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I. INTRODUCTION

A basic problem in the field of open quantum dynamics is
the question how the motion of a tracer particle, such as a
Brownian particle, is affected by the presence of a back-
ground gas �1�. More specifically, one may consider a single
distinguished test particle which moves in the absence of
external forces, but is interacting with an ideal, nondegener-
ate, and stationary gas. The elastic collisions with the gas
particles will affect the motional state of the tracer particle,
and we are interested in the appropriate effective equation of
motion for its �reduced� density operator which incorporates
the interaction process in a nonperturbative manner. This
master equation is necessarily linear, since it pertains to a
single particle, and it is aptly called, in analogy to the case of
a classical tracer particle �2�, the quantum linear Boltzmann
equation �QLBE�. However, one should not confuse it with a
linearized quantum equation for the single particle gas state
of a self-interacting quantum gas, sometimes called by the
same name �though the notation “linearized quantum Boltz-
mann equation” would seem more fitting�.

The dynamics to be described by the QLBE can be quite
involved because the tracer particle may be in a very non-
trivial motional state, characterized, for example, by the non-
classical correlations between different position and momen-
tum components found in a matter wave interferometer �3�.
On the long run, the tracer particle will approach a stationary
“thermalized” state, while the ever increasing entanglement
with the gas will reduce its quantum coherences already on
much shorter time scales. A limiting case occurs if the tracer
particle can be taken as infinitely massive, so that energy
exchange during the collisions can be safely neglected. In
this case one expects pure collisional decoherence, i.e., a
spatial “localization” of an extended coherent matter wave
into a mixture with reduced spatial coherence.

This problem was first investigated by Joos and Zeh in a
linearized description �4�. However, a nonperturbative treat-

ment is required to describe how the spatial coherences in an
interfering state get reduced the more the better the scattered
gas particles can “resolve” the different interference paths,
and to account for the saturation of this effect with increasing
path difference �5,6�. This loss of coherence, which may be
related to the “which path” information revealed to the envi-
ronment, was observed experimentally with interfering
fullerene molecules in good quantitative agreement with de-
coherence theory �7�.

The situation is much more involved if the ratio m /M
between the mass m of the gas particles and the mass M of
the tracer particle cannot be neglected. In this case the par-
ticle experiences friction, it will dissipate its energy and fi-
nally thermalize. The appropriate effective equation must
then be able to describe the full interplay of decohering and
dissipative dynamics. An important advancement in this di-
rection was the proposal by Diósi �8� of an equation based on
a combination of scattering theory and heuristic arguments.
In this derivation a number of ad-hoc approximations had to
be introduced when incorporating the Markov assumption in
order to end up with a time-local master equation in Lind-
blad form. As is notorious in nonperturbative derivations of
Markovian master equations, these approximations are not
unambiguous and very hard to motivate microscopically.

One way to overcome this ambiguity problem was re-
cently proposed in Ref. �9�. This method, called the monitor-
ing approach, treats the Markov assumption not as an ap-
proximation to be performed when tracing out the
environmental degrees of freedom, but incorporates it before
this trace is done by combining concepts from the theory of
generalized and continuous measurements with time-
dependent scattering theory. When applied to the present
case, the essential premise of this approach is to assume that
both the rate and the effect of individual collisions between
the tracer and the gas particle are separately well defined.
The Markov assumption then enters by saying that three-
particle collisions are sufficiently unlikely to be safely ne-
glected, as are subsequent collisions with the same gas mol-
ecule within the relevant time scale. This assumption
excludes liquefied or strongly self-interacting “gas” environ-
ments, but it seems natural in the case of an ideal gas in a*www.klaus-hornberger.de
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stationary state. The only real freedom in this framework of
the monitoring approach lies in the choice of two micro-
scopic operators. Selecting the operators suggested by micro-
scopic scattering theory then leads to the equation in an un-
ambiguous way.

The present result was already announced in �10�. Here
we give a more detailed derivation,1 presenting two indepen-
dent ways of evaluating the environmental trace. We will
also point out that various limits reduce the QLBE to well-
established results. In particular, one obtains the weak-
coupling version of the QLBE, proposed earlier �11–13�, if
the appropriate limit is taken by replacing the scattering am-
plitudes with their Born approximation. Other limits lead to
the generalized form of the Caldeira-Leggett master equation
�14�, the master equation of pure collisional decoherence,
and the classical linear Boltzmann equation.

The structure of the paper is as follows. In Sec. II we
briefly review the monitoring approach and specify the mi-
croscopic operators for the problem at hand. Before delving
into the calculations we present the form of the resulting
QLBE in momentum representation in Sec. III. This allows
us to discuss the relation of the QLBE to the classical linear
Boltzmann equation. Section IV then starts out with the cal-
culation in momentum basis and explains why a straightfor-
ward evaluation of the trace is impossible. A first remedy,
based on the restriction to wave-packet states of incoming
type is given in Sec. V. Section VI provides an alternative
way of doing the environmental trace, which is based on a
formal redefinition of the scattering operator. Section VII is
devoted to calculating the coherent modification part of the
master equation using the same wave-packet technique as in
Sec. V. The basis independent “operator form” of the QLBE
is obtained in Sec. VIII; it shows immediately that the master
equation provides the generator of a completely positive and
translationally invariant quantum dynamical semigroup. Sec-
tion IX summarizes the various limiting forms of the QLBE,
and we present our conclusions in Sec. X.

II. MONITORING MASTER EQUATION FOR A TRACER
PARTICLE IN A GAS

A. Monitoring master equation

Let us start with a brief review of the monitoring ap-
proach �9�. It yields a Markovian master equation that is
specified, apart form the system Hamiltonian H, in terms of
two operators, a rate operator � and a scattering operator S.

The operator � is positive and in the present context it has
the defining property that its expectation value yields the
probability of collision with the gas particles in the small
time interval �t,

Pr��C�t�� � �gas� = Tr���� � �gas���t + O��t2� . �1�

Here, � is the system density operator which describes, in the
present application, the motional state of the tracer particle.
The operator �gas is the effective single particle state of the
gas environment, and it is assumed to be stationary �but not
necessarily in thermal equilibrium�. Thus, � acts in a two-
particle Hilbert space, and its task is to incorporate the tracer
state dependence of the collision probability into the dy-
namic formulation.

The scattering operator S, on the other hand, is unitary,
and by definition it yields the two-particle state after a single
collision, so that, upon tracing over the gas particle, we ob-
tain the new tracer particle state �in interaction picture� after
a single scattering event took place �15�,

�� = Trgas�S�� � �gas�S†� . �2�

The monitoring approach �9� now implements the Markov
assumption by combining the state dependence of the colli-
sion probability �1� with the transformation �2� in a way
which is consistent with the state transformation rules of
quantum mechanics �16�, using concepts of the theory of
generalized and continuous measurements �17–19�. In the
Schrödinger picture one thus obtains the effective equation
of motion

d

dt
� =

1

i�
�H,�� + L� + R� . �3�

The superoperators L and R are best specified in terms of
the nontrivial part T of the scattering operator S= I+ iT. The
part L� then takes the form �9�

L� = Trgas�T�1/2�� � �gas��1/2T†�

−
1

2
Trgas��1/2T†T�1/2�� � �gas��

−
1

2
Trgas��� � �gas��1/2T†T�1/2� . �4�

It describes the incoherent evolution of � due to the presence
of the gas environment. The part R�, on the other hand, is
given by2

R� = i Trgas„��1/2 Re�T��1/2,� � �gas�… , �5�

where Re�T�= �T+T†� /2. It is responsible for a unitary
modification of the evolution, a renormalization of the sys-
tem energy due to the coupling with the environment.

We would like to emphasize that the evolution described
by �3� is nonperturbative in the sense that the collisional
transformation described by S is not assumed to be weak.
Moreover, note that the incoherent part �4� is manifestly
Markovian even before the environmental trace is done.

B. Rate and scattering operators

In the framework of the monitoring approach the only
essential freedom lies in the choice of the operators �, T, and

1We emphasize that the word “derivation” is used here in the
physicist’s sense, implying that arguments and approximations are
invoked which—though physically stringent and leading to a
uniquely distinguished equation—may be hard to substantiate in a
proper mathematical framework. We certainly do not claim to pro-
vide a mathematically rigorous proof, noting that even the classical
Boltzmann equation still lacks such a mathematical derivation.

2A marginally different expression was given in Ref. �9�, see the
discussion in Sec. VII.
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H appearing in Eqs. �3�–�5�. In this section we will specify
them on a microscopic basis. Before that it is helpful to
consider with some care �gas, the effective single particle
state of an ideal gas with number density ngas.

To be describable by a normalizable state, the gas must be
confined, say with periodic boundary conditions, to a finite
spatial region � with �large� normalization volume ���. Let
us denote the projector to this spatial region as

I� = �
�

dx�x��x� . �6�

Using the double-bracket notation ��p�� for the volume-
normalized momentum states, the density operators corre-
sponding to these proper vectors take the form

�p = ��p����p�� =
�2���3

���
I��p��p�I�. �7�

Here the �p� are the usual improper momentum eigenvectors,
�x �p�= �2���−3/2 exp�ix ·p /��. Since �gas is stationary it must
be a convex combination of the pure momentum states �7�. It
is completely characterized by the gas momentum distribu-
tion ��p�, a positive function satisfying 	dp��p�=1. Thus
�gas has the form

�gas =� dp��p��p =
�2���3

���
I���p�I�, �8�

where p is the unrestricted momentum operator of a single
gas particle. This state is normalized, Tr��gas�=1, and it is
uniform in position, �x��gas�x�=1 / ��� for x��. The most
natural choice for � is of course the Maxwell-Boltzmann
distribution, see �94� below, but we will keep � unspecified
in order to indicate that the particular form of � is not rel-
evant for most of what follows.

