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Recent years have seen increased interest in complexified Bohmian mechanical trajectory calculations for
quantum systems as both a pedagogical and computational tool. In the latter context, it is essential that
trajectories satisfy probability conservation to ensure they are always guided to where they are most needed.
We consider probability conservation for complexified Bohmian trajectories. The analysis relies on time-
reversal symmetry considerations, leading to a generalized expression for the conjugation of wave functions of
complexified variables. This in turn enables meaningful discussion of complexified flux continuity, which turns
out not to be satisfied in general, though a related property is found to be true. The main conclusion, though,
is that even under a weak interpretation, probability is not conserved along complex Bohmian trajectories.
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I. INTRODUCTION

Trajectory interpretations of quantum mechanics have
been of interest since the earliest days of quantum theory.
Indeed, they even predate the Schrödinger equation
itself—as one finds, e.g., by considering the Bohr-
Sommerfeld quantization rule. Although the latter was dis-
covered to be an incorrect description of quantum theory, it
survives today in the form of the Jeffrey-Wentzel-Kramers-
Brillouin �JWKB� approximation, or more generally, semi-
classical mechanics �1�. In this approach, a time-evolving
quantum pure state is treated as a statistical ensemble of
classical trajectories that “carry” approximate quantum
information—i.e., complex amplitudes. There are many rea-
sons, both pedagogical and practical, why semiclassical and
even classical trajectory methods may be regarded as benefi-
cial. Surely, though, one of these must be the fact that the
differential probability ��x�dx is conserved along any given
trajectory—a well-known property of classical statistical en-
sembles. This alone ensures that the ensemble trajectories
travel to where they are “most needed”—i.e., to where the
probability density is largest—a consideration that is espe-
cially important for localized wave packet propagation in the
limit of large system dimensionality.

Starting with Madelung in the same year as the
Schrödinger equation itself �2� �based on matter wave ideas
of de Broglie� and evolving into a full-fledged interpretation
of quantum theory with Bohm in the early 1950s �3,4�, an
exact trajectory formulation of quantum mechanics was also
developed. Over the ensuing decades, the resultant “Bohm-
ian mechanical” trajectory ensembles have been relied upon
to provide interpretational or “analytical” insight into previ-
ously solved time-dependent quantum wave packet propaga-
tion problems, such as the fundamental double-slit experi-
ment �5–9�. More recently, innovations spearheaded by
members of the chemical physics community have led to the
use of quantum trajectory methods �QTMs� as a “synthetic”
tool—i.e., to solve the time-dependent Schrödinger equation
�TDSE� itself �10–12�.

Though it is of great interest to compare and contrast the
behavior of quantum trajectories with their classical counter-
parts, we shall do so here only as it relates to the present
goals, as a detailed discussion would take us too far afield.
Most important in the present context is the fact that Bohm-
ian quantum trajectories also satisfy probability conservation
�Eq. �9��—an extremely beneficial property for the “syn-
thetic” application of QTMs, and again, a chief reason for
their utility. On the other hand, standard Bohmian mechani-
cal trajectories—which we shall henceforth refer to as “real-
valued Bohmian trajectories” for reasons that will become
clear—suffer from certain apparent drawbacks as well, some
of which can cause severe numerical difficulties for the syn-
thetic approach �10�. In particular, for nondegenerate station-
ary states, all quantum trajectories are stationary fixed
points—in stark contrast to the corresponding classical tra-
jectory orbits.

To circumvent the above problems, one approach is to
follow the semiclassical prescription of adopting a multipolar
expansion of the wave function � �13,14�. This leads to a
correspondence between individual �real-valued� quantum
and classical trajectories in the classical limit. A second ap-
proach, the focus of the present paper, involves a different
generalization of Bohm’s original prescription—i.e., allow-
ing the coordinates x and trajectory velocities v to take on
complex values. The resultant “complex-valued Bohmian
trajectories” offer certain advantages; for instance, they are
known not to be fixed-points, in general, for nondegenerate
stationary states, so that it is possible to achieve nontrivial
trajectory dynamics in this context. Although complex-
valued Bohmian mechanics may still be in its infancy, inter-
est has grown tremendously in the last few years
�1,9,15–32�. The field appears to have started in the 1980s
with a paper by Leacock and Padgett �15� and a less well
known �and very brief� article by Tourenne �16�. More recent
authors have explored the complex Bohmian approach both
for time-independent �stationary� and time-dependent �wave
packet propagation� problems, in both analytical and syn-
thetic contexts �17–32�.

Remarkably, the all-important issue of trajectory prob-
ability conservation does not yet appear to have been ad-
dressed in the literature. Yet as stated previously, this is an*Bill.Poirier@ttu.edu
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essential requirement if the complex-valued synthetic TDSE
methods currently under development are to have general
utility for systems larger than two or three dimensions d.
These methods already require special root-finding proce-
dures to single out the subset of complex trajectories that
happen to arrive on the d-dimensional real “axis” x at a de-
sired final time tf—since at other times, this trajectory en-
semble is described by some nontrivial d-dimensional mani-
fold embedded in the 2d-dimensional complex coordinate
space. Alternatively, one could in principle avoid the root
search by simultaneously propagating trajectories over the
entire complex coordinate space, but only at the expense of
doubling the dimensionality of the trajectory ensemble space
and thus enormously increasing the required number of tra-
jectories to compute. Such an approach would be highly re-
dundant from an information theory perspective, but perhaps
feasible—much like coherent-state representations �1�.

