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Quantum walks are considered in a one-dimensional random medium characterized by static or dynamic
disorder. Quantum interference for static disorder can lead to Anderson localization which completely hinders
the quantum walk and it is contrasted with the decoherence effect of dynamic disorder having strength W,
where a quantum to classical crossover at time ¢, W~ transforms the quantum walk into an ordinary random
walk with diffusive spreading. We demonstrate these localization and decoherence phenomena in quantum
carpets of the observed time evolution, we relate our results to previously studied models of decoherence for

quantum walks, and examine in detail a dimer lattice which corresponds to a single qubit subject to

randomness.
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I. INTRODUCTION

During the last decade quantum algorithms were pro-
posed, such as Grover’s search [1] and Shor’s factorization
[2], which can in principle perform certain computational
tasks quantum-mechanically, much more efficiently than
their classical counterparts. The related idea of quantum
walks was also introduced [3-7] which generalize the clas-
sical random walks widely used in various computations as
the basis of classical algorithms. The quantum walks are
similar to classical random walks but with a “quantum coin”
operation which replaces the coin-flip randomness in be-
tween each moving step on a lattice or a graph. The state of
the quantum coin which uniquely determines the subsequent
movement direction can also exist in quantum superposi-
tions, something impossible in the classical domain where
the coin has a specific outcome. In analogy with classical
random walks the quantum walks are expected to be useful
for designing quantum algorithms. For example, Grover’s
algorithm can be combined with quantum walks in a quan-
tum algorithm for “glued trees” which provides even an ex-
ponential speed up over classical methods [8].

The main advantage of quantum walks is a highly im-
proved behavior over their classical counterparts since quan-
tum wave propagation is superior to classical diffusion. For
example, in the quantum case the ballistic mean square vari-
ance o2(f)#> can be compared to the linear spread law
()=t of classical diffusion. This quadratic speed-up is a
general feature of quantum search algorithms [1] and is also
familiar from standard quantum evolution of tight-binding
electron waves on a periodic lattice [9]. In quantum walks
the classical probability P(x,?) is replaced by complex prob-
ability amplitude W (x,f) computed from the unitary dynam-
ics of the Schrodinger’s equation. The corresponding prob-
ability amplitudes are determined by summing up over all
possible paths of propagation. Furthermore, to describe wave
propagation in lattices or graphs one does not need a “quan-
tum coin,” [10] and related continuous-time versions of
quantum walks have been introduced [11]. The discrete and
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continuous-time quantum walks have recently been related to
Dirac and Schrodinger’s equations, respectively [12].

We consider a continuous-time quantum walk via the
equivalent problem of a quantum particle initially localized
in a one-dimensional lattice, also in the presence of static or
dynamic disorder. For a tight-binding electron at an integer
lattice site labeled by x in one dimension at time ¢ the wave
function W(x,7) obeys the linear wave equation (A=1)

10V (x,0)/0t = e(x, )W (x,0) + V(x = 1,0) + P(x+ 1,1), (1)

with €(x,f) an x-dependent random variable for static disor-
der which is also t-dependent for dynamic disorder, where
lengths are measured in units of the lattice spacing and en-
ergies or inverse times in units of the hopping integral. In
order to study quantum walks via Eq. (1) we choose the
initial condition of a particle at the origin x=0 with
W(x,r=0)= 06, and characterize the quantum motion by the
second moment for its position o?()==|x|>P(x,t), where
P(x,t)=|W(x,1)|? is the probability density. In the absence of
disorder [e(x,f)=0] the amplitude is given by the Bessel
function so that P(x,7)=[J,(21)]?, where the order x of the
Bessel function measures the distance traveled from the ori-
gin while its argument is proportional to time ¢. The evolu-
tion of the wave packet at time ¢ was shown [9] to display
two sharp ballistic fronts at x= % 2¢. From properties of the
Bessel functions inside the spatial region [—27,2t] the prob-
ability density P(x,7) is an oscillating function multiplied by
1/t while outside this region, denoted by the two ballistic
peaks, P(x,r) decays exponentially. The ballistic mean-
square displacement is o2(f)=27.

