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We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with
a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as
one of the four “canonical” system-environment models for decoherence and dissipation. To investigate the
influence of further couplings of the environmental spins to a dissipative bath, we also derive the master
equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are
experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and
dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum
Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increas-
ing temperature and goes to zero at zero temperature, but there also exists a temperature-independent
momentum-diffusion �heating� rate.
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I. INTRODUCTION

Theoretical studies of decoherence and dissipation in
quantum systems have hitherto focused on three canonical
system-environment models: �i� A harmonic oscillator �or,
more generally, a particle moving in phase space� coupled to
a bath of other harmonic oscillators �quantum Brownian mo-
tion� �1–4�; �ii� a quantum two-level system �TLS�, repre-
sented by a spin-1

2 particle, interacting with a bath of har-
monic oscillators �spin-boson model� �5�; and �iii� a spin-1

2
particle coupled to a bath of other spins �spin-spin model�
�6�. Surprisingly, however, the fourth possible canonical
combination, namely, a single harmonic oscillator interacting
with a bath of spin-1

2 particles—which, in obvious nomen-
clature, shall henceforth be referred to as the oscillator-spin
model �Fig. 1�a��—has not yet been studied in any detail in
the literature in terms of a Markovian master equation.

It is the purpose of this paper to close this gap by giving
a microscopic treatment of the oscillator-spin model. We will
derive the Born-Markov master equation and compare the
resulting dynamics to those induced by an oscillator bath
�quantum Brownian motion�. Apart from its relevance in
completing the set of canonical models, the oscillator-spin
model is also motivated by recent experiments on quantum-
electromechanical systems �QEMS� �7–9� and micron-scale
ion traps. In both systems, a central quantum-mechanical vi-
brational degree of freedom interacts with two-level defects
causing dissipation and decoherence of the oscillator. We
may represent this situation by a harmonic oscillator coupled
to a collection of TLS, i.e., by a model of the oscillator-spin
type.

QEMS are nanometer-to-micrometer-sized crystalline me-
chanical resonators coupled to nanoscale electronic transduc-
ers that detect the high-frequency �MHz-GHz� vibrational
motion of the resonator. Since only the lowest, fundamental
flexural mode of the resonator turns out to be relevant �7�,
the resonator can be modeled as a single quantum-
mechanical harmonic oscillator. Recent experimental evi-
dence �10,11� �see also the molecular-dynamics simulation of
�12� and earlier results in �13,14�� strongly suggests that the
dominant source of decoherence and dissipation in QEMS is
the interaction with two-level defects intrinsically present in
the resonator itself.

In ion traps a single ion can be trapped by a time-
dependent potential and cooled to very low energies �15�.
Under the right conditions the motion of the ion is equivalent
to that of a quasi-one-dimensional harmonically bound par-
ticle. A major source of decoherence in ion traps is thought
to arise from fluctuating patch potentials on the trap elec-
trodes �16�. Roughly speaking, this causes a fluctuating lin-
ear potential that results in random forces acting on the ion.
The net effect is a slow heating of the ions. This problem is
particularly acute in small traps �17,18�, where anomalous
heating has been experimentally observed �19�. More recent
experiments have cooled the traps to a few K and show a
dramatic reduction in heating �20�. We anticipate that with
further cooling the heating will ultimately be attributable to
charge fluctuations in two-level traps, especially for oxide
barriers in semiconductor substrates.

In many cases, it is reasonable to assume that each of the
two-level defects will be also coupled to its own environ-
ment, which we may model as a bosonic bath. We are thus
led to a more complicated model in which the central oscil-
lator couples to a collection of independent spin-boson mod-
els �Fig. 1�b��. In this paper we will consider the special case*m.schlosshauer@unimelb.edu.au
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of only a single TLS interacting with a bosonic bath �Fig.
1�c��. This simplification allows us to analytically derive the
master equation for the central oscillator in the limit in which
the oscillator is strongly coupled to a steady-state TLS. It is
also experimentally motivated by the fact that in GHz QEMS
and micron scale, cryogenic ion traps, the number of defects
that participate in the dynamics is thought to be quite small.