Though daunting, it may be possible to overcome the
above “d-doubling problem” �31� for large systems, but only
if complex quantum trajectories turn out to satisfy probabil-
ity conservation, at least approximately. This paper thus con-
siders the issue of probability conservation for complexified
Bohmian trajectories. The analysis ultimately relies on time-
reversal symmetry considerations, leading to a generalized
definition of the conjugation operation for functions of com-
plexified variables, which in turn leads naturally to a discus-
sion of complexified flux continuity and probability conser-
vation. Analytical properties of complex trajectory dynamics
are then considered, and finally, several d=1 examples are
discussed.

II. BACKGROUND

Real-valued Bohmian mechanics begins with the
Madelung-Bohm ansatz for the wave function �2–4�,

��x,t� = R�x,t�eiS�x,t�/�. �1�

The decomposition above is essentially unique, by virtue of
the fact that R and S are taken to be real valued and R�0.
By substituting Eq. �1� into the TDSE and gathering real and
imaginary terms separately, one obtains the following two
real-valued equations:

�R

�t
=

− 1

2m
�2R�S� + RS�� , �2�

�S

�t
= − �S�2

2m
+ V −

�2

2m

R�

R
� , �3�

where the primes denote spatial differentiation. Equation �3�
is the “quantum Hamilton-Jacobi equation” �3�, which im-
parts a classical-field-theory-like �33� interpretation to quan-
tum wave packet propagation, provided that �a� S��x , t� is
interpreted as trajectory momentum and �b� an additional
“quantum potential” Q�x , t�=−��2 /2m��R� /R� is added to
the true potential V�x� to determine the trajectory dynamics.

Equation �2� is the flux continuity equation, which under
the above interpretations is identical to trajectory probability
conservation. In particular, Eq. �2� can be rewritten as

���x,t�
�t

= − j��x,t� , �4�

where

��x,t� = R2�x,t� is the probability density, �5�

j�x,t� = ��x,t�v�x,t� is the probability flux, �6�

v�x,t� = S��x,t�/m is the trajectory velocity. �7�

Note that the flux j�x , t� above accords with the usual quan-
tum definition—i.e.,

j =
�

2im
����� − ����� . �8�

Note also that the flux is independent of potential energy as
is reasonable; i.e., V�x� enters only into the dynamical equa-
tion for trajectory evolution, Eq. �3�. In any case, Eq. �4�
implies conservation of differential probability along a
trajectory—i.e.,

d���x,t�dx�
dt

= 0, �9�

where d /dt refers to the total �hydrodynamic� time deriva-
tive. For simplicity, the above equations have been written as
if the dimensionality is d=1, but they are meant to refer also
to the multidimensional case, as the d�1 generalizations are
straightforward.

In complex Bohmian mechanics, an altogether different
ansatz is employed:

��x,t� = eiS�x,t�/�. �10�

In effect, the real-valued amplitude R of the decomposition
of Eq. �1� is “subsumed” into the exponent to form the
imaginary part of the now-complex-valued action, S. Substi-
tution into the TDSE now yields the single, complex-valued
equation

�S

�t
= − �S�2

2m
+ V −

i�

2m
S�� , �11�

which can be interpreted as a complex quantum Hamilton-
Jacobi equation. Equation �11� is the starting point for the
quantum Hamilton-Jacobi formalism, regarded as one of the
nine fundamental formulations of quantum mechanics
�15,18,34�.

Unlike the real-valued equation �3�, Eq. �11� contains all
of the information present in �, leading some authors to
conclude that the complex version is the more fundamental
�18�. On the other hand, in going from real- to complex-
valued formulations we have apparently lost the flux conti-
nuity relation altogether. Thus, if there is indeed a probability
conservation property for complex trajectories, it is neither
manifest in, nor independent from, Eq. �11�. Note that in
certain contexts, it is possible to extract a complex energy-
momentum conservation relation from Eq. �11� �18,35�.
However, this is not directly useful for synthetic applications
in relation to the guidance of trajectories to high-probability
regions where they are needed most.
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III. COMPLEXIFICATION: TIME-REVERSAL SYMMETRY
AND GENERALIZED COMPLEX CONJUGATION

To make progress with regard to probability conservation,
it seems clear that Eq. �11� must be written in a different, but
mathematically equivalent, form. In comparing Eq. �1� to Eq.
�10�, which emphasizes the action S over amplitude R, it
seems clear that the opposite procedure should be applied to
emphasize the latter; i.e., the real-valued S of Eq. �1� should
be “pulled down” from the exponent to form a complex-
valued amplitude R. But this would simply yield � itself as
the appropriate quantity to work with. Thus, the TDSE in its
standard form �i.e., in terms of �� should be a reasonable
starting point for analyzing flux continuity—albeit a com-
plexified version, with x�R replaced with z�C. Complexi-
fication of the TDSE per se offers no inherent difficulty pro-
vided that V�x� and the initial wave packet ��x , t=0� are
both analytic functions, as everything can then be uniquely
lifted from the real x axis to the complex z plane in accor-
dance with the usual rules of analytic continuation �36�. On
the other hand, establishing a complexified probability den-
sity ��z� does pose a bit of a problem, as the traditional
definition ��x�=��x���x� in terms of the conjugate function

�̄�x�=���x�= ���x��� is in general not analytic when x is
replaced with z.

