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Nonlinear optical signals from an assembly of N noninteracting particles consist of an incoherent and a
coherent component, whose magnitudes scale �N and �N�N−1�, respectively. A unified microscopic descrip-
tion of both types of signals is developed using a quantum electrodynamical �QED� treatment of the optical
fields. Closed nonequilibrium Green’s function expressions are derived that incorporate both stimulated and
spontaneous processes. General �n+1�-wave mixing experiments are discussed as an example of spontaneously
generated signals. When performed on a single particle, such signals cannot be expressed in terms of the nth
order polarization, as predicted by the semiclassical theory. Stimulated processes are shown to be purely
incoherent in nature. Within the QED framework, heterodyne-detected wave mixing signals are simply viewed
as incoherent stimulated emission, whereas homodyne signals are generated by coherent spontaneous
emission.
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I. INTRODUCTION

Nonlinear optical processes in bulk materials are tradi-
tionally classified as either coherent or incoherent �1–4�.
This classification refers to the relation of the macroscopic
signal intensity of the sample to the nonlinear response of the
individual molecules. Processes where the detected signal is
obtained by simply adding up the contributions of the indi-
vidual particles in the sample, are termed incoherent. Such
signals hence scale as the number of particles N in the inter-
action volume. With coherent processes, on the other hand,
the contributions of the constituent particles add up on the
level of amplitudes rather than intensities, and the detected
signal is proportional to N2.

Coherent optical signals are usually calculated semiclas-
sically by adopting a two step procedure �2–4�. First a �linear
or nonlinear� polarization P�n� induced in the system by in-
teractions with classical external fields is calculated micro-
scopically. In the second step, P�n� is used as a source in the
macroscopic Maxwell equations to generate the signal.
Frequency-domain signals are given by the absolute square
of an amplitude related to the susceptibilities ��n� which, in
turn, are proportional to N. This gives rise to the �N2 de-
pendence of coherent signals �5,6�. Examples are Rayleigh
scattering �n=1�, sum frequency generation �n=2�, and four-
wave mixing �n=3�. In contrast, signals such as Raman,
fluorescence, two photon fluorescence, etc. are incoherent
and may not be calculated by the above semiclassical ap-
proach. Instead, they require a quantum description of the
field to account for spontaneous emission.

Treating both types of processes by a unified approach is
of fundamental interest �1�, particularly when they coexist.
For example, two photon fluorescence and second harmonic
generation have been observed in the same sample �7�. There
is a considerable current effort to perform nonlinear optical
measurements on small samples and even single nanopar-
ticles or molecules �8–11�. Recent experiments include four-
wave mixing spectroscopy of single semiconductor quantum
dots �12� or nonlinear optical measurements on single elec-

trons in F centers �13�. Coherent anti-Stokes Raman Spec-
troscopy �CARS� microscopy �14� is being extended to small
interaction volumes. The traditional macroscopic formulation
does not apply for small samples and a quantum electrody-
namical �QED� formulation is called for.

A QED treatment is essential for predicting observables
related to the quantum nature of the field. A powerful quan-
tum master equation approach has been successfully used in
quantum optics to describe fluctuations of the laser field,
photon statistics, entanglement and squeezing �15–25�. In
this paper we consider simple observables that are usually
calculated by the semiclassical approach. However, a quan-
tum description of the fields allows a more precise definition
of the signal, provides new insights, and shows the limita-
tions of the semiclassical approach. Our final results are ex-
pressed in terms of multipoint correlation functions of the
material system. These can be evaluated for more compli-
cated models than the Bloch-type equations ordinarily used
in quantum optics. Details of molecular complexity, coupling
to a solvent with arbitrary time scale, and excitonic effects
may be readily described by these expressions �3�.

The present approach is based on the many-body nonequi-
librium Green’s functions �NEGF� technique �26–32�. It pro-
vides a single microscopic definition of the signal that in-
cludes both spontaneous and stimulated emission and
generates the incoherent and coherent signals. We shall use a
superoperator in Liouville space representation that is com-
monly applied to study electrical conduction in quantum
junctions �33–35�. In Sec. II we give a general definition of
the signal �Eq. �11�� and express it in terms of Green’s func-
tions of the system and the field. The formalism will be
demonstrated by first considering the signal generated by a
single molecule. Applications are made to two types of inco-
herent experiments, spontaneous light emission �SLE� �Sec.
III� and to pump-probe spectroscopy �Sec. IV�. A purely dia-
grammatic derivation of the final expressions for the SLE
signal using the technique of Keldysh Schwinger loops �30�
is developed. We present rules that directly translate the dia-
grams to partially time-ordered expressions for the signal,
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both in the time and in the frequency domain. This represen-
tation, has been shown to be most useful for the study of
frequency-domain experiments within the semiclassical ap-
proximation . We extend it to quantum fields, and show that
it yields more compact expressions than the fully time-
ordered double-sided Feynman diagrams.

In Sec. V, we turn to the response of an assembly of
noninteracting particles. The expressions of Sec. II are gen-
eralized by simply replacing the dipole operator of a single
molecule by that of an assembly of particles. The signal is
separated into an incoherent and a coherent part. The latter,
which is described by semiclassical optical susceptibilities, is
dominant in macroscopic samples. However for small N both
have comparable magnitudes and coexist. The coherent sig-
nal does not exist in the limit of a single molecule. This
indicates a breakdown of the semiclassical theory which
does predict such a signal. Finally, in Sec. VI we show that
within QED heterodyne detection emerges as an incoherent
stimulated emission process in the detection mode. This is in
contrast with semiclassical treatment where we first generate
a coherent macroscopic signal, interfere it with a local oscil-
lator and then obtain the signal. All of these steps are
avoided by the microscopic QED definition given here. Sec-
tion VII provides a summary of our results.

II. INCOHERENT OPTICAL SIGNALS

We first consider a single molecule driven by an optical
field E�t�. This is all we need for calculating incoherent sig-
nals. The extension to coherent signals from molecular en-
sembles will be done in Sec. V.