We emphasize that the focus of this paper is a study of the
general dynamics and properties of the oscillator-spin model
in the context of the canonical models, and it is not our aim
to present detailed models for ion traps and QEMS. How-
ever, these systems lend urgent experimental relevance to the
oscillator-spin model, and our model may serve as a starting
point for the development of models tailored to specific ex-
perimental situations. In existing models of ion traps, the
fluctuating forces have thus far been treated classically
�21–25�. For QEMS, a realistic and quantitatively accurate
modeling of the influence of the various defects on the reso-
nator is rather involved. First theoretical studies �see, e.g.,
�11,26�� were recently followed by detailed work by
Seoánez, Guinea, and Castro Neto �27,28�. In order to be
able to use a spectral-function treatment for the environmen-
tal TLS, these authors focused on the limit kBT���0, where
�0 is the natural frequency of the resonator. However, attain-
ing the quantum regime of QEMS requires the opposite limit
kBT���0 �GHz QEMS�. In this case, it is likely that only
very few TLS will be relevant to the dynamics of the reso-
nator and we suggest that the correct description may be
closer to the model discussed in Sec. III below.

This paper is organized as follows: Section II presents the
derivation of the Born-Markov master equation for the cen-

tral oscillator coupled to a spin bath. In Sec. III we derive the
master equation for a harmonic oscillator interacting with a
single spin coupled to a bosonic bath. We summarize our
results in Sec. IV.

II. MASTER EQUATION FOR A HARMONIC
OSCILLATOR COUPLED TO A SPIN BATH

A. Model

We consider a single quantum harmonic oscillator �the
system S� with self-Hamiltonian

ĤS =
P̂2

2M
+

M�0

2
X̂2. �1�

The oscillator interacts with an environment E of N indepen-
dent spin-1

2 particles �quantum TLS�. The environment is de-
scribed by the self-Hamiltonian �setting ��1�

ĤE � �
i=1

N

ĤE
�i� = �

i=1

N
�i

2
�̂z

�i� + �
i=1

N
�i

2
�̂x

�i�, �2�

where �i and �i are, respectively, the asymmetry energy and
tunneling matrix element of the ith bath spin. The environ-
ment couples linearly to the position coordinate of the oscil-
lator via the interaction Hamiltonian

Ĥint = X̂ � �
i=1

N

gi�̂z
�i� � X̂ � Ê . �3�

The total system-environment combination is then described
by the Hamiltonian

Ĥ = ĤS + ĤE + Ĥint. �4�

We assume the limit of weak system-environment couplings
and no initial system-environment correlations, �̂�0�= �̂S�0�
� �̂E�0�. We take the environment to be in thermal equilib-
rium at temperature T. Since the spins of this thermal bath
are independent, we have

�̂E�0� =
1

Z
e−�ĤE �

1

Z
�
i=1

N

e−�ĤE
�i�

, �5�

where ��1 /kBT and Z=TrE e−�ĤE. We would now like to
derive the Born-Markov master equation for this spin-bath
model. For the interaction Hamiltonian �3�, the general form
of the master equation is �29�

d

dt
�̂S�t� = − i�ĤS, �̂S�t�� − �

0

	

d
	C�
��X̂,X̂�− 
��̂S�t�� + C�− 
�

���̂S�t�X̂�− 
�,X̂�
 . �6�

Here

X̂�
� = X̂ cos��0
� +
1

M�0
P̂ sin��0
� �7�

denotes the system’s position operator X̂ in the interaction
picture. The spin-environment self-correlation function C�
�
appearing in Eq. �6� is given by

bosonic
bath

bosonic
bath

bosonic
bath

spin spin spin

harmonic oscillator

bosonic
bath

spin

harmonic oscillator

(b)

(c)

spin spin spin

harmonic oscillator

(a)

FIG. 1. �a� Oscillator-spin model. �b� Oscillator-spin model with
each spin coupled to an additional bosonic bath. �c� Limiting case
of �b� in which the oscillator interacts with a single environmental
spin coupled to a bosonic bath.
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C�
� � �Ê�
�Ê��̂E
, �8�

where Ê�
�=eiĤE
Êe−iĤE
 is the environment operator Ê in
the interaction picture and the average is taken over the ini-
tial state �̂E� �̂E�0� of the environment �the Born approxima-
tion means that �̂�t�
 �̂S�t� � �̂E�0� for all t�.

B. Calculation of the environment self-correlation function

First, we compute the environment self-correlation func-
tion �8�, which we may write as

C�
� = �
ij

gigj�eiĤE
�i�
�̂z

�i�e−iĤE
�i�
�̂z

�j���̂E
� �

ij

gigj��̂z
�i��
��̂z

�j���̂E
.