In principle, projections similar to the I� in �8� are also
needed when defining the operators �, T, and H of �3�–�5�.
To avoid clumsy notation we will instead present them in
their unrestricted form and take care of the restrictions dur-
ing the calculations below.

Since the tracer particle is supposed to move in the ab-
sence of external forces the Hamiltonian part of �3� is given
by H=P2 /2M, where P is the momentum operator of the
tracer particle. The two-particle operators � and T depend on
the relative coordinates between tracer and gas particle, and
it will be convenient to denote relative momenta by

rel�p,P�: =
m�

m
p −

m�

M
P �9�

with m�=mM / �M +m� as the reduced mass. Thus, the mo-
mentum dyadics corresponding to the different factorizations
of the total Hilbert space Htot=H � Hgas=Hc.m. � Hrel are re-
lated by

�P��P�� � �p��p��gas = �P + p��P� + p��c.m.

� �rel�p,P���rel�p�,P���rel. �10�

In classical mechanics, the collision rate is obtained by mul-
tiplying the current density j0�p ,P�=ngas�rel�p ,P�� /m� of the

relative motion with the total scattering cross section �tot
�which also depends on the relative momentum�. It seems
therefore natural to define � as the corresponding operator
on Hc.m. � Hrel,

� = Ic.m. � �j0�p,P��tot„rel�p,P�…�rel = Ic.m. � ��0�rel

�11�

with

�0 =
ngas

m�

�rel�p,P���tot„rel�p,P�… . �12�

Indeed, for normalized and separable particle-gas states the
expectation value of this operator yields the collision rate
experienced by the tracer particle, provided their relative
state is of incoming type. If the two-particle state is of out-
going type, on the other hand, the motion of the relative
coordinate is directed away from the origin, so that the par-
ticle and the gas molecule never interact. Still, the operator
�11� would yield a finite expectation value in that case, since
it depends only on the modulus of the relative velocity and
not its orientation. A proper definition of � should therefore
also include a projection to the subspace of truly incoming
relative motional states. Unfortunately, it is rather difficult to
formulate this projection in a way so that one can work with
it in concrete calculations. Therefore, instead of using a more
refined definition we shall stick with Eq. �11� keeping in
mind that it is valid only for incoming states of the relative
motion.

As the last step, we must define the operator S= I+ iT
describing the effect of a single collision. It is natural to use
scattering theory for a microscopic definition �15�. The
center-of-mass coordinate then remains unaffected,

S = Ic.m. � �S0�rel �13�

and the scattering operator of the relative coordinates S0= I
+ iT0 is fully specified in terms of the complex scattering
amplitudes f�p f ,pi�, which are determined by the interpar-
ticle potential �20�,

�p f�T0�pi� =
1

2��
	
 pf

2 − pi
2

2
� f�p f,pi� . �14�

Note that a 	 function in �14� ensures that the energy is
conserved during an elastic collision changing the relative
momentum from pi to p f.

The scattering amplitude also defines the cross section
required in �11�. The differential cross section is given by

��p f,pi� = �f�p f,pi��2 �15�

and the total cross section reads

�tot�pi� =� dn�f�pin,pi��2, �16�

where n is a unit vector with dn the associated solid angle
element.

It is important to keep in mind that the S matrix �13�
provided by scattering theory is physically meaningful only
for proper incoming states of the relative motion, even
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though it is defined on the whole Hilbert space. This is sche-
matically shown in Fig. 1 where we contrast the action of S0
on an incoming wave packet with its effect on an outgoing
state, showing that an outgoing wave packet may get spuri-
ously transformed. The reason is that the Møller operator

�̂+=limt→
 U�t�U0�−t� used to construct S0=�̂−
†�̂+ involves

a free backward evolution in time U0�−t�, followed by a
forward motion U�t� in the presence of the interaction poten-
tial. To avoid this undesired transformation in �3� we must
either ensure that outgoing wave packets contribute with a
zero collision rate or we must modify S0 such that it leaves
the outgoing contributions invariant.

III. QLBE IN MOMENTUM REPRESENTATION

Before we proceed to derive the quantum linear Boltz-
mann equation let us present the result in the basis of im-
proper momentum eigenstates �P�, where it takes a particu-
larly simple form. This permits us to introduce the complex
rate function Min to be evaluated in Secs. IV–VI, and to
discuss its relation to the classical rate densities of the colli-
sion kernel.

We will see that the momentum representation of the in-
coherent part �4� of the QLBE can be written in terms of a
single complex function, and that it takes the form

�P�L��P�� =� dQ�P − Q���P� − Q�Min�P,P�;Q�

−
�P���P��

2
� dQMin�P + Q,P + Q;Q�

−
�P���P��

2
� dQMin�P� + Q,P� + Q;Q� .

�17�

The function Min�P ,P� ;Q� is defined in Eq. �24� �see also
�27� and �39��. In order to highlight the relation to the clas-
sical linear Boltzmann equation, let us first note that the mas-
ter equation takes the shorter form

�P�L��P�� =� dQMin�P,P�;Q��P − Q���P� − Q�

−
1

2
�Mout

cl �P� + Mout
cl �P����P���P�� , �18�

once we introduce

Mout
cl �P�: =� dQMin�P + Q,P + Q;Q� . �19�

As indicated by its name, this positive function gives the rate
known from the classical linear Boltzmann equation �2� for a
particle with momentum P to be scattered to a different mo-
mentum. It involves an integration over all initial gas mo-
menta p0 and all momentum exchanges Q subject to the re-
striction implied by energy conservation,

Mout
cl �P� =

ngas

m�
� dp0dQ��p0�

�	
 �rel�p0,P��2 − �rel�p0,P� + Q�2

2
�

��„rel�p0,P� + Q,rel�p0,P�… . �20�

Here, � is the gas momentum distribution function from �8�,
the function rel�p ,P� is defined in �9�, and � is the differen-
tial cross section �15�. Carrying out the Q integration one can
write the rate in terms of the total cross section �16�,

FIG. 1. Action of the S matrix when applied to localized wave packets of the incoming and the outgoing type. �a� An incoming wave
packet ��in� is transformed in such a way that the free motion of the resulting state S0��in� �indicated by the dashed curves� converges with
the dynamically scattered wave packet at large times �20�. �b� An outgoing wave packet, whose forward time evolution will be unaffected
by the scattering potential, gets strongly transformed by S0. This is due to the inverse time evolution involved in the definition of the S
matrix. To prevent this unwanted transformation one should �i� either attribute a vanishing collision rate to all outgoing states or �ii� modify
the S0 operator such that it leaves all outgoing wave packets unaffected. Evaluations of L� based on these two strategies are given in Secs.
V and VI, respectively.
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Mout
cl �P� =

ngas

m�
� dp0��p0��rel�p0,P���tot„rel�p0,P�… .

�21�

It follows that the dynamics described by the “loss term” in
�17� and �18� is fully specified by the rate in the correspond-
ing classical equation �which involves of course a quantum
mechanical cross section�. The term leads to a reduction of
the momentum coherences �P���P��P� with a rate given by
the arithmetic mean of the loss rates of the corresponding
diagonal elements, �P���P� and �P����P��, and these momen-
tum populations, in turn, are depleted in the same way as the
momentum distribution function of the classical linear Boltz-
mann equation.

The “gain term” in �17� and �18� is also related to the
classical linear Boltzmann equation, but only on the diagonal
P=P�. As one expects, Min is positive on the diagonal, and
equal to the rate density Min

cl from the classical linear Boltz-
mann equation for the tracer particle to end up in momentum
P f after a momentum gain of Q,

Min
cl�P f ;Q� = Min�P f,P f ;Q� � Mcl�P f − Q → P f�

=
ngas

m�
� dp0��p0�

�	
 �rel�p0 − Q,P f��2 − �rel�p0,P f − Q��2

2
�

��„rel�p0 − Q,P f�,rel�p0,P f − Q�… . �22�

The second equality in �22� introduces the notation

Mcl�Pi → P f�: = Min
cl�P f ;P f − Pi� , �23�

for the rate density corresponding to a change of momentum
Pi to P f. It will be useful for the discussion of the classical
linear Boltzmann equation in Sec. IX, and it yields the clas-
sical out rate �19� as Mout

cl �P�=	dP fM
cl�P→P f� thus ensur-

ing the conservation of probability.
For P�P� the function Min is in general complex valued,

and it has a rather complicated form when stated with its
explicit dependence on P, P�, and Q,

Min�P,P�;Q� =
ngas

m�
� dp0�1/2
p0 +

m

M

P
 − P
�

2
��1/2
p0 −

m

M

P
 − P
�

2
�

�f�rel
p0 − Q,P −
P
 − P
�

2
�,rel
p0,P −

P
 − P
�

2
− Q��

�f��rel
p0 − Q,P� +
P
 − P
�

2
�,rel
p0,P� +

P
 − P
�

2
− Q��

�	� rel
p0 − Q,
P + P�

2
�2

− rel
p0,
P + P�

2
− Q�2

2
� . �24�

Here we used the abbreviations

P
: =
P · Q

Q2 Q �25�

and

P
�: =
P� · Q

Q2 Q �26�

for the contributions in P and P� parallel to the momentum
exchange Q�0. This form of Min�P ,P� ;Q� clearly reduces
to the diagonal expression �22� when P approaches P�. The
curious appearance of the P
 and P
� contributions in �24�
ensures, in combination with the 	 function, that the modulus
of the initial and the final relative momentum are equal in
both scattering amplitudes. This will be more obvious below
in Sec. IV, where suitable relative coordinates are introduced.
The energy conservation is thus manifestly guaranteed for

each of the scattering amplitudes separately, while the argu-
ments will differ in general.