Two straightforward candidates for a complexified ��z�
quantity are presented below.

�i� Define ��z�=���z���z�.
�ii� Define ��z� as the analytic continuation of ��x�.
Option �i� has the presumed advantage that ��z� is posi-

tive and real valued everywhere in the complex plane, but
suffers from the severe drawback that ��z� is not an analytic
function. This approach is being considered by other authors
�32�. Option �ii� offers analyticity, but yields complex-valued
probability densities off of the real axis and bypasses the
more fundamental issue of nonanalytic conjugate wave func-
tions, which must still be resolved. Analyticity is an enor-
mous advantage, for it means that familiar expressions such
as �−�

+���z�dz=1 represent true contour integrations with
path-independent meaning. Thus, integration contours may
be deformed away from the real axis—which is especially
important for synthetic TDSE applications, given that the
contour is essentially the �time-evolving� trajectory ensemble
manifold. In any case, complex probability values are likely
unavoidable in complexified space, for even if the density
��z� is real valued, the differential probability itself, ��z�dz,
need not be.

We will resolve the matter by directly addressing the more
general and fundamental issue of wave function conjugation
on complexified spaces. One approach to this problem
is to invoke charge–parity–time-reversal �CPT� symmetry
�37�—an idea that was introduced previously in the specific
context of non-Hermitian Hamiltonian operators �18,38,39�.
Similar ideas can be applied in the present case of complexi-
fied Hermitian Hamiltonians, although for general potentials,
only time-reversal symmetry is relevant. Let ��z , t� be a
solution of the complexified TDSE �z�C, but t�R�:

i�
���z,t�

�t
= −

�2

2m

�2��z,t�
�z2 + V�z���z,t� . �12�

Complex conjugating both sides and applying explicit time
reversal, i.e., t→−t, yields

i�
����z,− t���

�t
= −

�2

2m
� �2��z,− t�

�z2 ��

+ �V�z������z,− t���.

�13�

The above is the usual means of deriving the effect of the
antiunitary time-reversal operator on a wave function for
real-valued coordinates �37�. For the complexified case,
however, it is clear that Eq. �12� is not equivalent to Eq. �13�,
because �V�z���=V��z� is not equivalent to V�z� off of the
real axis. Instead, we must introduce the additional and final
step of replacing the coordinate z with its complex conjugate
z�. From the Schwartz reflection principle �36�, V��z��
=V�z�, because V�x� is real valued. Thus,

i�
����z�,− t�

�t
= −

�2

2m

�2���z�,− t�
�z2 + V�z����z�,− t� ,

�14�

so ���z� ,−t� is also a solution of the TDSE, the proper mani-
festation of time-reversal symmetry on the complexified
space. Note that the final step above is also consistent with
the approach of Hüber, Heller, and Littlejohn �40�, which
may be regarded as a semiclassical approximation to com-
plexified Bohmian mechanics. In fact, there is a very close
connection between the present approach and complex semi-
classical mechanics, with the latter emerging as the first-
order truncation of an infinite series expansion of the former,
as elucidated by Goldfarb et al. �23–26�.

Following the approach of Bender et al. �38,39�, the cor-
responding conjugation operation is therefore

f�z� = f��z�� = g�z� . �15�

Note that along the real axis—i.e., z=x—Eq. �15� is equiva-
lent to the standard conjugation operation. Most importantly
however, we find that f��z�� is an analytic function in the
original variable z, in that it satisfies the Cauchy-Reimann
conditions �36�—unlike, say, f�z�� or f��z�. Equation �15�
also satisfies the mathematical definition of a conjugate lin-
ear map �36�, unlike f�z�� or f��z�. Note that f��z�� is not
equivalent to f�z� in general. We will therefore sometimes
refer to f��z�� as “g�z�” to emphasize both its distinctness
from f�z� and also its analyticity. The latter property can be
demonstrated explicitly from a Taylor expansion:

f�z� = �
k=0

�

Ckz
k, g�z� = �

k=0

�

Ck
�zk. �16�

Having shown that f�z� is analytic, it follows trivially that
the complexified inner product integration
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	f 
h� = �
−�

+�

g�z�h�z�dz �17�

is contour path independent, as the integrand itself is analytic
�assuming analytic h�z��. In particular, this implies that

��z� = ��z���z� �18�

is analytic and, moreover, is equivalent to option �ii� de-
scribed above.