The total Hamiltonian is given by

Ĥ = Ĥ0 + ĤF + Ĥint, �1�

where Ĥ0 represents the free molecule, and

ĤF = �
s

��sâs
†âs, �2�

is the radiation field Hamiltonian. In Eq. �2� âs�âs
†� denotes

the destruction �creation� operator for the sth field mode and
âs�âs

†� satisfy the boson commutation relation �âs , âs�
† �=�ss�.

For clarity, we shall omit the unit vector describing the field
polarization of a particular mode, and treat the field as a
scalar. The generalization to include the full tensorial expres-
sions is straightforward.

We shall treat the emitted photon modes with frequency

�s quantum mechanically. Ê�Ê†� are the positive �negative�
frequency components of the quantized electric field

Ê�r,t� = Ê�r,t� + Ê†�r,t� , �3�

with

Ê�r,t� = �
s
�2���s

�
�1/2

âse
iksr−i�st, �4�

and � is the quantization volume.
In the rotating wave approximation �RWA� the molecule-

field interaction is given by

Ĥint�t� = Ê�r,t�V̂† + Ê†�r,t�V̂ , �5�

where we have partitioned the dipole operator �̂ as

�̂= V̂+ V̂†. Here V̂†�V̂� are the creation �annihilation� opera-
tors for excitations. The time dependence in Eq. �5� is in the

interaction picture with respect to ĤF. Consequently, the time
dependence of the total �field+molecule� density operator
	̂T�t� is governed by the Hamiltonian

Ĥ�t� = Ĥ0 + Ĥint�t� . �6�

We assume that the field is initially in a coherent state,

	
F
 = A0 exp��
s

âs
†�s�	0
 �7�

where

A0 = exp��
s

	�s	2� , �8�

is the normalization such that 
F 	
F
=1. In Eq. �7� �s is
the eigenvalue of âs, âs 	
F
=�s 	
F
, and 	0
 is the vacuum
state. The expectation value of the field is then


F	Ê�r,t�	
F
 = E�r,t� + c.c., �9�

where

E�r,t� = �
s
�2���s

�
�1/2

eiks·r−i�st�s, �10�

is the field amplitude at space-point r.
We shall define the time and frequency resolved signal

S�t� as the rate of change of the photon occupation, i.e.,

S�t� ª
d

dt
�N̂�D,T, �11�

where

N̂ ª �
s

âs
†âs, �12�

denotes the photon number operator. This definition applies
to both spontaneous and stimulated process, as will be dem-
onstrated later. In Eq. �12� the sum extends over all modes of
interest in the experiment under consideration.

We shall adopt the following convention for the various
ensemble averages, one of which has been used in Eq. �11�.
In Eq. �11�, �¯�D,T stands for a trace with respect to the

density operator where Ĥint includes all field modes �“total”
system�. According to the definition of the signal, Eqs. �11�
and �12�, the field modes can be partitioned into detected �or
signal� modes and the incoming modes. For later use, we
introduce the average �¯�D, which denotes a trace with re-
spect to the density operator of the molecule calculated in the

interaction picture where Ĥint only includes the incoming
modes. Averages with respect to a noninteracting system,

where Ĥint=0, will be denoted by ¯
. This corresponds to
the limit t→−� �adiabatic switching�.
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The expectation value in Eq. �11� may be conveniently
evaluated by switching to the Heisenberg picture, using the
basic identity

d

dt
�N̂�D,T �� d

dt
N̂H� =��

s

i

�
�Ĥint�t�, âs,H

† âs,H�� ,

�13�

and the canonical commutation relations for âs�âs
†�. In Eq.

�13� we denote operators in the Heisenberg picture by a sub-
script “H.”

Evaluating the commutator in Eq. �13� and transforming
back to the original interaction picture, we finally obtain for
the signal, Eq. �11�,

S�t� = −
2

�
Im�„Ê�r,t�V̂†

…D,T� . �14�

Taking into account the time dependence of the total
�system+field� density operator, which is determined by the
Hamiltonian of Eq. �6�, the trace on the right-hand side
�RHS� of Eq. �14� can be computed perturbatively in the
field E�r , t� by switching to the interaction picture with re-

spect to the Hamiltonian Ĥ0. We shall compute this trace
using superoperators in Liouville space. To this end we as-

sociate with each operator Â in Hilbert space, a left �L� and a
right �R� operation in Liouville space, by defining

ÂLX̂ ª ÂX̂ ,

ÂRX̂ ª X̂Â , �15�

where X̂ denotes an arbitrary Hilbert space operator. Further-
more, we introduce the following linear combinations of L /R
operations, which will be referred to as + /− operations

Â ª

1
�2

�ÂL  ÂR� . �16�

A key tool in the following manipulations is the time-
ordering operator in Liouville space, T; when acting on a
product of superoperators, it reorders them such that their
time arguments increase from right to left. In the interaction
picture Eq. �14� can be expressed as

S�t� = −
2

�
Im��TÊL�r,t�V̂L

†�t�

�exp�−
i

�
�

−�

t

d��2Hint−������ , �17�

where Hint− is the superoperator corresponding to Ĥint, Eq.
�5�.

Note that Ĥint contains two interaction terms, one with the

incoming field modes Ĥint� and the other with the signal

modes Ĥint� . As before, the explicit time dependence repre-
sents the interaction picture

âsX�t� ª e�i/��HFXtâsXe−�i/h�HFXt,

V̂X�t� ª e�i/��H0XtV̂Xe−�i/h�H0Xt, �18�

where X=L, R and HFX�H0X� is the superoperator corre-

sponding to ĤF�Ĥ0�.
To lowest order in Ĥint� Eq. �17� gives

S�t� =
2�2

�2 Re�
s
�2���s

�
�1/2

eiks·r

� �
−�

t

d�„TâsL�t�V̂L
†�t�Hint−� ���…D. �19�

The superoperator expression corresponding to Eq. �5�
gives

�2Hint−��� = ÊL�r,��V̂L
†��� + ÊL

†�r,��V̂L��� − VR
†���ER�r,��

− VR���ER
†�r,�� . �20�

Substituting in Eq. �19� and factorizing the correlation func-
tions into products of field and system parts, we get �36�

S�t� =
4��

�
Re�ss�

��s�s��
1/2ei�ks−ks��·r

� �
−�

t

d��dLR
ss��t,��DRL��,t� − dLL

ss��t,��DLL��,t�� ,

�21�

where we have introduced the field and system nonequilib-
rium Green’s functions, dXY and DXY,

dXY
ss��t,�� ª −

i

�
„TâsX�t�âs�Y

† ���…D,

DXY�t,�� ª −
i

�
„TV̂X�t�V̂Y

†���…D. �22�

From the basic definitions of the Green’s functions we
have

DLL��,t� = ��� − t�DRL��,t� + ��t − ��DLR��,t� ,

dLL�t,�� = ��t − ��dRL�t,�� + ��� − t�dLR�t,�� . �23�

Substituting Eq. �23� in Eq. �21� gives

S�t� =
4��

�
Re�ss�

��s�s��
1/2ei�ks−ks��·r

� �
−�

t

d��dLR
ss��t,��DRL��,t� − dRL

ss��t,��DLR��,t�� ,

�24�

Using Eqs. �7� and �22�, the Green’s functions for the field
are given by

dLR
ss��t,�� = −

i

�
„âs�

† ���âs�t�…D = −
i

�
e−i�ste−i�s���s�s�

* ,

�25�
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dRL
ss��t,�� = −

i

�
„âs�t�âs�

† ���…D = −
i

�
e−i�stei�s����ss� + �s�s�

* � .

�26�

The signal, Eq. �24�, then becomes

S�t� =
4��

�
Im�

ss�

��s�s��
1/2ei�ks−ks��·re−i�st�

−�

t

d� ei�s��

���s�s�
* DRL��,t� − ��ss� + �s�s�

* �DLR��,t�� . �27�

In Eq. �27�, the term with �ss� represents spontaneous emis-
sion, whereas the terms proportional to �s�s�

* correspond to
stimulated processes. Note also that the Green’s functions
DXY contain the density matrix of the driven system which
involves all interactions with the incoming fields.

Equation �27� can also be written as

S�t� = 2 Im�
−�

t

d��DRL��,t� − DLR��,t��E�r,t�E*�r,��

−
4��

�
�s

�s Im�
−�

t

d� e−i�s�t−��DLR��,t� , �28�

or equivalently

S�t� = 2 Im�
−�

t

d��DRL��,t�E�r,t�E*�r,��

− DLR�t,��E*�r,t�E�r,���

−
4��

�
�s

�s Im�
−�

t

d� ei�s�t−��DLR�t,�� . �29�

In Eq. �29� we made use of the symmetry relation

D
LR
* ��,t� = − DLR�t,�� , �30�

to arrive at an expression, where interactions at time t always
occur from the left �i.e. on the ket�. This choice will be
adopted in the diagrammatic representation, which will be
introduced in Sec. III.

Equation �28� or equivalently Eq. �29� constitute our basic
NEGF expression for incoherent optical signals. The first
term in the brackets describes the creation of excitations in
the system by absorbing photons from the field and the sec-
ond term represents the reverse process. Both processes are
stimulated. The signal is thus given by the net photon flux.
The last term represents spontaneous emission. In the com-
ing two sections we shall apply these expressions to compute
different signals.

III. DIAGRAMMATIC REPRESENTATION FOR
SPONTANEOUS LIGHT EMISSION (SLE)

To describe spontaneous light emission �SLE�, which is
an incoherent process, we assume that the scattered field is
initially in its vacuum state and is generated by spontaneous
emission. Thus E�r , t�=0 and Eq. �29�, reduces to

SSLE�t� = −
4��

�
�s Im�

−�

t

d� ei�s�t−��DLR�t,�� , �31�

where it is furthermore assumed that the scattered field has
only one mode �s thus dropping the sum over s �signal
modes�. By integrating over modes we can replace 1 /� by
the density of modes.

Expanding the Green’s function DLR to second order in
the incoming field yields

SSLE�t� = −
4�

��2�s Re�
−�

t

d�� d�1� d�2ei�s�t−��

�TV̂L�t�V̂R
†���Hint−��1�Hint−��2�
 . �32�

In order to go any further, we need to expand the four-point
correlation function of Eq. �32� in L /R operations. A system-
atic, diagrammatic technique for selecting the terms in Eq.
�32� that contribute within the RWA, will be introduced next.

We start with Eq. �32�, where the correlation function
originates from expanding the Green’s function DLR�t ,�� in
Eq. �31� to second order in the incoming field. Hence, in
what follows, we associate the time variables �1 and �2 with
the incoming field, whereas the variables t and � correspond
to the signal field. We also note that thanks to the time or-
dering operator, Eq. �32� is symmetric with respect to inter-
changing the dummy variables �1 and �2.

In order to derive an explicit expression for this correla-
tion function in terms of superoperators, we first note that the
interactions at times t and � both represent photon emission,
one on the ket at time t, the other on the bra at time �. Since
the system is assumed to be initially in its ground state, both
emission events have to be preceded by two absorptions on
either side. Although this implies a certain order of interac-
tions on both the ket and the bra individually, their relative
ordering in physical time remains a priori undetermined.
This partial time ordering can be expressed diagrammati-
cally by arranging the interactions on a loop. We adopt the
following general rules for constructing and reading the
diagrams.

�1� Time runs along the loop clockwise from bottom left
to bottom right.

�2� The left strand of the loop represents the ket, the right
corresponds to the bra.

�3� Each interaction with a field mode is represented by a
wavy line on either the right �R operators� or the left
�L operators�.

�4� The field is indicated by dressing the wavy lines with
arrows, where an arrow pointing to the right represents the

field annihilation operator Ê�r , t�, which involves the term
ei�ks·r−�st� �see Eq. �4��. Conversely, an arrow pointing to the

left corresponds to the field creation operator Ê†�r , t�, being
associated with e−i�ks·r−�st�. This is made explicit by adding
the wave vectors ks to the arrows.