In the absence of disorder the quantum evolution of wave
packets which occurs via the evolution operator exp(—iHr)
with Hamiltonian H is very different from classical diffusion
where any initial state converges to a Gaussian steady state.
An initially squeezed S-function spatial wave packet has re-
duced spatial uncertainty and behaves like a quantum par-
ticle consisting of all the eigenstates of H. Alternatively, a
spatiagy uniformly distributed initial wave packet W (x,0)
=1/\N, for every x in an N-site chain, consists of few eigen-
states of H near the lower band edge only. Since the latter
choice emphasizes states from the band edge the semiclassi-
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cal asymptotics is relevant [13-15]. The wave packets which
initially consist of many eigenstates can be related via the
uncertainty principle to ultrashort laser pulses of femtosec-
ond duration. The evolution of such coherent superpositions
of quantum states is realized in the physics of trapped atoms
in optical lattices [16], trapped ions [17], etc.

Classical random walks in perfect one-dimensional lat-
tices are defined by the probabilities p,=¢g,=1/2 which de-
termine the left and right random motion starting from site x.
This externally induced randomization leads to classical dif-
fusion for long ¢ with a Gaussian P(x,?) and ¢°(t)=2Dt, D
the diffusion coefficient. For random walks in random media
the probabilities p,,q,=1-p, become random variables
themselves, for example, they could be chosen from a flat
distribution within (0, 1). Then, this is the so-called random
or Sinai walk [18,19] which leads to ultraslow classical evo-
lution o?(¢) «In*, very close to a complete cease.

The problem addressed in this paper concerns the fate of
quantum walks in a random environment with static and dy-
namic disorder. To answer this question for static disorder we
shall combine previous knowledge from the field of wave
propagation in the presence of randomness where the quan-
tum phenomenon of Anderson localization [20] takes place
(for its consequences for quantum walks see [21]). We shall
show that static disorder is responsible for exponentially sup-
pressed quantum evolution with variance o2() reaching a
time-independent limit for long 7, depending on the strength
of static disorder and space dimensionality. There are certain
exceptions to this rule, for example, for correlated static dis-
order the obtained time evolution, although slower than bal-
listic (sub-ballistic), is superdiffusive o(f)=2¢>2, due to
resonances occurring even in one dimension [22]. Generali-
zations of discrete-time quantum walks in aperiodic or frac-
tal media by using biased quantum coins have also given
slower (sub-ballistic) quantum evolution [23]. Surprisingly,
classical random walks for static disorder are still propagat-
ing, although ultraslowly [18,19]. For dynamic disorder by
coupling the quantum system to a random environment de-
coherence occurs [24] and quantum physics becomes classi-
cal so that a quantum walk is still propagating but only dif-
fusively. The effects of decoherence are considered in Ref.
[25] where nonunitary evolution is modeled by computing
density matrix operators. It was pointed out (see also [26])
that possibilities exist of tuning quantum walks with small
values of added randomness. The quantum ballistic motion
remains although the distribution itself becomes a uniform
“top-hat,” which optimizes properties of quantum walks use-
ful for algorithms.