One of the important properties of the “complex rate”
�24� is that it admits a factorization of the P and P� depen-
dence, which will be crucial later on, when we formulate the
master equation in its representation-independent “operator
form.” Specifically, it will be shown in Sec. VIII that Min can
be written as a two-dimensional integration over the set
Q�= �p�R3 :p ·Q=0� of momenta perpendicular to the mo-
mentum exchange Q. This way the integrand factorizes into
a product of P- and P�-dependent terms,

Min�P,P�;Q� = �
Q�

dpL�p,P − Q;Q�L��p,P� − Q;Q� .

�27�

The functions
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L�p,P;Q� =�ngasm

Qm�
2 ��p�Q + 
1 +

m

M
�Q

2
+

m

M
P
Q�1/2

�f
rel�p�Q,P�Q� −
Q

2
,rel�p�Q,P�Q� +

Q

2
� ,

�28�

involve P
 defined in �25� and P�Q : =P−P
Q. In the
representation-independent form of the master equation they
turn into operator-valued expressions, see Sec. VIII.

Concerning the coherent modification of the QLBE, it
will be shown in Sec. VII that the momentum representation
of the corresponding term �5� reads

�P�R��P�� =
En�P� − En�P��

i�
�P���P�� �29�

with

En�P� = − 2��2ngas

m�
� dp0��p0�Re�f„rel�p0,P�,rel�p0,P�…� .

�30�

This shows how the presence of the gas changes the energy
of the particle with respect to the vacuum. This energy shift
depends on the particle momentum and is determined by the
real part of the average forward-scattering amplitude. This
phenomenon is well known in the field of neutron and atom
interference, and it is usually accounted for by introducing
an index of refraction, see Sec. IX E.

IV. EVALUATION IN THE MOMENTUM BASIS

A. Transformation to relative coordinates

Our main task in deriving the quantum linear Boltzmann
equation is to evaluate the expressions �4� and �5�, which is
best done in the momentum representation. Starting with the
incoherent part L�, the cyclicity under the trace yields

�P�L��P�� =� dQdQ��P − Q���P� − Q��M�P,P�;Q,Q��

−
1

2
� dP0�P0���P��� dP f

�M�P f,P f ;P f − P0,P f − P�

−
1

2
� dP0��P���P0��� dP f

�M�P f,P f ;P f − P�,P f − P0��

with

M�P,P�;Q,Q�� = �P�Trgas„T�1/2��P − Q��P� − Q��

� �gas��1/2T†
…�P�� . �31�

Upon inserting the stationary gas state �8� into �31� we can
simplify the expression by transforming from the two-
particle coordinates to the center-of-mass and relative coor-
dinates using �10�. Since � and T depend only on the relative
motion, see �11� and �13�, one thus finds

M�P,P�;Q,Q�� = 	�Q − Q��
�2���3

��� � dp0��p0�

��rel�p0 − Q,P��T0�0
1/2�rel�p0,P − Q��

��rel�p0,P� − Q���0
1/2T0

†�rel�p0 − Q,P���

= :	�Q − Q��Min�P,P�;Q� , �32�

as anticipated in �17�.
It is now helpful to introduce functions of p0,

pi = rel
p0,
P + P�

2
− Q� , �33�

p f = rel
p0 − Q,
P + P�

2
� , �34�

which denote the mean of the pairs of initial and final rela-
tive momenta appearing in �32�. We also set

q = rel
0,
P − P�

2
� . �35�

These definitions imply the relations

p f + q = rel�p0 − Q,P� ,

p f − q = rel�p0 − Q,P�� ,

pi + q = rel�p0,P − Q� ,

pi − q = rel�p0,P� − Q� ,

pi − p f = Q , �36�

which are noted here for later reference. Moreover, for given
q we shall write

q
 �
q · �p f − pi�
�p f − pi�2 �p f − pi� , �37�

q� � q − q
 �38�

to denote the components parallel and perpendicular to the
momentum exchange Q=pi−p f.

The complex rate density defined in the second equality
of �32� now takes the form

Min�P,P�;Q� =� dp0��p0�
�2���3

���
�p f + q�T0�0

1/2�pi + q�

��pi − q��0
1/2T0

†�p f − q� .

We can write it as the average over the gas momentum dis-
tribution function � of a rate density in the center-of-mass
frame,

Min�P,P�;Q� =� dp0��p0�min�p f,pi;q� , �39�

thus formally introducing
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min�p f,pi;q� =
�2���3

���
�p f + q�T0�0

1/2�pi + q�

��pi − q��0
1/2T0

†�p f − q� �40�

in terms of matrix elements of T0�0
1/2 with respect to the

relative momentum coordinates. This expression should be
viewed here as a generalized function in the sense of distri-
butions, with independent variables p f, pi, and q.

The main aim of the following sections is to show, in two
independent lines of argument, that the expression �40�
should be understood as

min�p f,pi;q� = �min�p f,pi;q�� if q · �p f − pi� = 0,

0 otherwise,
�

�41�

with

min�p f,pi;q�� =
ngas

m�

	
p f
2 − pi

2

2
� f�p f + q�,pi + q��

�f��p f − q�,pi − q�� . �42�

Note that this term involves a single 	 function and the ab-
breviation q� just defined in �38�.

B. Diagonal evaluation of the trace

As a first step, let us try to evaluate �40� in a straightfor-
ward fashion by maintaining that the operator �0 is diagonal
in the relative momentum coordinates. Equation �12� then
implies

�0
1/2�p� = �
0�p��p� �43�

with


0�p�: =
ngas

m�

�p��tot�p� . �44�

Noting that the T0 matrix elements are given by �14� one
thus obtains the generalized function

min�p f,pi;q� = 
0
1/2�pi + q�
0

1/2�pi − q�f�p f + q,pi + q�

�f��p f − q,pi − q�
2��

���

�	
p f
2 − pi

2

2
+ �p f − pi� · q�

�	
p f
2 − pi

2

2
− �p f − pi� · q� . �45�

Clearly, the two 	 functions ensure that the energy is con-
served in each of the “elastic collision trajectories” expressed
by the arguments of the two scattering amplitudes in �45�.
Employing the relation 	�a+b /2�	�a−b /2�=	�a�	�b� we
obtain the equivalent form

min�p f,pi;q� = 	
p f
2 − pi

2

2
�
0

1/2�pi + q�
0
1/2�pi − q�

�f�p f + q,pi + q�f��p f − q,pi − q�

�	„�p f − pi� · q…
��

���
. �46�

The first 	 function now requires pi and p f to have equal
length. These are the mean relative momenta of the pairs of
scattering trajectories, as defined in Eqs. �33� and �34�.
Given �pi�= �p f�, the second 	 function ensures that the energy
is conserved in each of the scattering amplitudes individu-
ally, by granting that q, which expresses a “distance” be-
tween the two pairs of scattering trajectories, is orthogonal to
the momentum exchange pi−p f. The fact that possible paral-
lel components of q=q�+q
 cannot contribute to an integral
over the generalized function �46� can be made manifest by
replacing the q’s outside of the 	 function by the orthogonal
component q� defined in �38�. In other words, the statement
�46� is tantamount to

min�p f,pi;q� = 	
p f
2 − pi

2

2
�
0

1/2�pi + q��
0
1/2�pi − q��

�f�p f + q�,pi + q��f��p f − q�,pi − q��

�	„�p f − pi� · q…
��

���
, �47�

which implies that the expression vanishes for q
�0, as
stated in �41�. In fact, even if the integration over min in-
volves a smooth function g�q� the second 	 function will
enforce that the latter contributes only with the orthogonal
component of q,

min�p f,pi;q�g�q� = min�p f,pi;q��g�q�� . �48�

One observes on the right-hand side of �47� that already the
first two lines now manifestly ensure the energy conservation
of the pair of collision trajectories described by the two scat-
tering amplitudes. This is a crucial requirement since the
scattering amplitudes are not defined off the energy shell
�notwithstanding the fact that analytic continuations are often
considered and helpful in scattering theory�. At the same
time this implies that the physical relevance of the second 	
function has been accounted for once the parallel compo-
nents of q have been set to zero. Hence, the third line in �47�
is essentially dispensable, which is all the more important
since it renders min an ill-defined expression due to the ap-
pearance of the arbitrarily large normalization volume ���.