Note that both f�z�=V�z� and f�z�=��z� share the special
property that f�z�=g�z�= f�z�. This is nothing but the
Schwartz reflection principle and is true whenever f�z� is
analytic and f�x� is real. We find it convenient to refer to
such a function as a RE function—even though it is under-
stood that f�z� is not real valued off of the real axis. Simi-
larly, an IM analytic function f�z� is defined such that f�z�
=g�z�=−f�z� and is pure imaginary valued along the real
axis, but not necessarily elsewhere. Any analytic function
f�z� can be decomposed into a sum of RE and IM parts,
which we demonstrate via explicit construction:

f�z� = fRE�z� + f IM�z� , �19�

where

fRE�z� = � f�z� + f��z��
2

� ,

f IM�z� = � f�z� − f��z��
2

� .

Note that fRE�z� and f IM�z� are themselves analytic—unlike,
say, Re�f�z�� and Im�f�z�� (although fRE�x�=Re�f�x��, etc.)
Note also that the analytic derivative f��z�=df�z� /dz of a RE
�IM� function f�z� is also RE �IM�. Finally, the product of a
RE and RE �or IM and IM� pair of functions is RE, whereas
the product of RE and IM functions is IM.

IV. FLUX CONTINUITY AND PROBABILITY
CONSERVATION

Our next goal is to define a complexified flux from which
to derive a corresponding flux continuity relation. We start
with the velocity field v�z , t�, which from Eqs. �7� and �10� is
given by �15,17,18,23�

v�z,t� = −
i�

m

���z,t�
��z,t�

. �20�

In general, v�z , t� is neither RE nor IM. Along the real axis,
vRE�x , t� is the “flow velocity” �i.e., the standard velocity
field of real-valued Bohmian mechanics, closely related to
hydrodynamics�, whereas vIM�x , t� is known as the “Einstein
osmotic velocity,” associated with wave packet spreading, or
diffusion in stochastic quantum mechanics �10,41–43�. How-
ever, vIM�x , t� is not used in the stochastic context to generate
trajectories per se or otherwise venture off of the real coor-
dinate axis. Hirschfelder et al. did use the imaginary velocity
to create real-valued trajectories or “streamlines,” but only

along the real axis, by replacing t with it �44�. In complexi-
fied Bohmian mechanics, the imaginary velocity is directly
responsible for transporting the complex trajectories off of
the real axis. Of key significance for the present approach is
that both velocity components can be given significance off of
the real axis, due to the decomposition of Eq. �19� and the
fact that vRE�z , t� and vIM�z , t� are analytic functions, pro-
vided v�z , t� is �at least locally� analytic. Note that global
analyticity of ��z , t� does not necessarily imply the same
property for v�z , t� �Sec. V�.

The complexified flux is naturally defined from Eqs. �18�
and �20�, and the analytic continuation of Eq. �6�, as

j�z,t� = v�z,t���z,t� = −
i�

m
���z�����z� , �21�

which, based on the multiplication rules given in Sec. III, is
again neither RE nor IM. Note that the conjugation operation
of Eq. �15� commutes with spatial differentiation—i.e.,
�df�z�� /dz���=g��z�, where g�z�= f��z��. Thus, the meaning
of expressions such as the following is unambiguous:

jRE�z,t� = vRE�z,t���z,t�

= −
i�

2m
����z�����z� − ��z�����z��� , �22�

jIM�z,t� = vIM�z,t���z,t�

= −
i�

2m
����z�����z� + ��z�����z��� . �23�

Note that along the real axis, jRE�x , t� is equivalent to the
usual real-valued quantum flux of Eq. �8�. The imaginary
flux jIM�z , t�, in contrast, does not appear to have been con-
sidered previously in the literature, even when restricted to
the real coordinate axis. Off of the real axis, j and v point in
different directions.

A flux continuity relation should presumably involve the
divergence of the flux. From Eqs. �22� and �23� the RE and
IM components are found to be

jRE� �z,t� = −
i�

2m
����z�����z� − ��z�����z��� , �24�

jIM� �z,t� = −
i�

2m
����z�����z� + ��z�����z��

+ 2����z�����z�� . �25�

To relate the above to the time derivative of ��z , t� as defined
in Eq. �18� requires the time-derivative of ��z , t�. By replac-
ing t→−t in Eq. �14�, this is found to be

i�
���z,t�

�t
= +

�2

2m
��z,t�� − V�z���z,t� . �26�

Multiplying Eq. �12� by −�i /����z , t� and adding to
−�i /����z , t� times Eq. �26� then yields the complexified
flux continuity relation
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���z,t�
�t

= − jRE� �z,t� . �27�

The above procedure is similar to that used to derive the
real-valued flux continuity equation; however, it only works
here by virtue of the Schwartz reflection principle. Indeed, a
continuity relation based on any definition of ��z , t� other
than Eq. �15� would result in a flux quantity that depends on
the potential energy—a highly unphysical scenario that we
reject out of hand.