�5� Within the RWA �Eq. �5��, each interaction with Ê�r , t�
is accompanied by applying the operator V†, which leads to
excitation of the state represented by ket and deexcitation of
the state represented by the bra, respectively. Arrows point-
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ing “inwards” �i.e., pointing to the right on the ket and to the
left on the bra� consequently cause absorption of a photon by
exciting the system, whereas arrows pointing “outwards”
�i.e., pointing to the left on the bra and to the right on the ket�
represent deexciting the system by photon emission.

�6� The interaction at the observation time t, is fixed and
is always the last. As a convention, it is chosen to occur from
the left. This can always be achieved by a reflection of all
interactions through the center line between the ket and the
bra, which corresponds to taking the complex conjugate of
the original correlation function.

�7� Interactions within each strand are time-ordered, but
interactions on different strands are not. Each loop can be
further decomposed into several fully time-ordered diagrams
�double sided Feynman diagrams�. These can be generated
from the loop by simply shifting the arrows along each
strand, thus changing their position relative to the interac-
tions on the other strand. Each of these relative positions
then gives rise to a particular fully time-ordered diagram.

�8� The overall sign of the correlation function is given by
�−1�NR, where NR stands for the number of interactions from
the right, at times �1 and �2.

We note that loop diagrams drawn according to the rules
presented above, lead to double sided Feynman diagrams
that follow the standard conventions employed within the
semiclassical theory of nonlinear optics �3�. Using these
rules, the SLE is represented by the single loop diagram
displayed in Fig. 1. We denote the incoming field as k1 and
the signal field as k2. The loop translates Eq. �32� into the
following expression for the signal,

SSLE�t� =
4�

��2�2 Re�
−�

t

d�� d�1� d�2ei�2�t−��

� TV̂L�t�V̂R
†���V̂L

†��2�V̂R��1�
TÊL�r,�2�ÊR
†�r,�1�
 ,

�33�

where an additional prefactor of 2 was added to take into

account the symmetry with respect to the dummy variables
�1 and �2.

If desired, this can further be decomposed into fully time-
ordered terms using the double sided diagrams of Fig. 2. As
indicated above we can now, e.g., shift the arrow in Fig. 1
corresponding to time �2 along the ket, thus obtaining 3 pos-
sible relative positions with respect to the interactions at
times � and �1. The loop diagram consequently splits into 3
double sided Feynman diagrams. These are depicted in Fig.
2.

The resulting fully time-ordered expression for the signal
reads

SSLE�t� =
4�

��2�2 Re�
−�

t

d�� d�1� d�2E1
*�r,�1�E1�r,�2�

�ei�s�t−�����t������1����1�2�

�VL�t�VR
†���VR��1�VL

†��2�
 + ��t�2����2������1�

�V̂L�t�V̂L
†��2�V̂R

†���V̂R��1�
 + ��t������2����2�1�

�VL�t�VR
†���VL

†��2�VR��1�
� . �34�

Here, we have made use of Eq. �7� to evaluate the correlation
functions for the incoming field, since

TÊL�r,�2�ÊR
†�r,�1�
 =

2��

�
�1	�1	2e−i�1��1−�2�

= E1
*�r,�1�E1�r,�2� . �35�

Note that in Eq. �34� full time-ordering is expressed by add-
ing a product of step functions to each of the contributing
terms. We apply the short hand notation ���1�2�=���1−�2�.

Next, we calculate the signal for a frequency-domain ex-
periment with stationary beams. This will also illustrate how
to extend the diagrammatic rules to frequency-domain ex-
periments. We adopt the following convention for the Fourier
transform of a function f

f̃��� =� dt ei�t f�t� ,

f�t� =
1

2�
� d� e−i�t f̃��� . �36�

τ2

+k1

−k1

τ1

τ

+k2

−k2

t

s1 s3

s2

FIG. 1. Loop diagram for SLE. k1 is the incoming field and k2

is the signal field. Note that the interactions are time ordered within
each strand, but not between strands. s1 ,s2 ,s3 are the delay times
between the interactions along the loop.

τ2

+k1

−k1

τ1

+k2

τ

−k2

t

τ2

+k1

t

−k2

τ

+k2

τ1
−k1 −k1

τ1

τ2

+k1

τ

t

−k2

+k2

FIG. 2. Time-ordered Feynman diagrams of SLE, generated by
shifting the arrows of Fig. 1 along each strand thus changing their
relative time ordering. Each of the possible three relative positions
then gives one fully time ordered diagram �double sided Feynman
diagram�.
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When the incoming field is stationary, the integrals in Eq.
�33� can be evaluated directly, which by application of Eq.
�36� leads to a multiple Fourier transform of the partially
ordered four-point system correlation function in Eq. �33�.
To simplify this calculation, it is advantageous to switch to a
new set of time variables �“s-variables”�, s1ª t−�2,
s2ª t−�, s3ª�−�1, which represent the time intervals of
interactions along the loop. This choice becomes intuitive
when looking at the diagram, Fig. 1.

We can now show that the correlation function in Eq. �34�
depends on the s-variables in a simple way. To this end, we
transform the system correlation function in Eq. �33� to a
form that only involves L superoperators, hence

TV̂L�t�V̂R
†���V̂R��1�V̂L

†��2�
 = V̂L��1�V̂L
†���V̂L�t�V̂L

†��2�


�37�

In terms of the s-variables, Eq. �37� becomes

TV̂L�t�V̂R
†���V̂R��1�V̂L

†��2�
 = V̂LG†�s3�V̂L
†G†�s2�V̂LG�s1�V̂L

†
 ,

�38�

where we define the Liouville space propagator

G�s� ª ��s�exp�−
i

�
�2H0−s� �39�

Note that, when associating all interactions with the ket, one
needs to propergate twice backwards in time. This amounts
to applying the retarded propagator G† twice.

Using Eq. �38� the integration in Eq. �33�, leads to a mul-
tiple Fourier transform of the correlation function in terms of
the loop �s�-variables. This is readily calculated, giving the
following expression for the frequency-domain SLE signal

SSLE��1,�2� =
4�

�2�
	E1,0	2�2

�ImV̂LG†��1�V̂L
†G†��1 − �2�V̂LG��1�V̂L

†
 .