As is well understood, the evaluation carried out in this
section does not yield a well-behaved result because it takes
the momentum-diagonal form �12� of the rate operator � too
seriously. It was already discussed in Sec. II B that either �
should involve a projection to the subspace of incoming
wave packets, or that the operator S should be redefined such
that it keeps the outgoing wave packets unchanged. These
two strategies will be implemented in Secs. V and VI, yield-
ing identical results. As one expects, the overall structure of
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�47�, which is dictated by the energy conservation, will not
change, but the third line will be replaced by a proper nor-
malization.

V. WAVE-PACKET EVALUATION

The aim of this section is to evaluate the generalized func-
tion

min�p f,pi;q�� =
�2���3

���
�p f + q��T0�0

1/2�pi + q��

��pi − q���0
1/2T0

†�p f − q�� �49�

by consistently incorporating the fact that the rate operator
�0 should have a vanishing expectation value for those states
of the relative motion that are not of incoming type. As a first
step, we will write �49� as the expectation value of a non-
Hermitian operator with respect to a properly normalized
momentum state of the relative motion. For that purpose it is
convenient to introduce the operator Z0 : =T0�0

1/2 and its
translation by the momentum q�,

Zq�
= exp
− i

xrel · q�

�
�T0�0

1/2 exp
i
xrel · q�

�
� , �50�

where xrel is the position operator of the relative coordinate.
Moreover, we note that, analogous to �7�, a volume-
normalized momentum state of the relative motion has the
form

�pi
=

�2���3

���
I��pi��pi�I�. �51�

Combining �50� and �51� one finds that the complex rate
density �49� can be taken as the diagonal momentum matrix
element of an operator product, min�p f ,pi ;q��
= �p f�Zq�

�pi
Z−q�

† �p f�, provided the projection to the normal-
ization volume is included. If we further denote the projector
to improper momentum eigenstates as Ppf

= �p f��p f� we can
write

min�p f,pi;q�� = Tr�Z−q�

† Ppf
Zq�

�pi
� . �52�

The complex rate density �49� has now the form of an ex-
pectation value with respect to a state �pi

which is properly
normalized, Tr��pi

�=1. As discussed in Sec. II B, the rate
operator �0, and therefore also the non-Hermitian operator
Z−q�

† Ppf
Zq�

should include a restriction to the subspace of
truly incoming relative motional states. Starting from �52�,
one can now implement this restriction in a rather transparent
and intuitive fashion by considering the phase space repre-
sentation of �pi

, as shown in the next section. A similar
method was already successfully applied in �9�, where the
effect of a gas on the internal dynamics of an immobile sys-
tem was discussed by combining the monitoring approach
with scattering theory.

A. Phase space restriction to incoming wave packets

The operator �pi
in �52� characterizes the motional state of

the relative coordinates between particle and gas prior to a

collision. According to �51� it is given by a plane wave
which extends through the whole normalization volume, and
it is therefore clearly not of the incoming type required for
the application of scattering theory.

The Wigner-Weyl formulation of quantum mechanics
�21–24� suggests a way to treat this problem. Continuous
variable states may be represented by the phase space qua-
siprobability function W��x ,p� : = �2���−3	dq exp�−iq ·x /��
��p−q /2���p+q /2�. For the state �51� the associated Wigner
function reads as3

Wpi
�x,p� =

���x�
���

	�p − pi� , �53�

where �� is the characteristic function of the normalization
volume ���. Given that expectation values as in �52� may
now be calculated as phase space integrals, it is natural to
implement the restriction by confining �53� to the phase
space area of incoming wave packets, i.e.,

Wpi
� �x,p� =

��pi
�x
pi

�

��pi
�

��pi
�x�pi

�

��pi
�

	�p − pi� . �54�

Here, the product ��pi
�x
pi

���pi
�x�pi

� is the characteristic

function of a cylinder pointing toward the origin, see Fig. 2.
It describes those points x=x
pi

+x�pi
in position space which

will pass in the vicinity of the origin when propagated in the
direction given by pi. �pi

is the base surface of the cylinder
and its area will be taken to be equal to the total cross section
below, i.e., ��pi

�=��pi�. The interval �pi
specifies the cylin-

der height; its precise pi dependence will drop out of the
calculation later on.

The operator corresponding to �54� reads as

3This follows with the approximation ���r− s
2

����r+ s
2

�
����r����s�, which is permissible since the normalization region
� may be taken arbitrarily large.

FIG. 2. The incoming relative momentum pi defines a cylinder
with base area �pi

and height �pi
. This spatial region is used to

implement the phase space restriction of the Wigner function to
incoming states.
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�pi
� = �

�pi

dx
pi

��pi
� ��pi

dx�pi

��pi
� � dw exp
i

x · w

�
�

��pi − w
2 ��pi + w

2 � , �55�

so that compared to the unrestricted expression correspond-
ing to �53�,

�
�

dx

���� dw exp
i
x · w

�
��pi − w

2 ��pi + w
2 � , �56�

the spatial average over the whole normalization volume is
simply replaced by an average over the cylinder, and the
norm is indeed preserved,

Tr��pi
� � = �

�pi

dx
pi

��pi
� ��pi

dx�pi

��pi
�

= 1. �57�

It should be noted, though, that strictly speaking neither �pi

nor �pi
� are legitimate quantum states since they combine a

precise momentum with a finite position variance. They
should rather be seen as convenient basis states admitting to
average over the momentum distribution function, see Eqs.
�8� and �39�.

B. Restricted evaluation

Inserting the restricted state �55� into �52� one can now
evaluate the complex rate density to obtain a well-defined
expression. Starting with

min�p f,pi;q�� � Tr�Z−q�

† Ppf
Zq�

�pi
� �

= �
�pi

dx
pi

��pi
� ��pi

dx�pi

��pi
� � dw exp
i

x · w

�
�

��p f + q��T0�0
1/2�pi + q� − w

2 �

��pi − q� + w
2 ��0

1/2T0
†�p f − q�� , �58�

we can now use with confidence the expressions �14� and
�43� for the momentum matrix elements of T0 and �0

1/2.
Thus, min�p f ,pi ;q�� takes the form

min�p f,pi;q�� = �
�pi

dx
pi

��pi
� ��pi

dx�pi

��pi
� � dw

�exp
− i
x · w

�
� 1

�2���2

�f
p f + q�,pi + q� +
w

2
�

�f�
p f − q�,pi − q� −
w

2
�

�	
p f
2 − pi

2

2
−

q� · w

2
−

w2

8
−

1

2
pi · w�

�	
p f
2 − pi

2

2
−

q� · w

2
−

w2

8
+

1

2
pi · w�

�
0
1/2
pi + q� +

w

2
�
0

1/2
pi − q� −
w

2
� .

�59�

In the arguments of the 	 function we take into account that
q� is orthogonal to the momentum exchange, �p f −pi� ·q�

=0, as follows from �38�. Using again the relation 	�a
+b /2�	�a−b /2�=	�a�	�b� a 	 function is obtained with ar-
gument pi ·w. Writing w=w
pi

+w�pi
, with w
pi

= �w ·pi�pi / pi
2,

this 	 function renders w
pi
=0, and as a result the integrand

now no longer depends on x
pi
. It follows that the integration

along the cylinder axis can be done, 	�pi
dx
pi

= ��pi
�. We

obtain

min�p f,pi;q�� =
ngas

m�
� dw	
pi · w

pi
��

�pi

dx�pi

�2���2exp
− i
x�pi

· w�pi

�
�	
p f

2 − pi
2

2
−

q� · w

2
−

w2

8
� f
p f + q�,pi + q� +

w

2
�

�f�
p f − q�,pi − q� −
w

2
� 1

pi

��pi + q� +
w

2
��pi − q� −

w

2
�

�
1

�tot�pi�
��tot
pi + q� +

w

2
���tot
pi − q� −

w

2
� , �60�
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where we identified the cylinder base area with the total
cross section, ��pi

�=�tot�pi�. One observes that the x�pi
inte-

gration over the surface �pi
of the cylinder base yields an

approximate two-dimensional 	 function in w�pi
. Combined

with the one-dimensional 	 function in w
pi
=pi ·w / pi this

gives a three-dimensional 	�w�, which permits to carry out
the w integration. We arrive at the well-defined expression

min�p f,pi;q�� =
ngas

m�

	
p f
2 − pi

2

2
� f�p f + q�,pi + q��

�f��p f − q�,pi − q��
��pi + q���pi − q��

pi

�
��tot�pi + q���tot�pi − q��

�tot�pi�
. �61�

It shows that the complex rate density �39� is essentially
given by the product of two scattering amplitudes whose
arguments differ in general. They correspond to scattering
“trajectories” determined by the relative momenta pi, p f, and
q�. The pi and p f provide the arithmetic means of the initial
and the final momenta, while q� characterizes the distance of
the “trajectories” in momentum space. Since q� is orthogo-
nal to p f −pi, a single 	 function suffices in �61� to ensure the
conservation of energy in both scattering amplitudes.