On the other hand, the continuity relation of Eq. �27� in-
volves only the RE component of flux, rather than j�z , t�
itself. This makes perfect sense when one considers that �
itself is RE, and therefore its time derivative must also be
RE. However, this has nontrivial ramifications in relation to
probability conservation for complex trajectories generated
from v�z , t� rather than from, say, vRE�z , t�. We will have
more to say on this topic in a moment, but first we point out
some additional noteworthy aspects of Eq. �27�. In particular,

�
−�

+� ���z,t�
�z

dz = 0, �28�

i.e., the total probability conservation property, which has a
contour-path-independent meaning; it is in any event clear
that integration of Eq. �24� along the real axis is zero. In the
specific case of nondegenerate stationary states, one can fur-
ther show that ���z , t� /�t=0 everywhere. Thus, even though
� has a nontrivial complex phase off of the real axis, this
phase does not evolve over time, so that ��z , t� is truly sta-
tionary everywhere. Note that without loss of generality,
��z , t�=��z�e−i�t with ��z� RE in this case, implying that

��z,t� = ���z��2. �29�

Since the continuity relation in Eq. �27� is given in terms
of jRE�z , t�=vRE�z , t���z , t�, it immediately follows via ana-
lytic continuation that d���z , t�dz� /dt=0, provided the com-
plex trajectories are obtained from vRE�z , t� rather than
v�z , t�. Along the real axis, the vRE trajectories are just the
standard real-valued Bohmian trajectories, so the orbit is the
real axis itself. Off of the real axis, the vRE�z , t� are quite
nontrivial and might in principle be considered for dynami-
cal purposes, with a ready-built trajectory probability conser-
vation property. There are at least two drawbacks to this
arrangement, however: �i� vRE trajectories that start off of the
real axis never intersect the real axis and �ii� nondegenerate
stationary states still have vRE�z , t�=0 everywhere in the
complex plane. In any event, all of the previous literature on
complexified Bohmian mechanics uses v�z , t� rather than
vRE�z , t� trajectories. Note that for nondegenerate stationary
states, v�z , t�=vIM�z , t�, so that all of the trajectory dynamics
is due to the imaginary velocity in this case. Again, because
vIM�z , t� is not pure imaginary valued, this does not imply
trivial “vertical” �parallel to imaginary axis� trajectory orbits
in the complex plane. In general, stationary state orbits are
vertical only where they intersect the real axis, about which
the orbits display reflection symmetry; otherwise, they are
quite arbitrary, often recrossing the real axis again at a dif-

ferent point �Sec. VI�. The ground state of the harmonic os-
cillator system, for instance, is characterized by concentric
circular orbits �10,17,18,20�.

For the more general case of nonstationary wave packet
propagation, it is easily shown that d���z , t�dz� /dt�0 in
general, for trajectories obtained from v�z , t�. Thus, in a lit-
eral sense, probability conservation along trajectories is not
satisfied. On the other hand, it might be argued that such a
strong form of probability conservation should not be re-
quired. In particular, this relates to the fundamental question
of how physical observables are to be interpreted in com-
plexified space and how these relate to real measurements.
The impression one derives from the literature is that observ-
ables are to have physical meaning only when evaluated
along the real axis. On the other hand, a theory such as that
presented here, which allows all quantities to be analytically
continued, may shed additional light on this question, in that
knowledge of said quantities along an essentially arbitrary
d-dimensional manifold implies knowledge along the real
axis.

Returning to the issue of probability conservation, if we
presume that ��z , t�dz has no direct physical meaning off of
the real axis, then it may not be appropriate to impose Eq. �9�
throughout the entire complex plane. Instead, let us imagine
a particular v�z , t� trajectory, z�t�, which crosses the real axis
at time ti and again at a later time tf—i.e., z�ti�=xi and
z�tf�=xf �Fig. 1�. We stipulate on physical grounds that it
should be sufficient to satisfy the following weak probability
conservation condition:

��xi,ti�dxi = ��xf,tf�dxf . �30�

However, even Eq. �30� turns out not to be satisfied in
general—even under the most favorable situation where � is
a nondegenerate stationary state and v�z� is analytic.

V. ANALYTIC PROPERTIES AND TRAJECTORY
DYNAMICS

To demonstrate that Eq. �30� is not satisfied, it is helpful
to introduce the map f �ti,tf��zi�=zf, corresponding to the tra-

position, x=Re[z]

0

po
si

tio
n,

y=
Im

[z
]

zizf

FIG. 1. Two closed complex trajectory orbits for a nondegener-
ate stationary state over half a period 	t=T /2. All units are atomic
units. Solid curve denotes the main trajectory, starting at �zi=xi , ti�
and ending at �zf =xf , tf�. Dashed curve denotes neighboring trajec-
tory, starting at �xi+dxi�. The function f �ti,tf��z� maps zi to zf and the
small differential circular disk zi+dzi on the right to the small dif-
ferential circular disk zf +dzf on the left. Right and left arrows de-
note �directional� dxi and dxf intervals, respectively; note the
change in sign.
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jectory that connects the initial point �zi , ti� to the final point
�zf , tf� �Fig. 1�. This in turn requires the trajectory guidance
equation

dz

dt
= v�z,t� = −

i�

m

���z,t�
��z,t�

. �31�

Regarded as a function of zi, f �ti,tf��zi� is essentially a con-
tinuous composition of the generator map v�z , t�. Physically,
it represents the effect of time evolution on the system, from
the initial time ti to the final time tf, and is standard in clas-
sical field and semiclassical theories �1,33,45�. Note that the
time evolution of ��z , t� is analogous to classical dynamics
under a time-dependent potential, thus requiring both super-
script time parameters ti and tf, rather than just the difference
	t= �tf − ti�.