�40�

Since all interactions in Eq. �40� are “left” operations that
act on the ket, it is possible to express the final result for the
signal in Hilbert space, giving

SSLE��1,�2� =
4�

�2�
	E1,0	2�2

�ImV̂Ĝ†��g + �1�V̂†Ĝ†��g + �1 − �2�

�V̂Ĝ��g + �1�V̂†
 . �41�

Upon conversion of Eq. �40�, the frequency-domain Liou-
ville space propagators,

G��� =
�

�� − �2H0− + i�
, �42�

are replaced by Hilbert-space propagators,

Ĝ�� + �g� =
�

�� + ��g − Ĥ0 + i�
. �43�

Here, �g is the material frequency of the ground state, which
accounts for the free evolution of the bra. In both Eqs. �42�
and �43� the infinitesimal ��0 arises from causality and
guarantees the convergence of the Fourier transform.

Equation �41� can be recast in the form

SSLE��1,�2� = −
2�i

�2�
	E1,0	2�2V̂Ĝ†��g + �1�

�V̂†�Ĝ†��g + �1 − �2�

− Ĝ��g + �1 − �2��V̂Ĝ��g + �1�V̂†
 ,

�44�

which by using the level scheme of Fig. 3�a� yields the
Kramers-Heisenberg formula

SSLE��1,�2� = −
4�2

�2�
�2	E1,0	2	�ca	2

�ca/�
��1 − �2 − �ca�2 + �ca

2 ,

�45�

where

�ca =
�ab�bc

�1 − �ba + i�ba
. �46�

In Eqs. �45� and �46� �ca=�c−�a denotes the transition fre-
quency between the levels c and a and we have added a
phenomenological dephasing rate �ca.

By proceeding along the same line for an arbitrary loop
diagram, one can establish the following rules that allow one
to translate a given diagram into its frequency-domain ex-
pression. These complement the rules given earlier for time-
domain expressions.

�1� In the frequency-domain the loop translates into an
alternating product of interactions �arrows� and periods of
free evolutions �vertical solid lines� along the loop.

�2� Since the loop time goes clockwise along the loop,
periods of free evolution on the left amount to propagating

forward in real time �Ĝ�, whereas evolution on the right cor-

responds to backward propergation �Ĝ†�.

b

a

c

µbcµab

(a)

a

b

c

µbc

µab

(b)

FIG. 3. Three level systems with sequential dipole couplings
used in the derivation of the Kramers Heisenberg relation for
��a� Eq. �46�� the SLE and �b� the pump-probe signal.
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�3� Each Ĝ adds the multiplicative factor i, whereas each

Ĝ† results in a multiplication by �−i�.
�4� Frequency arguments of each propagator are cumula-

tive, i.e., they are given by the sum of all “earlier” interac-
tions along the loop. The ground state frequency �g must be
added to all Green’s functions.

Equation �41� can be immediately generated from Fig. 4
by applying these rules.

IV. PUMP-PROBE SIGNAL

The simplest nonlinear optical technique involves two
fields, k1 �the pump� and k2 �the probe�. The signal is de-
fined as the difference of the probe transmitted intensity with
and without the pump. We assume that the probe intensity is
high so that spontaneous emission is negligible compared to
stimulated emission. The second term in Eqs. �28� and �29�,
which describes spontaneous emission, is thus neglected. Us-
ing Eq. �28� and expanding to second order in the incoming
field, the signal then reduces to

SPP�t� = 2
1

�3 Re�
−�

t

d�� d�1� d�2E2�r,t�E2
*�r,��

��TV̂R���V̂L
†�t�Hint−��1�Hint−��2�


− TV̂L���V̂R
†�t�Hint−��1�Hint−��2�
� �47�

Using the identity

DRL��,t� − DLR��,t� =
i

�
„TV̂+

†�t�V̂−���…D �48�

we can express the pump-probe signal in terms of + /− op-
erators as

SPP�t� = −
2

�3 Re�
−�

t

d�� d�1� d�2E2�r,t�E2
*�r,��

�TV+
†�t�V−���Hint−��1�Hint−��2�
 . �49�

This is equivalent to the classical expression for the signal in
terms of ��3�. This becomes even more apparent if Eq. �49� is
rewritten in the form

SPP�t� = −
2

�3 Re�
−�

t

d�� d�1� d�2E2�r,t�E2
*�r,��

�E1�r,�1�E1
*�r,�2�TV̂+

†�t�V̂−���V̂−
†��1�V̂−��2�
 ,

�50�

which is equivalent to Eq. �49�, if only terms proportional to
the field intensities are taken into account. The details are
given in Appendix A.

The forgoing example of SLE illustrated the use of
Keldysh-Schwinger loops to compute the signal. In particu-
lar, by using this partially time ordered diagrammatic repre-
sentation, we were able to reduce the number of diagrams
from three to one. The merits of this compact notation will
become even more apparent for the pump-probe signal, as
will be shown next.

We start with an expression for the signal using Eq. �29�

SPP�t� = 2
1

�3 Re�
−�

t

d�� d�1� d�2�E2�r,t�E2
*�r,��

�TV̂R���V̂L
†�t�Hint−��1�Hint−��2�
 − E2

*�r,t�E2�r,��

�TV̂L�t�V̂R
†���Hint−��1�Hint−��2�
� , �51�

τ2

+k1

−k1

τ1

τ

+k2

−k2

t

(a)

+k1

τ2

−k1

τ1

+k2

t

−k2

τ

(b)

+k1 τ1

+k2
t

−k2

τ

τ2

−k1

(c)

+k1 τ1

+k2
t

τ2

−k1

−k2

τ

(d)

t+k2

−k2
τ

+k1
τ1

τ2 −k1

(e)

t+k2

τ2 −k1

+k1
τ1

−k2
τ

(f)

t+k2

+k1
τ1

−k2
τ

τ2 −k1

(g)

t+k2

+k1
τ1

τ2 −k1

−k2
τ

(h)

FIG. 4. Eight loop diagrams
for the pump-probe signal �Eq.
�52��. Note that �a� coincides with
the SLE �Fig. 1�.
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where in analogy to Eq. �47�, we neglect the spontaneous
emission term.