�9�

Because the environmental spins do not directly interact with
each other, they are uncorrelated,

��̂z
�i��
��̂z

�j���̂E
= ��̂z

�i��
���̂E
��̂z

�j���̂E
for i � j , �10�

and thus Eq. �9� can be decomposed as

C�
� = �
i

gi��̂z
�i��
���̂E�

j�i

gj��̂z
�j���̂E

+ �
i

gi
2��̂z

�i��
��̂z
�i���̂E

.

�11�

Let us assume that at t=0 the average of the “quantum force”
due to the collective action of all environmental spins is
equal to zero,

�Ê��̂E
= �

i

gi��̂z
�i���̂E

= 0. �12�

This is a nonrestrictive assumption, since Eq. �12� can al-
ways be fulfilled by simply adding a constant to the Hamil-
tonian. Then the term � j�igj��̂z

�j���̂E
appearing in Eq. �11�

will also tend to zero, and Eq. �9� simplifies to

C�
� = �
i

gi
2��̂z

�i��
��̂z
�i���̂E

= �
i

gi
2 TrE�� 1

Z
�

i

e−ĤE
�i�/kBT��̂z

�i��
��̂z
�i��

= �
i

gi
2 1

Zi
TrEi

�e−ĤE
�i�/kBT�̂z

�i��
��̂z
�i�� , �13�

where Zi=TrEi
e−ĤEi

/kBT and in the last line we have again
used the fact that the bath spins are uncorrelated.

To calculate the interaction-picture operator �̂z
�i��
�

=e−iĤE
�i�


�̂z
�i�e−iĤE

�i�

, we write the environment Hamiltonian

ĤE
�i� in matrix form in the eigenbasis 	�0�i , �1�i
 of �̂z

�i�,

ĤE
�i� =

1

2
��i �i

�i − �i
� . �14�

The matrix eigenvalues are E�
�i�= �

1
2
��i

2+�i
2� �

1
2 �̃i with

corresponding eigenvectors

� + �i = cos

i

2
�0�i + sin


i

2
�1�i, �15a�

�− �i = − sin

i

2
�0�i + cos


i

2
�1�i, �15b�

where 
i=arctan��i /�i�. With respect to the basis
	�+ �i , �−�i
, the matrix representation of �̂z

�i� reads

�̂z
�i� = � cos 
i − sin 
i

− sin 
i − cos 
i
� . �16�

We can now evaluate Eq. �13� directly by carrying out the
relevant matrix products and then taking the trace. The result
is

C�
� = C0 + �
i
�gi�i

�̃i
�2

�cos��̃i
� − i tanh���̃i/2�sin��̃i
�� ,

�17�

where C0=�i� gi�i

�̃i
�2

is a time-independent constant.

C. Continuum limit

Let us introduce the spectral density function

J��̃� � �
i
�gi�i

�̃i
�2

���̃ − �̃i� �18�

and write Eq. �17� as

C�
� = C0 + �
0

	

d�̃J��̃��cos��̃
� − i tanh���̃/2�sin��̃
��

� C0 + ��
� − i��
� . �19�

The functions ��
� and ��
� take the same functional form as
the noise and dissipation kernels, respectively, in the case of
an oscillator bath �quantum Brownian motion� with spectral
density Josc��̃�,

�osc�
� = �
0

	

d�̃Josc��̃�coth� �̃

2kBT
�cos��̃
� , �20a�

�osc�
� = �
0

	

d�̃Josc��̃�sin��̃
� , �20b�

provided we choose

J��̃� = Josc��̃�coth� �̃

2kBT
� �21�

in Eq. �19�. Conversely, ignoring the constant term C0, we
can map the spin bath with spectral density J��̃� onto an
oscillator bath with “surrogate” spectral density

Josc��̃� = J��̃�tanh� �̃

2kBT
� . �22�

This is an example of the general result, first derived by
Feynman and Vernon �30�, that in the limit of sufficiently
weak coupling any dissipative bath �including the spin bath�
can be mapped onto a bath of oscillators. We note that in the
limit �i��i for all i �and thus C0→0�, expression �19� co-
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incides with a result previously obtained by Caldeira, Castro
Neto, and de Carvalho �31� for a model of a general system
interacting linearly and weakly with a spin bath, where the
environmental self-Hamiltonian was assumed to take a more
simple form than in our model.