Reassuringly, this result reduces to the classical rate den-
sity �22� for q�=0, as can be seen easily by inserting
min�p f ,pi ;0� into �39�. This shows that the first line in �61�
may be viewed as a natural quantum generalization of the
classical case, where the “off-diagonal” contributions with
q��0 represent quantum corrections. From the point of
view of quantum physics, there is indeed no reason why the
effect of the gas collisions on the tracer particle should be
confined to the “diagonal” contributions given by q�=0. In
the present relative coordinate representation, the first line in
�61� has in fact a straightforward interpretation. It simply
provides the contribution of the scattering amplitudes of any
pair of scattering trajectories, which is allowed by both the
energy conservation and the choice of P, P�, and Q in �24�.

At the same time, one expects that a q� integration will
average out the “far off-diagonal” contributions with large
modulus �q��, where the phases of the two scattering ampli-
tudes are no longer synchronous. It is therefore reasonable to
disregard the weak q� dependence in the second line of �61�,
and this is corroborated by the fact that its linear dependence
on q� vanishes identically. This removes the second line
altogether, so that we end up with the form claimed in Eq.
�42�.

A noteworthy step in the present line of reasoning was
that the base area ��pi

� of the cylinder required for distin-
guishing the incoming states was identified with the scatter-
ing cross section �tot. This is very natural from a physical
point of view, but it seems hard to justify on a formal basis.
It is therefore worthwhile to present a second argumentation
which, though very different in nature, leads to the identical
result.

VI. EVALUATION WITH MODIFIED SCATTERING
OPERATOR

A second, more heuristic approach of evaluating min side-
steps the issue of how to incorporate a restriction of the rate
operator �0 to the incoming wave packets, and takes its
momentum-diagonal form �12� at face value. The unre-
stricted �0 then attributes a finite scattering rate also to out-
going wave packets, which would never touch the interaction
region in a dynamic description. This forces us to consider a
redefinition of the scattering operator, which is necessary
since outgoing wave packets are not left invariant by the
proper S matrix S0, as discussed above in Fig. 1. Let us
therefore formally replace S0 by a modified operator S0�,
which by construction acts as S0 when applied to
asymptotic-in states, but leaves states with outgoing charac-
teristics invariant. It will not be necessary to specify the de-
tails of this modification since all that is needed for the
evaluation of min can be obtained from a single property that
must hold for any such modified operator. It is the isometry
of S0� with respect to the set of volume-normalized momen-
tum states.

The advantage of replacing S0 by S0� is that we can now
use plane waves not merely as a basis, but as representing
proper states, because the unwanted transformation of their
outgoing components is now formally excluded. As in Sec.
II, we use double brackets to denote momentum states which
are normalized with respect to the volume � and subject to
periodic boundary conditions on its border. Due to the finite
size of � they form a discrete basis ���p�� :p�P��, decom-
posing the identity �6� as

I� = �
p�P�

��p����p�� . �62�

Heuristically, one may view each p�P� as labeling a dis-
tinct lead connected into and out of the scattering center. An
important difference with respect to a continuous description
is that the unitarity of the proper S matrix, which expresses
itself in the optical theorem, cannot be accommodated within
this discrete setting. The optical theorem quantifies the dif-
fraction limitation of the scattering cross section, telling how
much of a plane wave would pass the scattering center with-
out distortion. If we describe the scattering process in terms
of the amplitudes corresponding to discrete momentum
states, or distinct leads, then the possibility of passing the
target is no longer available since any matrix element may
have a finite amplitude. �The possibility of forward scattering
��pi��→ ��pi�� differs from this diffractive “passing” and leads
to an additional phase shift, see the following section.� This
suggests to disregard the identity operator in S0�, which re-
lates to the unscattered part of the state, and to require of the
remaining transition operator that it conserves the norm,


S0���pi��
2 = 
T0���pi��
2 = 1. �63�

Inserting the identity �62� we see that the sum of the prob-
abilities of scattering into the different leads equals 1,
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�
p�P�

���p�T0��p���2 = 1. �64�

This is the standard property of the transition matrix used to
describe discrete scattering problems between a finite num-
ber of incoming and outgoing leads, e.g., in mesoscopic
physics �25� or the field of quantum graphs �26�. It seems
natural to demand this relation of any reasonably modified
operatorT0�.

The use of �64� is that it tells us how to normalize the
square of T0� matrix elements with respect to improper mo-
mentum kets. Inspecting the momentum matrix element of
the T0 operator given in �14� one finds that ��p f�T0�pi��2 in-
volves the square of a 	 function. The expression should be
well defined when using the modified operator T0�, and the
obvious choice is to assume that it is given by the corre-
sponding expression with a single 	 function and a normal-
ization N�pi� yet to be specified,

�2���3

���
��p f�T0��pi��2 = N�pi�	
p f

2 − pi
2

2
��f�p f,pi��2. �65�

Approximating the summation in �64� by the corresponding
integral one finds

1 =� dp f
�2���3

���
��p f�T0��pi��2

= N�pi�� dp f	
p f
2 − pi

2

2
��f�p f,pi��2 = N�pi��pi��tot�pi� .

This fixes the normalization, N�pi�= ��pi��tot�pi��−1 and we
obtain a well-defined expression for the squared matrix ele-
ment of the modified operator T0�,

�2���3

���
��p f�T0��pi��2 = 	
p f

2 − pi
2

2
� �f�p f,pi��2

�tot�pi��pi�
. �66�

Arriving at this equation required a certain amount of heu-
ristic argumentation. It should be emphasized that this ex-
pression was already used in �6�, where it was shown to yield
a localization rate for collisional decoherence that is equal to
a wave-packet calculation similar to the one in Sec. V.

If we accept �66� the evaluation of the complex rate den-
sity min can be done in a rather straightforward fashion. Us-
ing the unrestricted rate operator �0 and the modified T0�
instead of T0, the complex rate density from �40� takes the
form

min�p f,pi;q� = 
0
1/2�pi + q�
0

1/2�pi − q���p f,pi;q� �67�

with the formal expression

��p f,pi;q� =
�2���3

���
�p f + q�T0��pi + q��p f − q�T0��pi − q��.

�68�

The latter can be evaluated by means of Eq. �66�. For q=0
we have immediately

��p f,pi;0� = 	
p f
2 − pi

2

2
� �f�p f,pi��2

�tot�pi��pi�
, �69�

while for q�0 an extension of the rule �66� to different pairs
of incoming and outgoing relative momenta is required. It
can be constructed by formally taking the square root of �66�.
Insertion into �68� brings about the square root of a product
of two energy conserving 	 functions with arguments
p f

2−pi
2

2 � �p f −pi� ·q. As with the 	 functions in Sec. V B, this
product implies that the parallel component q
 of the momen-
tum separation must be zero, thus restricting a q integration
to the plane perpendicular to the momentum change p f −pi,

��p f,pi;q� = ���p f,pi;q�� if q
 = 0,

0 otherwise.
� �70�

The formal square root of the product of 	 functions then
reduces to a single proper Dirac function 	��p f

2−pi
2� /2�, and

we obtain, as the natural generalization of �66�,

��p f,pi;q�� = 	
p f
2 − pi

2

2
� f�p f + q�,pi + q��
��tot�pi + q���pi + q��

�
f��p f − q�,pi − q��

��tot�pi − q���pi − q��
. �71�

Inserting this expression into �67�, together with rates deter-
mined by �44�, one arrives directly at the complex rate den-
sity min given by Eqs. �41� and �42�.

We emphasize again that, compared to the microscopic
phase space description in the preceding section, the line of
reasoning is here quite different, and indeed more heuristic.
The fact that the two lines of argument yield identical results
indicates that their specific assumptions do reflect the under-
lying physics.

VII. GAS-INDUCED ENERGY SHIFT

We now turn to the second part of the master equation,
given by the superoperator R defined in Eq. �5�. This term
describes the coherent modification of the tracer particle dy-
namics due to the presence of the gas. As with the incoherent
part L given in �4�, a naive evaluation would take the ex-
pressions �11� and �13� for the rate and scattering operators
at face value, and would thus yield an ill-defined normaliza-
tion involving a 	�0� / ��� term. The correct normalization
will be obtained in this section by implementing the appro-
priate restriction to the incoming states in the same way as in
Sec. V.

It should be noted that the effect of the energy shift de-
scribed by R can usually be neglected when the incoherent
effects of the master equation play a role so that L dominates
the dynamics. However, one can set up atom interferometer
experiments where one beam interacts with a gas-filled re-
gion such that only those atoms contribute to the detected
signal which did not change their momentum by a collision.
In this case, the effect can be measured as a gas-induced
phase shift, and it is usually accounted for by attributing a
refractive index to the gas �27–31�.
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Before starting the calculation, let us note that in Ref. �9�
a slightly different term was given for the coherent modifi-
cation, namely R��= i Trgas(�Re�T� ,�1/2�� � �gas��1/2�). It
differs from �5� in the location of one of the �1/2 operators.
In fact, the two superoperators R and R� yield the same gas
induced energy shift when applied to the immobile system
discussed in �9�. For the present case of a tracer particle, R�
has the disadvantage of introducing a weak dependence on
P / P� which would need to be removed as an additional ap-
proximation. It therefore seems more natural to start from the
form �5� right away, which is manifestly unitary.