We note that the second term in Eq. �51� coincides with
the SLE correlation function, Eq. �32�. What remains there-
fore is to resolve the first term in terms of L /R operations.
For simplicity we assume a three level ladder with sequential
transition dipole moments as shown in Fig. 3�b�.

We again start our analysis by looking at the two interac-
tions at times t and �. Contrary to the second term in Eq.
�51�, both of these correspond to absorptions rather than
emissions. For the dipole selection rules shown in Fig. 3�b�,
this leaves two possibilities for placing the remaining inter-
actions along the loop: We either have three interactions on
one side, or two interactions on either side �see Fig. 4�.

For the former case and the model of Fig. 3�b�, these can
only correspond to two absorbtions and one emission. By
applying the same argument used for SLE, the earliest of
these three interactions must necessarily be an absorption. To
proceed further, one then needs to distinguish whether these
interactions occur on the ket or the bra. Since the last inter-
action is fixed to time t, the former case correspondingly
allows only one possible loop diagram, which is displayed in
Fig. 4�b�.

When placing the three interactions on the right strand,
one has to allow for all possible orderings of their associated
times �, �1 and �2. At this point we reiterate that when draw-
ing a loop diagram, even though the relative time ordering of
the ket and the bra interactions is unspecified, the temporal
order within each strand is fixed. Hence having three inter-
actions with the bra, generates four loop diagrams, which
arise upon performing permutions of the arrows on the right
side. Figures 4�e�–4�h� show these diagrams. Note that in
this case the loop diagrams are actually fully time ordered.

We now turn to the diagrams with two left and two right
interactions. Since the last interaction occurs on the ket at
time t, for a system starting off in the ground state, the other
interaction on the ket also must be an absorption. Finally, we
note that when calculating the correlation functions Eq. �51�,
one needs to take a trace in the end, which restricts both
interactions on the bra to be absorptions as well. Arguing
along this line leads to the two loop diagrams shown in Figs.
4�c� and 4�d�. The two loops again take into account the two
possible permutations of placing interactions on the bra.

In summary, the pump-probe signal can be represented by
eight loop diagrams, seven stem from the first correlation
function in Eq. �51�, whereas the remaining one is SLE type.
The corresponding expression for the signal derived using
the time-domain rules is given in Appendix B.

For the sake of completness, we shall compare the QED
signal with the semiclassical result, where the pump-probe
signal is calculated as a third order response in the direction
+k1−k1+k2. Note that the diagrams in Figs. 4�b�–4�h�, cor-
respond to +k1−k1−k2. This difference can however easily
be resolved by taking the complex conjugate of these dia-
grams, which leaves the expression for the signal in Eq. �B1�
invariant. Pictorially, since this amounts to reflecting the ar-
rows through the center line between the ket and bra, we
recover the classical combination of wave vectors
+k1−k1+k2. As was the case for SLE, we can generate the

corresponding fully-time ordered diagrams from the loops
displayed in Fig. 4. The resulting 16 double-sided Feynman
diagrams are summarized in Fig. 5. In addition, as has been
shown in Sec. III for SLE, frequency-domain expressions
follow naturally from the loop diagrams, since the field per-
mutations are already built in. Applying the rules given in
Sec. III to the diagrams for the pump probe �Fig. 4�, we can
immediately write down the frequency-domain signal

τ2

+k1

−k1

τ1

+k2

τ

−k2

t

τ2

+k1

t

−k2

τ

+k2

τ1
−k1 −k1

τ1

τ2

+k1

τ

t

−k2

+k2

(a)

+k1
τ2

−k1
τ1

+k2

t

−k2

τ

+k2

t

τ1

−k1

+k1
τ2

−k2

τ

+k1
τ2

−k1
τ1

+k2

t

−k2

τ

(b)

τ

+k1 τ1

+k2 t

−k2

τ2
−k1

+k1 τ1

+k2 t

τ
−k2

τ2
−k1 +k1 τ1

+k2 t

τ
−k2

τ2
−k1

(c)

τ

+k1 τ1

+k2 t

τ2
−k1

−k2 −k2
τ

τ2
−k1

+k1 τ1

+k2 t t
+k2

+k1 τ1

−k2
τ

τ2
−k1

(d)

FIG. 5. Double sided Feynman diagrams resulting from Fig. 4
upon breaking the loops into time ordered contributions. �a�–�d�
Time ordered diagrams corresponding to the loops shown in �a�–�d�
of Fig. 4, respectively. Since the four loops with three interactions
on the bra �Figs. 4�e�–4�h�� are already fully time ordered, each
gives a single double sided diagram. These are not repeated here.
Overall, the eight loop diagrams of Fig. 4 yield 16 Feynman
diagrams.
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SPP��1,�2� = − 4
�3 	E1,0	2	E2,0	2 Im�− V̂Ĝ†��g + �1�V̂†Ĝ†��g + �1 − �2�V̂Ĝ��g + �1�V̂†


+ V̂Ĝ†��g + �2�V̂†Ĝ��g + �1 − �2�V̂Ĝ��g + �1�V̂†
 + V̂Ĝ†��g + �1�V̂Ĝ†��g + �1 + �2�V̂†Ĝ��g + �1�V̂†


+ V̂Ĝ†��g + �2�V̂Ĝ†��g + �1 + �2�V̂†Ĝ��g + �1�V̂†
 + V̂Ĝ†��g + �1�V̂†Ĝ†��g + �2 − �2�V̂Ĝ†��g + �2�V̂†


+ V̂Ĝ†��g + �2�V̂†Ĝ†��g + �2 − �1�V̂Ĝ†��g + �2�V̂†
 + V̂Ĝ†��g + �1�V̂Ĝ†��g + �1 + �2�V̂†Ĝ��g + �2�V̂†


+ V̂Ĝ†��g + �2�V̂Ĝ†��g + �1 + �2�V̂†Ĝ†��g + �2�V̂†
� . �52�

The eight terms correspond respectively to the eight dia-
grams in Fig. 4.