D. Master equation

Inserting Eq. �19� into Eq. �6� and using Eq. �7� leads to
the master equation

d

dt
�̂S�t� = − i�ĤS +

1

2
M�̃0

2X̂2, �̂S�t�� − i��X̂,	P̂, �̂S�t�
�

− D†X̂,�X̂, �̂S�t��‡ − f†X̂,�P̂, �̂S�t��‡ . �23�

Here, the coefficients �̃0
2, �, D, and f are defined as

�̃0
2 � −

2

M
�

0

	

d
��
�cos��0
� , �24a�

� �
1

M�0
�

0

	

d
��
�sin��0
� , �24b�

D � �
0

	

d
�C0 + ��
��cos��0
� � D0 + �
0

	

d
��
�cos��0
�

� D0 + D1, �24c�

f � −
1

M�0
�

0

	

d
�C0 + ��
��sin��0
�

� f0 −
1

M�0
�

0

	

d
��
�sin��0
� � f0 + f1. �24d�

The interpretation of these coefficients is analogous to the

case of quantum Brownian motion. The coefficient �̃0
2 de-

scribes a frequency shift �“Lamb-shift” renormalization of
the natural frequency of the oscillator�, � is the momentum-
damping �and thus dissipation� rate, and D and f are the
normal-diffusion and anomalous-diffusion coefficients de-

scribing decoherence. We see that �̃0
2 and � are explicitly

temperature-dependent while D and f are not, which is ex-
actly opposite as in quantum Brownian motion. Formally,
this difference is easily understood from the fact that using
the surrogate spectral density �22� in the expressions for the
oscillator-bath noise and dissipation kernels �20a� and �20b�
eliminates the temperature-dependent term in the integral
�20a� while introducing the term tanh��0 /2kBT� in the inte-
gral �20b�.

E. Example: Ohmic spectral density

Let us consider an ohmic spectral density for the spin bath
with a Lorentz-Drude high-frequency cutoff,

J��̃� =
2M�0

�
�̃

�2

�2 + �̃2 . �25�

The coefficient � is given by a double Fourier sine transform
of the function J��̃�tanh���̃ /2�, which returns the original
function up to a prefactor of � /2,

� =
1

M�0
�

0

	

d
 sin��0
��
0

	

d�̃J��̃�tanh���̃/2�sin��̃
�

= �0
�2

�2 + �0
2 tanh� �0

2kBT
� . �26�

Similarly, the coefficient D1 is given by a double Fourier
cosine transform of J��̃�, which leads to

D = D0 + M�0�0
�2

�2 + �0
2 . �27�

For quantum Brownian motion these coefficients read �29� as

�QBM = �0
�2

�2 + �0
2 , �28a�

DQBM = M�0�0
�2

�2 + �0
2coth� �0

2kBT
� . �28b�

Disregarding the constant term D0, we see that the spin-bath
coefficients are given by the oscillator-bath coefficients mul-
tiplied by the term tanh��0 /2kBT�, which is simply a direct
consequence of the use of the surrogate spectral density �22�.

F. Comparison between spin and oscillator baths

In Fig. 2 we have plotted the temperature dependencies of
the coefficients � and D for the spin bath �see Eqs. �26� and
�27�� and for an oscillator bath �quantum Brownian motion�
�see Eqs. �28a� and �28b��, with both baths described by the
spectral density �25�. Figure 2�a� shows that the spin-bath
dissipation rate �, Eq. �26�, decreases with temperature. This
initially surprising result is easily explained. While a har-
monic oscillator can absorb an infinite amount of energy,
there are only two energy levels for a spin-1

2 particle. It fol-
lows that, as the bath temperature is raised, the spin bath
saturates quickly and the dissipative influence on the central
system must decrease when compared with that of the oscil-
lator bath, whose dissipation rate is temperature independent
�for linear quantum Brownian motion�. Indeed, the
tanh��0 /2kBT� temperature dependence of the spin-bath dis-
sipation rate �26� has been explicitly observed in systems
such as glasses �32� where dissipation is mainly caused by
interactions between phonon modes and TLS �33�.

A similar argument also allows us to understand the ab-
sence of any temperature dependence of the normal-diffusion
coefficient D �see Eq. �27�� for the spin bath and thus of the
rate of spatial decoherence �Fig. 2�b��. Equation �28b� shows
that for quantum Brownian motion this rate increases with
temperature as coth��0 /2kBT� �and linearly with T in the
high-temperature limit of the Caldeira-Leggett model �3��.
This increase is due to the fact that, as the temperature is
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raised, increasingly excited energy levels will be occupied in
each harmonic oscillator, and thus the characteristic wave-
lengths present in the bath will decrease. Shorter environ-
mental wavelengths mean that the bath will be able to better
resolve the position of the central system, leading to stronger
decoherence �localization� of superpositions of well-
separated positions. The quick saturation of the spin bath
with increasing temperature implies that the characteristic
wavelengths cannot become significantly shorter, resulting
for our model in a temperature-independent expression for
D.