If v�z , t� is presumed to be analytic, at least locally in the
vicinity of some given trajectory, then f �ti,tf��zi� will also be
locally analytic. Globally, however, f �ti,tf��zi� is usually not
analytic even if v�z , t� itself is globally analytic, due to
branch cuts that can arise in the function f �ti,tf��zi�. In most
cases—e.g., when ��x , t� has nodes—v�z , t� is not �globally�
analytic, but “meromorphic,” meaning that it is globally ana-
lytic apart from a discrete set of simple poles �36�. In this
case, also, f �ti,tf��zi� is usually not meromorphic itself �though
it must have simple poles�, but also exhibits branch cuts. The
branch cuts delineate regions of the zi domain that get
mapped discontinuously under f �ti,tf��zi� to different regions
of the range. In the trajectory interpretation, two initially
nearby trajectories, starting differentially close to each other
at ti, but on either side of a branch cut, wind up far apart at
tf. The branch cuts themselves must therefore correspond to
“separatrix”-type trajectory orbits �Fig. 2�.

On the other hand, for trajectories sufficiently far from a
separatrix or simple pole, f �ti,tf��zi� may be regarded as lo-
cally analytic. Consequently, points z=zi+dzi lying within a
differentially small circle centered at zi get mapped under
f �ti,tf��z� to another differentially small disk of points
f �ti,tf��zi+dzi�=zf +dzf, as in Fig. 1. Due to local analyticity
�36�, the ratio of differentials—i.e., dzf /dzi—is independent
of the magnitude or direction of dzi:

dzf

dzi
= f �ti, tf���zi� . �32�

Thus, the spatial derivative function f �ti , tf���zi� specifies how
the differential volume element dz is transformed via trajec-
tory evolution over the specified time interval. For a given
initial point �zi , ti�, we can, by varying tf = t, obtain a trans-
formed dz for every point along the z�t� trajectory. In par-
ticular,

dz

dzi
= f �ti, t���zi� = r�zi,ti��z�t�� , �33�

where it is understood that the trajectory z�t� passes through
�zi , ti�. Note the new quantity r�zi,ti��z�t��, which—though

equivalent to f �ti , t���zi�—is introduced so as to be regarded as
a function of the final trajectory point z�t� �at arbitrary time

t�, rather than the initial point zi. Note also that r�zi,ti��zi�=1.
For differentially small time increments 	t=dt, it can eas-

ily be shown using standard statistical or hydrodynamical
arguments that dzf = �1+v��zi , ti�dt�dzi �10�, implying that

dr�zi,ti��z�t��
dt

= v��z�t�,t�r�zi,ti��z�t�� . �34�

The solution for r�zi,ti��z�t�� is therefore found to be

r�zi,ti��z�t�� = exp �
ti

t

v��z�t��,t��dt�� , �35�

where the integration is along the trajectory.
The general global solution to Eq. �35� above is not

straightforward; in particular, it is not apparent how to obtain
r�zi,ti� values for �z , t� points off of the z�t� trajectory. How-
ever, this is easily achieved for the specific case of nonde-
generate stationary states, on which we will focus for the
remainder of this paper. In this context, v�z , t�=v�z� is inde-
pendent of �final� time, and similarly, r�zi,ti�=rzi is indepen-
dent of initial time, as appropriate for the resultant “time-
independent potential” dynamics. A simple change of
variables in Eq. �35� above then leads to
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FIG. 2. Complex quantum trajectories for a representative sam-
pling of one-dimensional nondegenerate stationary states for Hamil-
tonians of the form of Eq. �41�. All units are atomic units. Dashed
lines indicated separatrix trajectories, leading to branch cuts in the
map fT/2�z�. See text for additional discussion. Specific states are as
follows: �a� system II, harmonic oscillator first excited state; �b�
system III, symmetric double-peaked ground state; �c� system IV,
Morse oscillator ground state; �d� system V, asymmetric single-
peaked ground state.

BILL POIRIER PHYSICAL REVIEW A 77, 022114 �2008�

022114-6



rzi�z� =
v�z�
v�zi�

. �36�

Since v�z�=vIM�z� is pure IM, for trajectories initiating on
the real axis, zi=xi, the function rxi�z� is pure RE. Thus,
whenever the trajectory z�t� recrosses the real axis, at �zf

=xf , tf�, the initial real-valued volume element dzi=dxi is
transformed to a final volume element dzf =dxf that is also
real valued �Fig. 1�—a nontrivial but essential prerequisite
for any relation of the same type as Eq. �30�, since ��xi , ti�
and ��xf , tf� are also real valued. In particular, we obtain

dxi

vIM�xi�
=

dxf

vIM�xf�
. �37�

However, it is not necessary to restrict oneself to xf values
that are connected to xi via trajectories; in fact, the above
relation is true for completely general values of xi and xf.