The calculational procedure can be carried out in com-
plete analogy to the reasoning in Sec. V. Inserting the sta-
tionary state �8� into the expression �5� for R� yields imme-
diately the coherent modification of the evolution due to the
presence of the gas. In momentum representation it takes the
form of Eq. �29� with the energy shifts given by

En�P� = − �
�2���3

��� � dp0��p0�

��rel�p0,P���0
1/2 Re�T0��0

1/2�rel�p0,P�� . �72�

We can again switch to the center-of-mass frame by intro-
ducing the relative momentum

pn = rel�p0,P� �73�

as a function of p0. This way the energy shifts take the form
of an average over the gas momentum distribution function
�,

En�P� =� dp0��p0�en�pn� . �74�

As in the incoherent case, the function to be averaged can
again be written as an expectation value with respect to a
normalized momentum state of the relative motion �pn
= ��pn����pn��. The function has the unit of an energy,

en�pn� = − � Tr��0
1/2 Re�T0��0

1/2�pn
� . �75�

When evaluating the expectation value, the restriction to in-
coming wave packets can again be implemented by replacing
�pn

with its restricted version �pn
� . It is given by Eq. �55� with

pi replaced by pn, see Fig. 2. One thus obtains

en�pn� = −
1

2�
� dw�

�pn

dx
pn

��pn
� ��pn

dx�pn

��pn
�

�exp
i
x · w

�
�
0

1/2
pn +
w

2
�
0

1/2
pn −
w

2
�	�pn · w�

�Re� f
pn +
w

2
,pn −

w

2
�� .

As in Sec. V, we identify the cylinder base area with the
scattering cross section, ��pn

�=��pn�, and we note that the 	
function removes the component of w which is parallel to pn,
so that the dependence on x
pn

vanishes in the integrand,

en�pn� = − 2��2ngas

m�
� dw	
pn · w

pn
��

�pn

dx�pn

�2���2

�exp
i
x�pn

· w�pn

�
��

�pn

dx
pn

��pn
�

�Re� f
pn +
w

2
,pn −

w

2
����pn +

w

2
��pn −

w

2
�

pn

�

��
pn +
w

2
��
pn −

w

2
�

��pn�
.

Carrying out the x
pn
integration, 	�pn

dx
pn
= ��pn

�, one ob-

serves that the remaining x�pn
integration yields an approxi-

mate two-dimensional 	 function in w�pn
. Combined with

the 	 function in pn ·w / pn=w
pn
this gives a three-

dimensional 	�w�, which permits to do the w integration.
One thus obtains

en�pn� = − 2��2ngas

m�

Re�f�pn,pn�� . �76�

It shows that the energy shift is essentially determined by the
real part of the forward scattering amplitude, a fact that is
well known in the field of neutron and atom optics. Its effect
is often expressed by introducing an index of refraction n1,
as discussed in Sec. IX E.

VIII. OPERATOR REPRESENTATION OF THE QUANTUM
LINEAR BOLTZMANN EQUATION

So far, the derivation of the master equation was dis-
cussed in the momentum representation. Let us now turn to
the question how to obtain the quantum linear Boltzmann
equation in a representation-independent form. The result
will then immediately prove the complete positivity and the
translational covariance of the dynamical map defined by the
master equation.

The calculations in Secs. V and VI both indicate that min,
the rate function in the center-of-mass frame, is given by Eq.
�42�. The complex rate Min, which determines the incoherent
evolution in momentum representation according to �17�, is
then obtained by averaging min with the gas momentum dis-
tribution function �. Specifically, Eq. �39� shows that
Min�P ,P� ;Q�=	dp0��p0�min�p f ,pi ;q� with the relative mo-
menta p f, pi, and q defined in �33�–�35�. However, the result-
ing expression is not of the factorized form �27� needed be-
low when stating the master equation in its operator
representation.

To arrive at �27� we first change the integration variable
from p0 to pi. Moreover, the � distribution can be split sym-
metrically into a product of square roots, ��p0�
=�1/2�p0��1/2�p0�, since p0 can be equally expressed as pi

+ �p f +P�m /M +qm /m� or as pi+ �p f +P��m /M −qm /m�, see
�33�–�35�. Noting �det��p0 /�pi��=m3 /m�

3, we have
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Min�P,P�;Q� = 
 m

m�

�3� dpi�
1/2
pi +

m

M
�p f + P� +

m

m�

q��
��1/2
pi +

m

M
�p f + P�� −

m

m�

q��
�min�p f,pi;q�� ,

where we replaced q by q� in the arguments of �1/2, in
accordance with Eq. �48�. Having implemented the property
�41� of the generalized function min, we can now insert its
explicit form �42�, which introduces the scattering ampli-
tudes and an energy conserving 	 function,

Min�P,P�;Q� = 
 m

m�

�3� dpi�
1/2
pi +

m

M
�p f + P� +

m

m�

q��
��1/2
pi +

m

M
�p f + P�� −

m

m�

q��
�	
p f

2 − pi
2

2
�ngas

m�

f�p f + q�,pi + q��

�f��p f − q�,pi − q�� . �77�

From here, it is a small step to arrive at the explicit expres-
sion given in Eq. �24�. In order to obtain a factorized expres-
sion we rather perform another change of variables,

pi → p =
m

m�

pi +
m

M

P�Q + P�Q�

2
−

m

m�

Q

2
.

Due to its dependence on the transverse P and P� compo-
nents this transformation has the remarkable effect of pro-
ducing an integrand which is a product of P- and
P�-dependent factors,

Min�P,P�;Q� =
ngas

m�
� dp�1/2�p +

m

M
P
 + 
1 −

m

M
�Q

2
�

��1/2�p +
m

M
P
� + 
1 −

m

M
�Q

2
�	
m�

m
p · Q�

�f
rel�p,P�� −
Q

2
,rel�p,P�� +

Q

2
�

�f�
rel�p,P�� � −
Q

2
,rel�p,P�� � +

Q

2
�

=� dp	
p · Q

Q
�L�p,P − Q;Q�L��p,P� − Q;Q� .

�78�

The second equality, which brings about the functions
L�p ,P ;Q� defined in Eq. �28�, emphasizes the factorization.
Observing that the 	 function restricts the p integration to the
plane Q�= �p�R3 :p ·Q=0� perpendicular to Q finally leads
to the expression announced in Eq. �27�, since for any func-
tion g�p�,

� dp	
p · Q

Q
�g�p� = �

Q�
dpg�p� . �79�

The function L from Eq. �28� is clearly well suited to char-
acterize the master equation, since it contains all the details
of the collisional interaction with the gas. It comprises the
elastic scattering amplitude f�p f ,pi� defined by the two-body
interaction, the mass M of the tracer particle, the momentum
distribution function ��p� of the gas, its mass m, and number
density ngas. Unsurprisingly, the function L plays a central
role for the operator representation of the master equation as
well. It permits us to define a family of jump operators acting
in the Hilbert space of the tracer particle,

LQ,p = eiX·Q/�L�p,P;Q� , �80�

where X and P are the corresponding position and momen-
tum operators �and the function L is given in Eq. �28��. The
first factor effects a momentum exchange by Q, since
exp�iX ·Q /���P�= �P+Q�, while the appearance of P in the
second factor renders the function L operator-valued. This
implies that both the scattering amplitude and the momentum
distribution function attain an operator character in �28�,
which is possible because the P dependence of L will be
analytic for any physically reasonable interaction potential.

With the jump operators �80� at hand it is straightforward
to construct the superoperator L, whose momentum repre-
sentation is given by Eq. �17� with Min from �27�,

L� =� dQ�
Q�

dp
LQ,p�LQ,p
† −

1

2
�LQ,p

† LQ,p −
1

2
LQ,p

† LQ,p�� .

�81�

This is the equation given in Ref. �10� �up to a trivial change
of notation�.

It is reassuring to observe that the form of the generator
�81� is in accordance with the most general structure of a
translation invariant and completely positive master equation
as characterized by Holevo �32�, see �33,34� for a discussion.
However, the summation in Ref. �32� is here replaced by the
p integration over the plane Q� in �81�.

A further consistency requirement is based on the trans-
formation to a moving frame of reference. Denoting the ve-
locity boost by V, the transformed state of the tracer particle
is given by

�V = eiX·MV/��e−iX·MV/�,

and the incoherent evolution in the new frame of reference
LV is thus related to L by

LV��� = eiX·MV/�L�e−iX·MV/� � eiX·MV/��e−iX·MV/�. �82�

However, the same superoperator must be obtained if we
actively shift the momentum distribution ��p� of the back-
ground gas, by setting �V�p�=��p−mV� in the function L
defining the jump operators �80�. The reason why this trans-
formation of the gas motion must have the same effect as
�82� is that the interaction between the tracer particle and the
gas depends only on their relative motion. Indeed, the func-
tions L and LV, based on the gas distributions � and �V in
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�28�, are related by L�p ,P−MV ;Q�=LV�p+mV�Q ,P ;Q�.
Noting also that a change of the integration variable p
→p�� =p+mV�Q in �81� is possible, since it leaves the plane
Q� invariant, one easily proves the equivalence of the coor-
dinate transformation and the shift of the momentum distri-
bution.