The fact that the spin-bath decoherence rate D has a con-
stant component implies that there is a heating source in the
oscillator-spin model. This term in the master equation drives
a diffusion process in the momentum and thus causes the
average kinetic energy of the oscillator to increase linearly in
time at a rate of at least D0. This is likely to be a problematic
source of heating in micron-scale ion traps. As this is inde-
pendent of temperature, it will be apparent even if no sys-
tematic dissipation is observable ��
0�.

III. HARMONIC OSCILLATOR COUPLED TO A SINGLE
TWO-LEVEL SYSTEM INTERACTING WITH A

BOSONIC BATH

The discussion in the preceding section indicates that the
temperature dependence of the damping and dissipation rates
arise from the fact that the bath seen by the central oscillator
cannot absorb an arbitrarily large amount of energy. We are
thus led to consider an extreme case in which the oscillator is
coupled to only a single TLS which is itself weakly coupled
to a bosonic bath. As mentioned in the introduction, both in
micron-scale, cryogenic ion traps and in GHz QEMS �the
frequency regime relevant to the observation of quantum ef-
fects� it is likely that only a few TLS take part in the dynam-
ics, rather than a TLS environment with continuous spectrum
as used in �27,28�. This lends particular experimental rel-
evance to the single-TLS model considered here. For ex-
ample, our model could represent a single charge trap elec-
trostatically coupled to a nanomechanical resonator, with the
charge trap itself coupled to Johnson-Nyquist electrical noise
in the surrounding circuit.

We begin with a single vibrational degree of freedom �the
central harmonic oscillator S� coupled to a single spin-1

2 par-
ticle �TLS�,

Ĥ = �0â†â + gX̂ � �̂z +
�

2
�̂x, �29�

where X̂= �â+ â†� is a dimensionless displacement operator
and we have again set ��1. In the case of a realization of
the model as a charge trap, �̂z refers to two distinct charge
configurations of a single microscopic trap in one of the
electrodes near a nanomechanical resonator or trapped ion.
We could think of this as some kind of double well, in which
case the eigenstates of �̂z refer to states localized on one side
of the barrier or the other. The tunnel-split ground states
under the barrier are eigenstates of �̂x and the tunnel splitting
is �. If we define the eigenstates of �̂x by �̂x�� �= � �� �,

then we can define the “bit-flip” operator as �̂z= �+ ��−�+ �−�
��+�.

We expect that the TLS remains close to thermodynamic
equilibrium with a heat bath at temperature T even in the
presence of the coupling to the central oscillator. Thus we
assume that its state at all times can be approximated by the
thermal state

�̂T = p+� + ��+ � + p−�− ��− � , �30�

where

p+

p−
= e−�/kBT. �31�

The dynamical process that maintains the TLS in thermody-
namic equilibrium could be quite obscure. However, a
simple model can be given by weakly coupling the single
TLS to a bosonic bath at temperature T. The coupling is
capacitive,

FIG. 2. �Color online� Dissipation and normal-diffusion coeffi-
cients �a� � and �b� D for the oscillator-spin model �solid line� and
for quantum Brownian motion �circles�, assuming the ohmic spec-
tral density �25�. The vertical axis is normalized in units of the
zero-temperature values ��T=0� and DQBM�T=0�, respectively. The
horizontal �temperature� axis is displayed in units of �0 /kB. We use
D0=DQBM�T=0�.

DECOHERENCE AND DISSIPATION OF A QUANTUM … PHYSICAL REVIEW A 77, 022111 �2008�

022111-5



Ĥcoupling = �̂z � �
k

gkq̂k�t� , �32�

while the free Hamiltonian for the bath is a sum over har-
monic oscillators, each with canonical coordinates q̂k , p̂k and
frequency �k. If the coupling is weak so that gk�� ,�k, the
corresponding Markov master equation for the density opera-
tor �̂ of the joint oscillator-TLS system is �34�

d�̂

dt
= − i�0�â†â, �̂� − i���̂x, �̂� − ig�X̂�̂z, �̂� + ��n̄ + 1�D��̂−��̂

+ �n̄D��̂+��̂ , �33�

where �0 is the vibrational frequency of the central oscillator

and � determines the heating rate. The super-operator D�Â�
is defined by

D�Â��̂ � Â�̂Â† −
1

2
�Â†Â�̂ + �̂Â†Â� , �34�

and �̂+= �̂−
† = �+ ��−� are raising and lowering operators in the

eigenstates of �̂x, i.e., the energy eigenstates. Finally, the
parameter n̄ is defined by

n̄ � �e��/2 − 1�−1. �35�

It is easy to see that in the absence of the coupling to the
oscillator, the steady state for the TLS implied by Eq. �33� is
simply given by Eq. �31�.