Substituting Eq. �20� into Eq. �37�, and exploiting Eq.
�29�, we derive the following relation:

��xi�
���xi�

dxi =
��xf�
���xf�

dxf . �38�

Equation �38� above is similar to, but clearly distinct from,
the desired probability conservation condition, Eq. �30�. The
latter is thus satisfied if and only if 
���xi�
= 
���xf�
, which—
though not true in general—is true for the special case of
symmetric analytic velocity fields �v�−z�=−v�z�� with a
single stationary point at the origin.

Note that for nondegenerate stationary states, f �ti,tf��zi�
= f	t�zi� depends only the time interval 	t. It is of interest to
relate v�z� to f	t�zi� via rxi�zf�. With z=zi and f = f	t�zi�=zf,
one obtains

df

dz
= rxi�zf� =

v�f�
v�z�

, �39�

w�f� = w�z� + const, �40�

where w�y� is the integral �dy /v�y�. Clearly, w�y�, and thus
f	t�z�, will not in general be globally analytic, even if v�z�
itself is.

The role of stationary points—i.e., z0 such that
v�z0�=0—is important in trajectory dynamics. These occur
where ���z�=0—i.e., the non-node zeros of ���z�=0. When
��z� has nodes, it is easy to demonstrate that v�z� has a
simple pole at each node and is therefore meromorphic at
best. Conversely, node-free analytic wave functions ��z� can
often lead to globally analytic velocity fields. In the vicinity
of nodes, v�z� directs initially neighboring trajectories to
very different final destinations, thus leading to separatrix-
like trajectories and branch cuts in f	t�z� �Fig. 2�. However,
unlike separatrix orbits in classical phase space, v�z� does
not approach zero as the node is approached—because the
poles are not themselves stationary points. Note that
separatrix-like trajectories, and associated f	t�z� branch cuts,
can arise even when v�z� is globally analytic �Sec. VI�.

In the neighborhood of stationary points, one can apply
the standard velocity field linearization method �45� to deter-

mine the behavior of neighboring trajectories. In particular,
v�z��A1�z−z0�, where A1 is a complex constant. If A1 is
pure imaginary, then the neighboring trajectories are circular
and closed, with frequency �= 
A1
 and period T=2
 / 
A1
.
This is always the case for stationary points on the real
axis—i.e., z0=x0—which we now consider in greater detail.
Note that due to reflection symmetry about the real axis, the
first crossing of the real axis occurs at time T /2, at location
xf =x0− �xi−x0�, for differentially small �xi−x0�. Thus, in
some small neighborhood of x0, the map fT/2�x� is real val-
ued, which in turn implies that fT/2�z� is RE over the domain
around x0 for which fT/2�z� is analytic. This in turn implies
that all trajectories within the domain of analyticity have
period T, even well away from the neighborhood where the
velocity field is linear and the trajectory orbits circular.

For stationary points off of the real axis, it may still be
true that A1 is pure imaginary, leading to closed neighboring
trajectories and essentially “conservative” dynamics. How-
ever, A1 may also be complex valued, resulting in aperiodic
trajectories that spiral in or out, with the stationary point an
attractor or repeller, respectively �with the former akin to
dissipative dynamics�. Such stationary points z0 come in
complex-conjugate pairs, with the A1 of one the complex
conjugate of the other, thus implying that one point of the
pair is an attractor and the other a repeller. It is possible for
trajectories to flow directly from an attractor to its conjugate
repeller, crossing the real axis in a region without closed
orbits.

VI. SPECIFIC EXAMPLES

To demonstrate the range of dynamical behaviors avail-
able, for both analytic and nonanalytic v�z�, we consider a
representative sampling of d=1 systems, some of which have
been considered in the previous literature �15,17,18,20,29�.
In each case, the Hamiltonian is of the form

Ĥ = −
�2

2m

�2

�z2 + V�z� , �41�

with m=�=1. All units may therefore be taken to be atomic
units. Complex quantum trajectories for systems II–V are
presented in Fig. 2. In every case, Eq. �38� has been con-
firmed numerically for those trajectories that recross the real
axis. The velocity field v�z� is obtained using Eq. �20�; sta-
tionary points are obtained by solving v�z0�=0; correspond-
ing trajectory periods are obtained as per the end of Sec. V.

A. System I: Harmonic oscillator ground state

The relevant quantities are as fiollows:

Potential V�z� = z2/2
Wave function ��z� = exp�− z2/2�
Velocity v�z� = iz

Stationary point z0 = 0

Period T = 2


This system conforms to the special symmetric case, dis-
cussed after Eq. �38�, for which 
���xi�
= 
���xf�
. Due to
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symmetry, xf =−xi corresponds to the first real-axis crossing
at time T /2. Consequently, dxf =−dxi, ��xi�=��xf�, and weak
probability conservation is satisfied. This is the only example
considered for which Eq. �30� is correct. Also, rather unchar-
acteristically, f	t�z�=ei	tz is globally analytic. The complex
trajectory orbits are concentric circles centered at the origin
that move counterclockwise.