The main reason for examining the robustness of quantum
walks in the presence of noise is because disorder is unavoid-
able in most quantum systems. Static disorder also appears
for electrons in lattices with permanent modifications due to
impurities. The dynamic disorder in this case could be driven
by time-dependent vibrations of the lattice atoms and these
have an impact on the electronic site-energies. Apart from
describing electron-phonon interactions, dynamic disorder
also addresses the presence of time-dependent noise in the
memory qubits of quantum computers. Recently, qubit deco-
herence has attracted attention [27] in the presence of non-
Gaussian noise from random flips of bistable fluctuators.
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We demonstrate that although static disorder hinders the
motion of quantum walks due to destructive quantum inter-
ference from Anderson localization via multiple scattering
from impurities, instead, for a simple dynamically random
environment, the time-dependent disorder acts as a decoher-
ence mechanism at a crossover time ¢, which randomizes the
quantum walks and turns the quantum motion into classical.
The discrete finite space chosen in the simulations could be
also used on a finite computer. This general scheme for dis-
cretizing space is not only suggested by solid state applica-
tions but it is, somehow, related to the discreteness of the
quantum information itself. The paper is organized as fol-
lows: In Sec. I we introduced the reader to the subject of
quantum communication by setting the aims of our quantum
walk in random media simulation. In Sec. II we briefly re-
view the properties of quantum walks in ballistic and disor-
dered one-dimensional media by showing quantum carpets
which demonstrate the difference between static and dy-
namic disorder. Static disorder is shown to be responsible for
destructive quantum interference of Anderson localization
which stops completely the quantum walk while dynamic
disorder permits only diffusive evolution of classical random
walks. In Sec. III we display the quantum to classical cross-
over for dynamic disorder and consider a qubit subject to
dynamic disorder. Finally, in Sec. IV we summarize our main
conclusions.

II. QUANTUM CARPETS

We have created space-time x—¢ structures for the prob-
ability density P(x,f) on a one-dimensional finite N-site or-
thonormal lattice space without disorder, with #-independent
static disorder and also rapidly varying dynamic disorder.
The white color in the figures denotes high probability den-
sity and the darker colors lower values. In Fig. 1 a state is
initially released in the middle of the chain and the probabil-
ity density P(x,?) is obtained by solving Eq. (1). In Fig. 2 the
same is done for a spatially uniform initial state. For static
disorder Eq. (1) could be alternatively solved by considering
the time-evolution of a state vector |W(0)) expressing the

probability density via the stationary eigensolutions
H|j)=E j| j) with space-time wave function
N
W(x,1) = 2 e Bl ()G (0)), (2)
j=1

with the amplitude on site x denoted by tﬁi(x)=(x| J». For
time-dependent disorder Eq. (1) was solved via a fourth-
order Runge-Kutta algorithm.

In Fig. 1 we present our results for the initial choice of a
& function in the middle of the chain with |¥(0))=|0) and in
Fig. 2 for a uniform initial state |¥(0))=(1/ \W)EQ/:JX) is
computed on finite chains where the wave packet scatters
from their hard ends. In Figs. 3—7 our results are obtained for
a self-expanding chain with a & function initial choice to
make sure that the wave packet does not reach the bound-
aries. This allows one to study the quantum to classical
crossover by computing the mean-square variance and the
autocorrelation function vs time.
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FIG. 1. Quantum carpets which show the probability density P(x,7), for x in the vertical axis and 7 in the horizontal axis, is generated by
an initial &-type spatial state for =0 W(x,0)=4, o in the middle (left of the figure) with chain length N=101. (a) The ballistic case for the
absence of disorder where perfect quantum revivals can be clearly seen. (b) For static disorder of strength W=1.5 quantum interference
causes Anderson localization which stops the quantum motion and the probability to stay in the initial site remains high. For stronger static
disorder this probability becomes even higher. (¢) and (d) For dynamic disorder with values W=1 and 5, one can see quantum interference
only initially for small 7 on the left-hand side of the figure where the &-type wave packet moves ballistically. After a certain time (for W
=1, t,~60 is estimated and for W=35 about ¢,~ 3) the quantum interference is lost while the particle still moves but classically.

A. Ballistic motion

In this case, obviously, quantum walks perform at their
best. The ballistic description is valid for solid state systems
in the absence of disorder refering to the motion of a point
particle in an N-site chain with €=0 in Eq. (1) which gives
E;j=2 cos(7) and ¢(x)=\zsin(£2), j=1,2,...,N. The
corresponding space-time pictures are shown in Figs. 1(a)
and 2(a) where quantum revivals can be seen where the par-
ticle returns to its initial position and reconstructs like a clas-
sical particle which moves with constant velocity reflecting
at the boundaries of the chain [15]. We observe that the
quantum revivals of Figs. 1(a) and 2(a) do not repeat indefi-
nitely but become less and less accurate as time progresses.
This is due to effects from boundary scattering which is more
intense for broad wave packets as seen in the right-hand side
of Fig. 2(a) where noisy evolution is established. The ob-
tained fractal pattern is a result of peculiar quantum interfer-
ence effects due to scattering from the hard walls at the ends
of the chain [15].