We can now calculate a heating rate for the oscillator. We
do this by adiabatic elimination �35� of the TLS, i.e., we
assume that ���0 ,g ,� so that the TLS remains in steady
state slaved to the motion of the oscillator. We define the
operators acting on the vibrational degree of freedom by
�̂++��+��̂�+ �, �̂−−��−��̂�−�, and �̂+−��+��̂�−�. Note that the
reduced density operator for the vibrational degree of free-
dom is just given by �̂S= �̂+++ �̂−−. The master equation �33�
then implies that

d�̂++

dt
= − ig�X̂�̂−+ − �̂+−X̂� − i�0�â†â, �̂++� − ��n̄ + 1��̂++

+ �n̄�̂−−, �36a�

d�̂−−

dt
= − ig�X̂�̂+− − �̂−+X̂� − i�0�â†â, �̂−−� + ��n̄ + 1��̂++

− �n̄�̂−−, �36b�

d�̂+−

dt
= − ig�X̂�̂−− − �̂++X̂� − i�0�â†â, �̂+−� −

�

2
�2n̄ + 1��̂+−

− 2i��̂+−. �36c�

Assuming that the off-diagonal operators �̂+− reach a steady
state, we find that

�̂+− 
 −
2ig

��2n̄ + 1�
�X̂�̂−− − �̂++X̂� . �37�

Substituting this into the equation of motion for the diagonal
components leads to

d�̂S
dt

= − i�0�â†â, �̂S� − �†X̂,�X̂, �̂S�‡ , �38�

where the last term implies diffusive heating and the rate is
given by

� =
2g2

��2n̄ + 1�
. �39�

A full numerical simulation �see Fig. 3� confirms that this
master equation is a good description of the dynamics in the
limit of large �. However, even when the adiabatic approxi-
mation is not the same as the full master equation, the full
model still shows diffusive heating.

At zero temperature the TLS is in the ground state �−�. As
this is a superpositon of the two eigenstates of �̂z, the vibra-

full master eq.
adiabatic approx.
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FIG. 3. �Color online� Comparison of the adiabatic approximation �crosses� and the full master equation �circles� for the simple model
discussed in Sec. III. We show the mean occupation number �N� of the central harmonic oscillator as a function of time for three different
temperatures �a larger value of n̄, see Eq. �35�, corresponds to higher temperature�. The time axis is in units of inverse � �with ��1�. We
use �=1, �0=1, g=1, and �a� �=10, �b� �=100.
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tional degree of freedom suffers momentum kicks of equal
magnitude but random sign. As the temperature goes to in-
finity, the TLS state is the identity operator and the vibra-
tional degree of freedom suffers no kicks at all. For this
reason the heating rate goes to zero at high temperature—a
reappearance of the damping-rate feature of the oscillator-
spin model discussed in Sec. II F. Also note that at zero
temperature there is a fixed momentum-diffusion rate that
causes the oscillator to heat, which again is the case for the
full spin-bath model of Sec. II.

IV. SUMMARY AND CONCLUSIONS

We have derived the master equations for a single har-
monic oscillator coupled �i� to a bath of two-level systems
�the oscillator-spin model� and �ii� to a single two-level sys-
tem interacting with a bosonic bath. These models and the
derivation of the relevant master equations not only close an
important gap in the set of canonical system-environment
models for decoherence and dissipation, but are also moti-
vated by and relevant to current experiments such as
quantum-electromechanical systems and micron-scale ion
traps.

For both models the key features that arise are the follow-
ing: �i� The systematic dissipation rate for the oscillator de-
creases with increasing temperature; �ii� at zero temperature
the systematic dissipation rate goes to zero; but �iii� there is
a temperature-independent momentum-diffusion rate �a heat-
ing rate�. Interestingly, this behavior is very different from
the model for quantum Brownian motion, and we have ex-
plained how it can be understood as arising from a rapid
saturation of the spin environment.

In future presentations we will report results of an appli-
cation of the models considered in this paper to a number of
physically relevant experimental systems, including nanome-
chanical systems and ion traps.
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