B. System II: Harmonic oscillator first excited state

We use the following parameters:

Potential V�z� = z2/2
Wave function ��z� = z exp�− z2/2�
Velocity v�z� = i�z2 − 1�/z
Node z = 0

Stationary point z0 = � 1

Period T = 


The first excited state of the harmonic oscillator has a node at
the origin. As per the discussion at the start of Sec. V, this
implies that the velocity field v�z� is meromorphic, with a
simple pole at the z=0 node. Through this node, separatrices
partition two sets of closed trajectories �period 
� around the
two stationary points. Note that since these stationary points
lie on the real axis, the nearby trajectories must be concentric
circles �A1 is pure imaginary�. There are also larger trajectory
orbits, also closed �period 2
�, that surround both stationary
points. Thus, trajectories on either side of the separatrices get
mapped to very different locations, so for this example,
fT/2�z� is not globally analytic, or even meromorphic.

C. System III: Symmetric double-peaked ground state

We use the following parameters:

Wave function ��z� = exp�− z4/2 + z2�
Velocity v�z� = 2iz�z2 − 1�
Stationary point z0 = 0, � 1

Period T = 
,
/2

There are no wave function nodes and therefore no simple
poles in the velocity field v�z� or in the trajectory map
fT/2�z�. Although v�z� is globally analytic, fT/2�z� is not. All
trajectories except for the separatrices are closed, each sur-
rounding exactly one of the three stationary points. This is
the first case considered for which there are separatrix trajec-
tories when v�z� itself is globally analytic.

D. System IV: Morse oscillator ground state

We use the following parameters:

Potential V�z� = exp�− 2�2z/3� − 2 exp�− �2z/3�
Wave function ��z� = 6181/4 exp�− 3e−�2z/3 − 5�2z/6�
Velocity v�z� = i�5 − 6e−�2z/3�/3�2

Stationary point z0 = 3 ln�6/5�/�2 + ik3�2
 with

k an integer

Period T = 18
/5

The velocity field v�z� is globally analytic, but fT/2�z� is not.
Also, v�z� is periodic in the imaginary direction, over a dis-
tance 3�2
. Thus, the stationary point along the real axis and
surrounding “librational” closed trajectories are duplicated at
regular intervals away from the real axis. In addition, there is
a family of open, “hindered rotational” trajectories, on the
right side of the figure, that traverse all unit cells.

E. System V: Asymmetric single-peaked ground state

We use the following parameters:

Wave function ��z� = exp�− z4 − z2/2 − z3�
Velocity v�z� = i�z + 3z2 + 4z3�
Stationary point z0 = 0,− 3/8 � i�7/8
Period T = 2


The velocity field v�z� is globally analytic, but fT/2�z� is
not. The stationary point at z0=0 is surrounded by closed
trajectories with period 2
 on the right side of the figure. In
addition, there is a pair of complex-conjugate stationary
points off of the real axis, such that the one in the upper half
plane is a repeller and the other an attractor. On the left side
of the figure is a family of aperiodic, doubly spiraling trajec-
tories that connect the repeller to the attractor. These trajec-
tories cross the real axis only once.

VII. CONCLUSIONS

We conclude with a brief summary of what has been
achieved here. First, it seems evident that any analysis of
quantum probability flux on complexified space requires
generalized complex conjugation of the form of Eq. �15�.
This results in analyticity of the requisite quantities such as
probability density—but much more importantly, leads to
complexified flux relations �e.g., Eq. �27�� that are physically
relevant because they do not depend explicitly on the poten-
tial energy. On the other hand, the most straightforward com-
plex generalization of the flux continuity relation to emerge
from this work—i.e., Eq. �27�—corresponds to the vRE�z , t�
rather than the v�z , t� velocity field. Even relaxing to the
weaker condition of Eq. �30� is insufficient to achieve prob-
ability conservation for v�z , t�. Yet even if this condition
were somehow satisfied, it might not be very useful for most
multidimensional applications, because few if any trajecto-
ries recross all of the real coordinate axes simultaneously
�even for separable systems, if the frequencies are incom-
mensurate�.

The above suggests that a different choice of complex
velocity field might be more advantageous, though it is not
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clear at present how to construct such a field. One possible
approach, inspired by coherent-state initial-value representa-
tions �1�, might be to regard z and z� as completely indepen-
dent quantities—e.g., in formulating partial derivative ex-
pressions for the flux and its divergence. This might in
principle require a pair of distinct complex trajectories, one
on z space and another on z� space, which somehow get
combined together to form the time-evolving probability
density ��z�t� ,z��t� , t�. Perhaps even two time coordinates
would be involved.

On the other hand, there is still some hope for the v�z , t�
approach, as well. In particular, as per the discussion follow-
ing Eq. �36�, the fact that real dxi implies real dxf under
v�z , t� dynamics might turn out to be quite useful. Also, in
certain special cases, it may turn out that Eq. �30� is approxi-
mately satisfied—well enough to enable calculations for

large systems. In any event, it is hoped that this initial foray
may enable subsequent developments toward achieving
probability conservation for complex quantum trajectories,
or at least, provide a useful framework for analysis of these
important issues.
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