B. Static disorder

It can have dramatic consequences for quantum walks,
particularly in low dimensions, since for static disorder they
can stop completely due to Anderson localization. From
Figs. 1(b) and 2(b) we can see how strong static disorder

with €(x) chosen from a uniform probability distribution
within [-W/2,+W/2] causes destructive interference with
Anderson localization. This crossover from ballistic motion
to localization has dramatic consequences for quantum walks
in one-dimension in the presence of static disorder. In higher
dimensions the Anderson transition from extended to local-
ized states is expected, via an intermediate chaotic regime
which is rather better for quantum propagation. The prob-
ability density of Fig. 1(b) is shown to stay around the
middle site where the initial wave packet has maximum am-
plitude and it remains there for longer times. For the uniform
initial state of Fig. 2(b) the larger amplitudes remain on
many sites indefinitely.

C. Dynamic disorder

A quantum walk can operate in the presence of dynamic
disorder but only for short times since for longer times its
motion becomes entirely classical, indistinguishable from an
ordinary random walk. The effect of dynamic disorder is
equivalent to introducing coin chaos which makes the quan-
tum coherence disappear [24-26]. Although the chosen noise
is simpler a lot of interest exists in non-Gaussian noise [27].
In order to see this decoherence effect we have chosen a
random €(x,7) rapidly varying with ¢ by

(i) updating at random the diagonal site energies €(x,7) at
a time length comparable and often much smaller to the time
step of the numerical method; and
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FIG. 2. Quantum carpets showing the probability density P(x,?)
for a spatially uniform initial state W(x,0)=1/VN on a chain of
length N=101. (a) For the ballistic case in the absence of disorder
one can see recurrences for short times which disappear for longer
times where quantum interference effects become apparent. (b) For
static disorder of strength W=5 Anderson localization occurs with
localization length &€~ 100W~2~4 much less than the system size
N=101. The displayed regions of high amplitudes show the posi-
tions where the particle localizes. (c) In the presence of dynamic
disorder W=5 the quantum interference effects vanish. The main
difference between dynamic disorder (c) and static disorder (b) is
that in (c) the regions with high values of P(x,f) keep changing
leading to randomization so that the particle can still move but in a
“classical” fashion.

(ii) varying the diagonal energies by
E(x,l) =A COS(th + ¢x)s (3)
where A, w, and ¢ are the amplitude, frequency, and phase
for the motion of levels, respectively. We chose to vary the

frequency w at random uniformly within the interval [0,277]
and fixed the phase ¢, to zero.
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FIG. 3. The probability density is shown to display the gradual
decoherence, from ballistic for small 7 to diffusive evolution for
long t, with strength of dynamic disorder W=2. The two ballistic
fronts in the quantum case gradually disappear and the shape ap-
proaches a Gaussian with classical diffusion.

From Figs. 1(c), 1(d), and 2(c), we can see the effect of
dynamic disorder for the two initial wave packets, & func-
tion, and broad, respectively. In Fig. 1(c) the quantum mo-
tion seen on the left-hand side of the figure quickly disap-
pears and this also happens in Fig. 1(d) where classical

time-dependeht
10’1 disorder W=2

| | | |
1001 10 100 t 1000 70000 100000

time—dependent disorder

10° 70" 10 10° 107 10°

FIG. 4. (Color online) (a) Log-log plot of the mean-square dis-
placement or variance ¢2(f) vs time ¢ for various values for the
dynamic disorder W. The crossover from ballistic quantum motion
to diffusive classical motion occurs at earlier times as W increases.
(b) The autocorrelation function or “return to the origin” probability
C(r) vs t for W=20 displays classical diffusive behavior.
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FIG. 5. (Color online) (a) The o”(¢) vs time ¢ the same as in Fig.
4(a) but for the sinusoidal dynamic disorder of Eq. (4). (b) The C(r)
vs time ¢ the same as in Fig. 4(b) but for the sinusoidal dynamic
disorder of Eq. (4).