V. COHERENT VS INCOHERENT NONLINEAR OPTICAL
PROCESSES

So far we have focused on incoherent processes. We could
thus consider a single molecule and simply multiply the sig-
nal by N in the end. To describe coherent signals we consider

V̂ in Eq. �14� as the dipole moment of a collection of nonin-
teracting molecules at positions r�, i.e.,

V̂ = �
�

V̂���r − r�� , �53�

where V̂� now denotes the dipole operator of a single mol-
ecule. Subsequent interactions of the detecting field can take
place with the same ��=�� or with different ����� mol-
ecules. We shall describe an �n+1�-wave mixing experiment,
where n incoming modes generate a signal in a new direc-
tion. When the signal mode �index s� is initially in its
vacuum state, the spontaneous emission signal can be de-
scribed by Eq. �28� modified to include Eq. �53�. We then get

ST = 4�
� �s Re��

−�

+�

dt�
−�

t

d��
�,�

e−i�s�t−��eiks·�r�−r��

Ã„TV̂�,L���V̂�,R
† �t�…D� , �54�

where we have further added a time integration to describe a
frequency-domain experiment �37�. Equation �54� is a gen-
eral expression for spontaneously generated signals. The �
=� and ��� terms in Eq. �54� give rise to incoherent �SI�
and coherent �SC� signals, respectively. We thus write

ST��s� = NSI��s� + N�N − 1�SC��s� , �55�

where the incoherent signal is given by

SI��s� =
4�

�
�s Re��

−�

�

dt�
−�

t

d� e−i�s�t−��

Ã„TV̂�,L���V̂�,R
† �t�…D� . �56�

For uncorrelated particles, we have �V̂� , V̂��=0. The �
�� sum may thus be factorized into � and �,

„V̂�,L���V̂�,R
† �t�…D = „V̂�,L���…D„V̂�,R

† �t�…D = „V̂L���…D„V̂L
†�t�…D.

�57�

This gives rise to the coherent term in Eq. �55�,

SC��s� =
2�

�
�s	P��s�	2,

P��s� = �
−�

�

d� ei�s�
„V̂L

†���…D. �58�

For this we have also made use of

�
−�

+�

dt�
−�

t

=
1

2
�

−�

+�

dt�
−�

+�

d� , �59�

in Eq. �56�.
In Eq. �58� we assumed that the sample is much smaller

than the optical wavelength or that we have exact phase
matching �k=0, where �k is the difference between the
wave vector of the signal mode and the sum of wave vectors
of the n incoming fields. More generally, we should replace
the N�N−1� factor in Eq. �55� by

F��k� = �
�,�

e−i�k·�r�−r��. �60�

For macroscopic samples, the number of terms with ��� in
the double sum of Eq. �60� will by far exceed the terms with
equal indices. Evaluating this double sum in the continuous
limit and letting the sample volume go to infinity, gives the
standard phase matching condition F��k�→���k�, which
yields a directed signal.

For small samples both coherent and incoherent terms
need to be considered. It is interesting to note that for a
single molecule we never get SC, we only have SI. Nonlinear
susceptibilities, even though they are calculated for single
molecules, do not represent a spontaneous wave-mixing ex-
periment performed on a single molecule. Using the semi-
classical approach one may conclude that coherent signals
are possible even from a single molecule. The QED approach
shows that this is not possible.

Below we compare the expressions for SI
�n� and P�n� ob-

tained by expanding Eqs. �56� and �58� for n=1,2 ,3, where
n denotes the number of incoming modes. We demonstrate
that the incoherent signal for n incoming modes, relates to an
2�n+1�-point correlation function in the dipole moment,
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compared to an �n+1�-point correlation function contained
in P�n�.

For n=1

P�1���s� =� dt ei�st�
−�

t

d�TV̂L�t�V̂−
†���
E�r,�� ,

gives Rayleigh scattering, whereas

SI
�1���s� =� dt�

−�

t

d� ei�s�t−�� � d�1� d�2

�TV̂L�t�V̂R
†���V̂−��1�V̂−

†��2�
E*�r,�1�E�r,�2�

is responsible for SLE �raman and fluorescence� as discussed
in Sec. III.

For n=2

P�2���s� =� dt ei�st�
−�

t

d�� d�1

�TV̂L�t�V̂−
†���V̂−��1�
E�r,��E*�r,�1�

describes three-wave mixing, e.g., second harmonic genera-
tion �41–43�, and

SI
�2���s� =� dt�

−�

t

d� ei�s�t−�� � d�1� d�2� d�3� d�4

�E*�r,�1�E�r,�2�E*�r,�3�E�r,�4�

�TV̂L�t�V̂R
†���V̂−��1�V̂−

†��2�V̂−��3�V̂−
†��4�


may represent many possible processes, depending on the
level scheme and off-resonant detunings, e.g., two photon
fluorescence �38–40�.

For n=3

P�3���s� =� dt ei�st�
−�

t

d�� d�1� d�2E�r,��

�E�r,�2�E*�r,�1�TV̂L�t�V̂−
†���V̂−��1�V̂−

†��2�


represents four-wave mixing, e.g., third harmonic generation
and

SI
�3���s� =� dt�

−�

t

d� ei�s�t−�� � d�1� d�2� d�3� d�4

�� d�5� d�6E*�r,�1�E�r,�2�E*�r,�3�E�r,�4�

�E*�r,�5�E�r,�6�

�TV̂L�t�V̂R
†���V̂−��1�V̂−

†��2�V̂−��3�V̂−
†��4�V̂−

†��6�


can represent many possible processes, e.g., three photon
fluorescence.

A nanocrystal is made out of many unit cells. Its dipole
operator is given by �̂=���̂�, where �̂� represents an
electron-hole pair on unit �. It thus behaves as a collection of

many molecules and it can show spontaneous coherent re-
sponse �8,9�. N is thus large even though we have a single
particle.