As a final step, let us also incorporate the coherent modi-
fication of the tracer dynamics as discussed in Sec. VII. The
energy shift operator

Hn = En�P� �83�

is given by the operator-valued version of Eq. �30�. It permits
us to write the coherent modification part of the master equa-
tion �29� as R�= �i��−1�Hn ,��. This superoperator has the
same invariance and transformation properties as discussed
above in the case of L. In particular, its transformation to a
moving frame of reference analogous to �82� is equally ob-
tained by replacing � with �V in �30�.

To summarize this section we include the free motion
Hamiltonian H=P2 /2M, thus writing the complete quantum
linear Boltzmann equation �3� in the representation-
independent form,

�t� =
1

i�
� P2

2M
+ Hn,�� +

1

2
� dQ�

Q�
dp��LQ,p,�LQ,p

† �

+ �LQ,p�,LQ,p
† �� . �84�

IX. LIMITING FORMS

As an important cross check of the QLBE derived above,
let us now see whether taking suitable limits reduces its form
to that of previously established equations.

A. Classical linear Boltzmann equation

The most obvious limiting motion is that of a classical
particle. If all off-diagonal elements vanish in a motional
state, �P���P��=0, it is characterized by the diagonal momen-
tum distribution fp�P�= �P���P� alone, and insofar it is indis-
tinguishable from a classical state. One expects that the mo-
tion of the diagonal elements predicted by �81� is equal to the
one described by the classical linear Boltzmann equation.

As follows from the discussion in Sec. III, the QLBE
implies that the diagonal elements fp�P� satisfy

�t
collfp�P� =� dQMin

cl�P;Q�fp�P − Q� − Mout
cl �P�fp�P� ,

�85�

with the rates Mout
cl �P� and Min

cl�P ;Q� given by Eqs. �20� and
�22�. The notation �t

coll indicates that we focus here only on
the differential change in time which is due to the collision
part L of the master equation.

This equation should be compared to the classical linear
Boltzmann equation �2� for the momentum distribution func-
tion fp

cl�P�. The traditional form of the collision integral
reads, in our notation, as

�t
collfp

cl�P� = ngas� dpdn
�rel�p,P��

m�

�„�rel�p,P��n,rel�p,P�…

����p��fp
cl�P�� − ��p�fp

cl�P�� , �86�

where n is the unit vector of an angular integration with dn
as the associated element of the solid angle. The values of P�
and p� are determined by momentum conservation, granting
in particular �rel�p� ,P���= �rel�p ,P��. Using the invariance
under parity and time-reversal of the differential cross sec-
tion, ��p f ,pi�=��pi ,p f�, the classical linear Boltzmann equa-
tion can thus be rewritten in the explicit form

�t
collfp

cl�P� =
ngas

m�
� dpdni�rel�p,P���„rel�p,P�,

�rel�p,P��ni�„p − rel�p,P� + �rel�p,P��ni…

�fp
cl
„P + rel�p,P� − �rel�p,P��ni…

− fp
cl�P�

ngas

m�
� dpdn f�rel�p,P����p�

��„�rel�p,P��n f,rel�p,P�… . �87�

The angular integrations can be converted into three-
dimensional integrals with a 	 function. Noting

�rel�p,P��	„�pi,f� − �rel�p,P��… = pi,f
2 	
 �pi,f�2 − �rel�p,P��2

2
�

one arrives, after the substitutions pi,f →Pi,f =P+rel�p ,P�
−pi,f, at the form

�t
collfp

cl�P� =� dPiM
cl�Pi → P�fp

cl�Pi�

− fp
cl�P�� dP fM

cl�P → P f� �88�

with the classical rate density for the change of the tracer
particle momentum from Pi to P f given by

Mcl�Pi → P f� =
ngas

m�
� dp0��p0�

��„rel�p0,Pi� + Pi − P f,rel�p0,Pi�…

�	
 �rel�p0,Pi� + Pi − P f�2 − �rel�p0,Pi��2

2
� .

�89�

It is now easy to see that the form �88� of the classical linear
Boltzmann equation is indeed identical to the diagonal part
�85� of the QLBE, with Mout

cl �P� and Min
cl�P ;Q� given by Eqs.

�20� and �22�.

B. Pure collisional decoherence

Another possible effect of the gas on a quantum tracer
particle, and in a sense the other extreme compared to the
classical dynamics on the diagonal, is the appearance of pure
collisional decoherence. It follows from the QLBE �81� in
the limit where the mass M of the tracer particle is much
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larger than the mass m of the gas molecules, so that there is
no energy exchange during a collision. Taking m /M to zero
simplifies the function �28� characterizing the jump operators
in �80�, and renders it independent of P,

L�p,P;Q� →
m/M→0�ngas

Qm
�
p�Q +

Q

2
�1/2

�f
p�Q −
Q

2
,p�Q +

Q

2
� . �90�

It follows that the generator of the incoherent evolution �81�
reduces to the form4

L� →
m/M→0ngas

m
� dpidp f��pi�	
p f

2 − pi
2

2
���p f,pi�

��eiX·�pi−pf�/��e−iX·�pi−pf�/� − �� . �91�

This is the master equation of pure collisional decoherence
discussed by Gallis and Fleming �5� and derived in its final
form in Ref. �6�. It describes an exponential decay of the
off-diagonal elements in position representation,

�X�L��X�� →
m/M→0

− F�X − X���X���X�� , �92�

with a localization rate given by

F�R − R�� =
ngas

m
� dpidp f��pi�	
pi

2 − p f
2

2
���p f,pi�

��1 − ei�R−R��·�pi−pf�/�� . �93�

This loss of coherence in the position basis can be attributed
to the amount of position information �or “which path” in-
formation� gained by the colliding gas. Recently, it has been
observed that interfering fullerene molecules display a reduc-
tion of interference visibility in agreement with this equation
�7,35,36�.

C. Specialization to the Maxwell-Boltzmann distribution

So far, we kept the momentum distribution � of the gas
molecules unspecified. This served to highlight the generality
of the equations and it permitted, at the end of Sec. VIII, to
discuss the implications of a transformation of the momen-
tum distribution. However, the most important choice is of
course that of a Maxwell gas, characterized by a temperature
T=1 /�kB. The remaining discussions of limiting forms in
this section will be done with the corresponding Maxwell-
Boltzmann distribution,

���p� =
1

�3/2p�
3 exp
−

p2

p�
2 � , �94�

where p�=�2m /� is the most probable momentum. We note
that the statistical operator of the gas then takes the form

�gas
� =

�th
3

���
I� exp
− �

p2

2m
�I� �95�

with �th=�2��2� /m as the thermal de Broglie wavelength
and I� as the projectors to the normalization region, which
are known from �6�.

D. Weak-coupling result

A first limiting form of the QLBE that was obtained for
the Maxwell-Boltzmann distribution is the weak-coupling re-
sult �11–13�. Its derivation differs strongly from the approach
of the present paper, using the van Hove expression to relate
the dynamic structure factor of the gas to the differential
cross section in the laboratory frame.

It can be regained from the present QLBE by replacing
the exact scattering amplitude f in �28� by its Born approxi-
mation fB, which is proportional to the Fourier transform of
the interaction potential,

fB�p f,pi� = − 4�2�m��p f�V�x��pi�

= −
m�

2��2� dxV�x�

�exp
− i
�p f − pi� · x

�
� . �96�

Importantly, the Born approximation depends only on the
momentum transfer p f −pi, but not on the energy in the rela-
tive motion. Even though fB violates the unitarity relation
expressed by the optical theorem, it can be used to approxi-
mate the scattering amplitude if the energy of the relative
motion is much larger than the interaction energy.

Inserting the Born approximation �96� into the function
�28� defining the jump operators LQ,p=eiX·Q/�L�p ,P ;Q� from
Sec. VIII, one notes that the P dependence drops out in the
scattering amplitude. As a result, the Born approximation of
the function �28� can be written as

LB�p,P;Q� = 
ngas

m�
2 �1/2

fB�− Q��S�Q,P�
1

��1/2p�

exp
−
p�Q

2

2p�
2 � ,

�97�

where S�Q ,P� is the dynamic structure factor of the Maxwell
gas �37�,

S�Q,P� =��m

2�

1

Q
exp�− �

�
1 +
m

M
�Q2 + 2

m

M
P · Q�2

8mQ2 � .

�98�

Since the p dependence in �97� appears just as a factor, one
can carry out the Q� integration in the operator representa-
tion �81� of the master equation. The weak-coupling approxi-
mation of the QLBE thus reduces to the form

LB� =� dQ�L̃Q�L̃Q
† −

1

2
�L̃Q

† L̃Q −
1

2
L̃Q

† L̃Q�� . �99�

The corresponding jump operators

4In the same limit m /M→0 the energy shift operator Hn from
�83� turns into a constant, so that it has no observable consequences
for a constant gas density.
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L̃Q = eiX·Q/�
ngas

m�
2 S�Q,P��B�Q��1/2

, �100�

are determined by the cross section in the Born approxima-
tion, �B�Q�= �fB�Q��2= �fB�−Q��2, rather than the individual
scattering amplitudes. As a result, the momentum operator P
shows up with a particularly simple functional dependence,
given by the dynamic structure factor �98�. Recently, the be-
havior of this equation was studied by means of a Monte
Carlo simulation �38�.