diffusive motion is seen to arise. In Fig. 2(c) the randomiza-
tion effects of dynamic disorder become more obvious and
could be contrasted with quantum localization for static dis-
order [Fig. 2(b)]. The quantum-to-classical crossover takes
place after a characteristic time £, W2,

III. QUANTUM TO CLASSICAL CROSSOVER FOR
DYNAMIC DISORDER

A. Decoherence in an N-site chain

The decoherence effect of dynamical disorder which turns
the quantum wave propagation into classical diffusion is
shown in Fig. 3 for a self-expanding chain. The probability
density P(x,7) gradually changes from a shape displaying
two ballistic peaks of the quantum wave for small ¢ towards
a Gaussian for large 7. In Fig. 4 the quantum to classical
crossover is shown for the mean-square-variance o(¢) and
the autocorrelation function or return probability C(z)
=% JoP(0,1')dt’. Eventually, the classical asymptotic laws
o*(t)t and C(f) <t~ set in after an initial period of quan-
tum ballistic motion where ¢2(¢) > and C(¢)>¢"!. In Fig. 5
the effect of sinusoidal dynamic disorder is considered with
constant amplitude and randomly varying the phase. The re-
sults are similar to Fig. 4 with the approach to the classical
limit even faster in this case. From Figs. 4 and 5, except for
no difference between the two types of dynamic disorder, we
find that the crossover region between the ballistic law for
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FIG. 6. The snapshots for dynamic disorder of strength W=20 in
a self-expanding chain where the approach to a Gaussian is seen. (a)
The probability density P(x,t)=|¥(x,?)|? as a function of space x at
fixed times =5000, 20 000, 60 000, and 80 000. (b) The same as in
(a) but for the log of the amplitude.

small times and the diffusive law for long times is smooth
having a mixed quantum and classical character.

The effect of dynamic disorder on the quantum evolution
is displayed in the linear and log plots of Fig. 6 which show
the snapshots of the evolving spatial wave for an initial &
function in a self-expanding chain. The decoherence effect of
dynamical disorder is seen from the rapid approach to a
Gaussian shape. The complete phase diagram is summarized
in Fig. 7 with ¢, vs the strength of dynamic disorder W which
displays a wide crossover gray color region where the law
t.« W2 is approximately obeyed.

B. Decoherence in a qubit

We have examined in detail the quantum walk in a ran-
dom two-level system (N=2) which has recently attracted
attention in the context of quantum information processing.
The operation of qubit and logical gates in the presence of a
noisy environment is important for understanding quantum
computers. The usual noise for such a two-level system is
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FIG. 7. (Color online) The quantum to classical crossover for
dynamic disorder of strength W occurs at #.o W~2. This is shown by
the gray area which was estimated from two sets of points con-
nected via lines for the quadratic ballistic law to stop (blue, lower
line) and the linear diffusive law to begin (red, upper line),
respectively.

usually due to various sources while non-Gaussian random-
ness arises from hopping background charges for different
statistically independent fluctuators [27].

The time-dependent Hamiltonian is

_ () Y )
H‘( y o) “)

with random diagonal terms defined by

(€(1) =0,

where 8=W?/12 measures the disorder chosen from a box
distribution within [-W/2,+W/2]. The averaged matrix el-
ements of the density matrix p can be obtained from a de-
coupling suggested in [28]

(€(D)€lt) =60, ;0t-1"), i,j=12, (5)

1p11= = 1p2r = Y(pa1 = P12), (6)
1p1==218p1y + Ypan = p11), (7)

and if we define

— 1 — 1= =
PU=S P P2=5 P p=R+iJ, py=R-iJ,
(8)
the corresponding equations become
p=-2vJ, R=-26R, J=-26]+2yp. 9)

It must be emphasized that these equations describe qubit
dephasing which was considered before for quantum walks
on a hypercube [24]. Their general solutions (with appropri-
ate constants) are

py_ -2y Ayt <_27) A_t
(J)—C+< A, )e +C_ A el (10)

PHYSICAL REVIEW A 77, 022302 (2008)

W=0.1

20000 40000 60000 80000 100000

time
FIG. 8. The phase 6 of the off-diagonal matrix element of the
density matrix p;, vs time for a two-level system with dynamic
disorder W=0.1, 1, and 10. The decoherence due to dephasing is
seen for the highest value W=10>W, where 6 completely
randomizes.

