieltjes function is

X =144x2 +792
X = 156x3 +1728x"

Gulx)=
The spectral distribution is
1
ulx) = 222800 + S0+ 12) + Sl 12) + 126(x - 243)

+1260x+2\3)].
The solution to Eq. (3.18) is given by

_
240+ 27 B (1-2V3)7 _m
T 48t, P16ty
(1+2\3)7 27
3 48t, T 484,

11. Taylor graph over the strongly regular graph
[SRG(25,12)] [47]

The intersection array is

PHYSICAL REVIEW A 77, 022315 (2008)

{b()?bl’bZ;cl’CZ’C?)}:{25’12’1;1’12’25}'

The sizes of the strata and the QD parameters are

ko=1, k=K =25 Kk =25 k3=1,
CYO:O, )= 0= 12, a3:0; W :25,
wy =144, w;=25.

The polynomials P;(x) are

1
Py=1, Pi(x)=x, Py(x)= E(x2 - 12x - 25),
1
Py(x) = %(f — 24x% — 25x + 300).
The Stieltjes function is

x> =24x% = 25x + 300
X =24x3 = 50x% + 600x + 625 °

G,(x) =
The spectral distribution is
1
u(x) = 5—2[255(x+ 1) +138(x —5) + 138(x + 5) + 8(x — 25)].

The solution to Eq. (3.18) is given by

260+ 27 2m 9m 257

5 1= - > ‘12 == T4 3= .
521, 651, 1301, 521,

12. The Gosset graph corresponding to the Taylor graph
over the Schlifli graph [47]

The intersection array is
{bo,b],bz;C1,C2,C3} = {27» 107 1 5 17 10’27}

The sizes of the strata and the QD parameters are

ko=1, k=K =27, K=27, k=1,
ao=0, 0.’1=a2=16, 6\{3:0; w1=27’
w, =100, w3=27.

The polynomials P;(x) are

1
Py=1, P(x)=x, Py(x)= E(x2 —16x-27),

1
P;(x) = %(ﬁ —32x% + 129x + 432).

The Stieltjes function is

X =32x% +129x + 432
=323 + 10247 + 864x + 729

G,x) =
The spectral distribution is
1
u(x) = %[275(x+ 1)+218x+3)+78(x-9) + 8(x-27)].

The solution to Eq. (3.18) is given by

022315-13
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1460+ 117 S5 T S5

07T 28y, - 27 4y

>

_—gto’

13. Taylor(Co-Schléfli) [47]

The intersection array is
{b07b17b2;cl’c2’c3} = {27, 16, 1 5 1, 16,27}

The sizes of the strata and the QD parameters are

K():l, KEKl=27, K2=27, K3:1’
aO:O, | =0y = 10, a3:0; (,()1:27,
w0, =256, wy=27.

The polynomials P;(x) are

1
Po=1, Pix)=x, Py(x)= E(x2 —10x - 27),

1
P;(x) = E(ﬁ —20x* — 183x + 270).

The Stieltjes function is

x> =20x% - 183x + 270
x*=20x% = 210x% + 540x + 729

Glx) =
The spectral distribution is
1
u(x) = %[275@ +1)+218x=3) +78(x+9) + 8(x—27)].

The solution to Eq. (3.18) is given by

1460+ 117 T S5 S

J N =_, =—_, =_'
0 281, Yann, PT84t T 144,

14. Taylor [SRG(29,14)] [47]

The intersection array is
{bo,b],bz;C],C2,C3} = {29, 14, 1 5 1, 14,29}

The sizes of the strata and the QD parameters are

ko=1, k=kKk=29, k=29, k3=1,
CYO=O, a1=a2=14, a3=0; w1=29,
w, =196, w3;=29.

The polynomials P,(x) are

1
Po=1, P,(x)=x, Pz(x)=a(x2—14x—29),

1
P;(x) = R(ﬁ —28x? = 29x + 406).

The Stieltjes function is

x> =28x% = 29x + 406
=283 - 58x2 +812x + 841"

G(x) =

The spectral distribution is

PHYSICAL REVIEW A 77, 022315 (2008)

u(x) = 61—0[295(x +1)+ 8(x-29)

+158(x = 29) + 158(x +\29)].
The solution to Eq. (3.18) is given by

306431 (29-15\29)7
0= 60t, ' 17401,
_(2941529)7  29a
. 17406, 7 601,

15. Doubled Odd graph DO (4) [47]

The intersection array is

{bo.b1,b3,b3,b4,bs,bg5C1,C2,C3,C4,C5,C6,C7}
=1{4,3,3,2,2,1,1;1,1,2,2,3,3,4}.

The sizes of the strata and the QD parameters are

ko=1, k=kK=4, Kk,=12, Kky=18, Kk;=18,
ks=12, kg=4, K;=1,
a;=0, i=0,1,....,7; w; =4, w;=3, w3=06,
wy=4, ws5=6, wg=3, w;=4.
The polynomials P;(x) are
Po=1, P,(x)=x, P,(x)=x>-4,

1 1
P(x) = E(x3 -7x), P4x)= Z(x4 —13x>+24),

1 1
Ps(x) = E(}c5 —17x° +52x), Pg(x)= E(x6 —23x*+ 130x2

1
-144), P;(x)= m(ﬁ —26x° + 181x* - 300x).

The Stieltjes function is

x'=26x> + 181x% — 300x
X =30x% 4+ 273x* — 820x> + 576"

G,(x)=
The spectral distribution is
1
u(x) = %{14[5()6— D+ 8x+1)+8x—-2)+ 8x+2)]

+6[(x—=3)+ 8x+3)]+ 8x—4)+ S(x+4)}.
The solution to Eq. (3.18) is given by

700+ 1517 56
‘]0:_ s J1=O’ J2=_ s
140¢, 245t
B0, =l e T =
BT 05,T T 701 0T 351,
P
T ayy,
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16. The Johnson graph J(8,4) [47]

The intersection array is
{bo,bl,bz,b3;Cl,Cz,C3,C4} = {16,9,4, 1 5 1,4,9, 16}

The sizes of the strata and the QD parameters are

ko=1, k=K =16, Kk,=36, k3=16, K;=1,
a0=0, a'1=6, a2=8, a3=6, a4:O;
w1 =16, w,=36, wy;=36, w,=16.

The polynomials P,(x) are
1o
Py=1, P|(x)=x, P,(x)= Z(x —6x—16),

1
Py(x) = g(f — 14x% —4x + 128),

PHYSICAL REVIEW A 77, 022315 (2008)

1
Py(x) = —(x* = 20x° + 44x% + 368x — 192).
576

The Stieltjes function is

x*=20x + 44x% + 368x — 192
X0 = 20x* + 28x% + 592x% — 128x — 2048

G,(x)=
The spectral distribution is
1
ulx) = %[5()6 —16) +78(x—8) + 145(x +4) + 285(x + 2)

+208(x - 2)].
The solution to Eq. (3.18) is given by

7060+ 1997 T 137
- 1 =__ > J2 = B
35¢, 210t

0=

140¢,
Jo= o AT
T 14 YT 1408,
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