The weak-coupling form of the QLBE coincides with the
expression derived earlier in Ref. �12� �as can be seen if one
combines Eqs. �2� and �25� of that paper, setting t̃�q�=
−fB�q� /4�2�m� and z=n�th

3 �. This agreement is quite re-
markable, given the very different type of argumentation in
�12�, and it serves to corroborate the validity of the present
result.

Incidentally, Eq. �99� also shows that the full QLBE can-
not be obtained from the weak-coupling result by simply
replacing fB by the proper scattering amplitude. This proce-
dure would be ambiguous since the exact scattering ampli-
tude is not just a function of the momentum transfer. As
discussed at the end of Sec. V, the dependence of the scat-
tering amplitudes on the tracer particle momentum, which
dropped out in the Born approximation, is required if one
wants to cover the full set of pairs of scattering trajectories
allowed under energy and momentum conservation.

In this context, it is worth mentioning that similar equa-
tions are obtained from a heuristic method of dealing with
products of 	 functions, such as the ones encountered in Sec.
IV B, see, e.g., �8,39�. There, one of the energy 	 functions is
replaced by a finite Fourier integration over the elapsed time
as is done in derivations of Fermi’s golden rule. Effectively,
this amounts to a treatment in second-order perturbation
theory where it is permissible to identify the interaction
Hamiltonian with the Born approximation of the T matrix.
Although this brings scattering theory language into the pro-
cess, one should not be tempted to conclude that the nonper-
turbative equation can be obtained by using the exact T ma-
trix.

E. Index of refraction

An application of the QLBE involving a rather special
limit concerns the interference of matter waves in a Mach-
Zehnder setup, where two interference paths are spatially
separated by a macroscopic distance. One may ask how the
interference fringe pattern changes if the particle is allowed
to interact with a background gas in one of the interferometer
arms. This setup was realized experimentally with Na and Li
atoms �27,28,31� �and it is a common configuration in neu-
tron interferometry where the “background gas” consists
rather of thermalized condensed matter �40,41��.

In these situations the beam is strongly collimated, while
the likelihood of double collisions is small, so that after any
collision that changes the momentum of the interfering tracer
particle the latter will be blocked by the interferometer aper-
tures. As a consequence, only forward-scattered amplitudes
may contribute to the interference pattern, thus making the

energy shift �30� directly observable as a change in the phase
of the interference pattern. At the same time an attenuation of
the recorded signal is observed.

The phase shift is usually accounted for by attributing a
real index of refraction n1 to the gas, which describes the
modification of the de Broglie wavelength due to the energy
shift. Exploiting the analogy between the force-free
Schrödinger equation and the Helmholtz wave equation
�40,42� the index of refraction for matter waves is deter-
mined by the ratio of the energy shift En�P� from �30� to the
vacuum kinetic energy Ekin= P2 /2M of the particle,

n1
2 = 1 −

En�P�
Ekin�P�

= 1 + 4��2ngas

P2

M

m�
� dp0��p0�

�Re� f
0;
1

2m�

�rel�p0,P��2�� . �101�

Here we took a rotationally invariant scattering amplitude,
f�p f ,pi�= f�� ;Erel�, with �= � �p f ,pi� and Erel= pi

2 /2m�.
The index of refraction is typically close to unity, and

therefore well approximated by the linearization

n1 = 1 + 2�
ngas

K2

M

m�

Re�f� , �102�

where K= P /� is the wave number of the interfering particle
and Re�f� denotes the real part of the thermally averaged
forward-scattering amplitude,

�f� =� dp0��p0�f
0;
1

2m�

�rel�p0,P��2� . �103�

It is common in optics to account for the absorption in a
medium by introducing an imaginary part to the index of
refraction, which describes the exponential decay of the
beam intensity. In the case of a background gas the tracer
particles do not get absorbed, of course. However, for a
strongly collimated particle beam one expects an exponential
decay of the beam intensity after a distance L, since colli-
sions with the background gas decrease the probability of
remaining in the beam, thus reducing the fraction of particles
taking part in the coherent, wavelike behavior. The decay
may be described by neglecting the gain term in Eq. �85�,
and integrating the remaining equation �t

collfp�P�=
−Mout

cl �P�fp�P� up to time t=L /V, with V= P /M, yields the
reduction factor exp�−Mcl

out�P�L /V�. By comparing this to the
damped intensity of a wave, exp�−2n2KL�, one finds

n2 =
Mcl

out��K�
2�K2/M

. �104�

Inserting Mcl
out from �21� and using the optical theorem �20�,

that is, pi�tot�pi�=4�� Im�f�pi ,pi��, one obtains an expres-
sion analogous to �102�,
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n2 = 2�
ngas

K2

M

m�

Im�f� , �105�

with Im�f� as the imaginary part of �103�. It follows that the
combined effect of the energy shift and the reduction of the
amplitude of the coherent beam can be described by a com-
plex index of refraction n=n1+ in2=2�ngasM / �m�K2��f�.

In case of a Maxwell-Boltzmann distribution �94� the av-
erage takes the form

�f� =
2

��
�

0


 dv
v�

v
V

sinh
2vV

v�
2 �exp
−

v2 + V2

v�
2 � f
0;

m�

2
v2� ,

�106�

with V=�K /M the velocity of the interfering particle and
v�= p� /m. This expression of the thermally averaged
forward-scattering amplitude coincides with the one obtained
by Champenois and collaborators in Refs. �43,44� with a
very different argumentation. It is used in the analysis of the
recent experiment with Li atoms �31�. We note that the ear-
lier experiments �27,28� and the corresponding theoretical
treatments �29,30� were based on different expressions for
�f� which we consider incorrect, see also the discussion in
�44�.

F. Diffusive limit

A final important border case is the diffusive limit which
is applicable if the tracer state is close to thermal and if its
mass is much greater than the gas particle mass, so that the
motion is characterized by small momentum transfers. As
discussed in �45�, an expansion of the jump operators �80� to
second order in the tracer position and momentum operators
X and P is then permissible. In the special case of a constant
scattering cross section �f�p f ,pi��2=�tot

const /4�, the QLBE then
transforms into the generalized Caldeira-Leggett master
equation

L̃� = −
i

�

�

2 �
i=1

3

�Xi,�Pi,��� −
Dpp

�2 �
i=1

3

†Xi,�Xi,��‡

−
Dxx

�2 �
i=1

3

†Pi,�Pi,��‡ . �107�

It differs form the original equation �14� in the presence of
the last term on the right-hand side of �107�, which is nec-
essary to ensure the complete positivity of the dynamics gen-

erated by L̃ �46�. We emphasize that, unlike in derivations
using phenomenological choices for the model environment
�47–50�, the friction and diffusion coefficients � and Dpp are
here uniquely specified by physically measurable properties
of the gas. Specifically, the calculation in �45� shows that the
friction coefficient � is determined by the temperature, the
mass, and the density of the gas, as well as by the scattering
cross section,

� =
8

3�1/2
ngasp��tot

const

M
. �108�

The momentum diffusion constant Dpp is related to � by the
fluctuation-dissipation relation

Dpp =
�M

�
. �109�

Moreover, the coefficient of the “position-diffusion” term
Dxx, is already determined by � and Dpp, and it is given by
the smallest value compatible with complete positivity5 �46�,

Dxx = �
�2�

16M
= 
 ��

4M
�2

Dpp. �110�

This shows that the diffusive limit turns the QLBE into the
closest possible quantum analog to the corresponding classi-
cal Kramers equation �51�.

X. CONCLUSIONS

As seen in the preceding section, all relevant limiting
cases of the QLBE lead naturally to established master equa-
tions. In conjunction with the detailed derivations presented
in Secs. IV–VII, this provides ample evidence that Eq. �84�
is the appropriate full quantum analog of the classical linear
Boltzmann equation. As such, it serves to describe nonper-
turbatively and in a unified framework the effects of deco-
herence and dissipation on a tracer particle.

One reason that seems to have prevented this equation
from being formulated earlier is the curious appearance of a
second momentum integral in �81� which, in addition to the
integration over the momentum exchange Q, runs over the
plane perpendicular to Q. This makes the equation a bit cum-
bersome at first sight, at least if represented in a specific
basis. However, we have seen in the course of the derivation
that this five-dimensional integration is necessary if one
wants to cover all the pairs of scattering trajectories which
are allowed by both the energy and momentum conservation
and by the choice of Q. From a quantum mechanical point of
view it is indeed natural to expect that the full set of possible
scattering amplitudes contributes to the dynamics. The some-
what unwieldy explicit form is then the inevitable result of
the transformation from the center-of-mass frame, where the
scattering transformation takes place, to the laboratory frame
needed for the tracer particle coordinate.

Needless to say, the QLBE has a number of limitations.
As in the classical linear Boltzmann equation, it cannot be
applied in environments where the central Markov assump-
tion is inappropriate, such as liquids. Moreover, it is not ap-
plicable at temperatures where the gas is quantum degener-
ate, and it is far from obvious how this possibility could be
incorporated in the framework of the monitoring approach.

5Diósi’s equation �8� leads to the same structure �107�, but the
“position-diffusion” constant Dxx is a complicated function of the
cross section instead of being simply related to Dpp and �.
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Finally, let us reiterate that we presented here a physical
derivation which, though stringent and leading to a uniquely
distinguished equation, may be hard to substantiate from a
formal point of view. An alternative, mathematically more
rigorous derivation would be certainly desirable.
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