R=Cre ¥, A,=—08+\5-497, (11)

by choosing as the initial state one of the two levels with
p(0)=1/2, R(0)=J(0)=0.

Finally, the averaged off-diagonal matrix element of the
density matrix can be easily shown to be

pralD) =10(0) = == sin(Ay? = Fne ™ (12)
N

4y - &
for & <4+?. If >4+ in Eq. (12) the quantity under the
square root changes sign and sin is replaced by sinh. Thus for
t— o the averaged density matrix approaches half the unit
matrix with only diagonal matrix elements and the quantum
coherences described by p;, becoming zero, oscillating for
the quantum case 6<<2+y and monotonically decaying for the
classical case 6>21.

In order to examine the dephasing effect of dynamic dis-
order we have plotted in Fig. 8 the phase 6 of p;, vs t
obtained from numerical computations without averaging.
Our results are presented for y=1 and different values of
disorder W which verify the critical value W,=24 of the
previous analysis based on averages. The quantum coherence
remains for weak dynamic disorder W<<W, while for higher
dynamic disorder W> W.. the phase randomizes and the sys-
tem becomes classical.

IV. DISCUSSION

Quantum walks are quantum analogs of classical random
walks which have been proposed in order to create quantum
algorithms which run faster in quantum computers. They can
also arise from mapping various physical problems (see, e.g.,
[29]). Some quantum algorithms which speed-up classical
methods have already been successfully employed, such as
for search problems on graphs. These algorithms which show
amplitude amplification during the evolution could be effi-
ciently implemented in a quantum computer. However, since
they are often confronted with disorder we have examined
how quantum wave packets move in the presence of disorder
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by computing the probability density P(x,t)=|¥(x,?)|> from
solving the time-dependent Schrédinger equation in the dis-
crete space x of a one-dimensional lattice. The static disorder
is due to imperfections and the dynamic disorder could be
due to the environment which might become obvious in scat-
tering from nanostructures, averaging over measurements,
etc.

Our main conclusions from the quantum evolution of the
6 function and very broad initial spatial wave packets are as
follows. (1) In random media quantum walks often perform
worse than their classical counterparts since destructive
quantum interference leads to Anderson localization which
completely stops the quantum walk although the correspond-
ing ordinary random walks in the presence of disorder can
still move infinitely slowly. (2) For dynamic disorder we
have no benefit from quantum walks either, since the ballistic
evolution for small-¢ crosses over to classical diffusion for
long-¢ and the quantum walks become classical via a quan-
tum to classical crossover. (3) The answer to the question
“what slows down a quantum walk?” is, on one hand, “static

PHYSICAL REVIEW A 77, 022302 (2008)

disorder via destructive quantum interference” and, on the
other hand, “dynamic disorder which makes the quantum
walk at long enough times no different from ordinary ran-
dom walk.” Therefore quantum interference in random me-
dia can hold surprises for quantum walks and their advan-
tages appear for weak disorder or short times only. In higher
dimensions quantum walks are also expected to operate but
for weak disorder only in order to avoid quantum localiza-
tion. The fact that a small amount of decoherence can be
beneficial for quantum walks by making the distributions
more uniform is also expected to appear after averaging
since the problem reduces to previous decoherence studies
[24], as it was shown in Sec. III for a single qubit. In con-
clusion, our computations show Anderson localization or de-
coherence as the main enemies of quantum walks in the pres-
ence of static and dynamic disorder, respectively, which
destroy their well-known quadratic or exponential speed-up.
Our study could be useful towards creating better quantum
search algorithms in the presence of disorder [30].
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