VI. HETERODYNE-DETECTION AS A STIMULATED
WAVE MIXING

When detecting nonlinear optical signals in macroscopic
samples, one can either measure the intensity �homodyne
detection� or the magnitude and phase of the signal field
�heterodyne detection�. The later technique uses an intense
external field ELO, usually referred to as “local oscillator,”
which interferes with the created nonlinear signal in the same
direction, but is assumed not to interact with the molecule.
Using the standard semiclassical approach to nonlinear op-
tics, the quantity detected in a heterodyne measurement is �3�

SHET�ks� � �
−�

+�

dt Im�ELO
* �t�Ps�ks,t�� , �61�

where Ps is the polarization in the signal direction ks. With
the QED formalism developed here, we can greatly simplify
the derivation of Eq. �61� and show that it emerges naturally
as an incoherent rather than a coherent signal.

Equation �54� describes the signal generated from an as-
sembly of particles by spontaneous emission. Applying Eq.
�53� to Eq. �28�, we can give a similar expression for the
stimulated signal

Sstim�t� = − 2
� Re�

−�

t

d��„TV̂�,R���V̂�,L
† �t�…D

− „TV̂�,L���V̂�,R
† �t�…D�E�r,t�E*�r,�� . �62�

In analogy to Sec. V, we can now split Eq. �62� into a coher-
ent ����� and an incoherent ��=�� contribution. Since the
dipole operators of different, uncorrelated particles ���
commute, the coherent contribution vanishes identically. The
present formalism hence yields the general result that stimu-
lated processes are always incoherent in nature. In particular
this applies to heterodyne experiments where the local oscil-
lator serves as the stimulating field. It is hence sufficient to
look only at a single particle and use Eq. �14� derived in Sec.
II.

Equation �14� is reminiscent of the expression for hetero-
dyne detection �Eq. �61��, if one only looks at one particular
mode “s” in the definition of the signal �see Eqs. �11� and
�12��, thus

SSWM�t� = − 2
� Im�„Ês�r�,t�V̂†

…D,T� . �63�

Here, by adding a subscript �, we make explicit that Eq. �63�
is the signal generated by one molecule at position r�. For an
assembly of noninteracting particles, this has then to be
summed over r�. The only difference of Eq. �63� as com-

pared to Eq. �61�, is that it contains a field operator Ê, rather
than a classical field E.

Heterodyne detection can be viewed as an incoherent
stimulated emission process in the detected mode. Since Eq.
�63� is already first order in the mode s, in a subsequent
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perturbative expansion of the density operator the detecting
mode will only contribute to higher order. Hence, to first
order in the coupling with the detecting mode, the time de-
pendence of the density operator is only given by all other
modes s��s. The field operator therefore acts directly on the
state of the system �molecule+field� at t→−�, which when
assuming a coherent state of the field in the same limit �see
Eq. �7�� yields

S�t� = 2
� Im�E

s
*�r�,t��V̂�D� . �64�

In Eq. �64� we additionally took the complex conjugate
within the imaginary part.

The expectation value in Eq. �64� can be further expanded
in the incoming modes. For n modes this gives the classical
nth order polarization

P�n��r,t� = P�n��t�ei��s��sks��·r. �65�

Consequently, integrating over all times, we obtain the
following generic result for an �n+1�-wave mixing process
�i.e., one detected mode “s” +n incoming modes “s��s”�

S��k� =
2

�
�

−�

+�

dt Im�Es,0
* P�n��t�f��k�� ,

f��k� = �
�

e−i�k·r�, �66�

where we explicitly display the spatial dependence of the
fields, e.g.,

Es�r,t� = Es,0�t�eiks·r. �67�

In Eq. �66� we have added the sum over r� to make the
transition from the signal generated by single molecule to
one of several molecules �incoherent process�.

Under exact phase-matching conditions ��k=0�, or if the
sample is much smaller than the optical wavelength, we have
f��k�=N. Rather than creating a coherent signal, propagat-
ing it and interfering as done in the semiclassical approach,
we can simply describe it microscopically as an incoherent
signal.

Equation �66�, hence allows us to interpret heterodyne
detection as follows: All fields �the n fields ��s� ,ks�� as well
as the detected field ��s ,ks�� interact with the molecule. This
leads to stimulated emission of photons of frequency �s. A
sum over all molecular positions has to be performed �Eq.
�66��. Going to the continuum limit, which is justified for a
macroscopic sample, this sum can be replaced by an integral
over the sample volume. Extending this integral over the
entire real space, we obtain the phase-matching condition
f��k�→���k�. Therefore, in a macroscopic sample the sig-
nal is finite only when the stimulating field Es�r , t� fulfills
this condition.

VII. CONCLUSIONS

A microscopic QED treatment of nonlinear optical pro-
cesses induced by a weak quantized field is developed in this
paper. In the traditional, widely used approaches to nonlinear

optical response, the matter-field interaction is treated semi-
classically, hence the signal field is obtained by simulta-
neously solving macroscopic �Maxwell� and microscopic
�quantum Liouville� equations. Here we treat the entire pro-
cess as a single event.

Based on a microscopic definition of the spontaneous and
stimulated signal, general expressions are derived for the
nonlinear optical signal involving nonequilibrium Green’s
functions in the incoming field. Depending on the experi-
ment under consideration, these can then be expanded order
by order in the incoming field modes. Application is made to
spontaneous light emission and pump-probe spectroscopy.
Coherent and incoherent processes involving both spontane-
ous and stimulated emission are treated using a unified
framework.

A diagrammatic derivation of the contributing terms
within the RWA using the technique of Keldysh Schwinger
loops is developed. This representation reflects the partially
time-ordered nature of the Green’s functions and hence
yields more compact expressions than the well established
fully time ordered double sided Feynman diagrams. The loop
diagrams are particularly useful for frequency-domain mea-
surements where the bookeeping of time ordering is not nec-
essary anymore. If needed for time-domain experiments, the
fully time ordered expressions can be obtained from the loop
diagrams using a simple prescription. Rules for constructing
and reading these diagrams are laid out, making it possible to
intuitively derive the expressions for the signals.

The practical merits of this partially time-ordered ap-
proach are illustrated for the pump-probe technique where
the number of diagrams is reduced from 16 to 8. This ex-
ample also demonstrates an interesting fundamental merit of
the QED treatment of nonlinear optical processes, even
though in pump-probe spectroscopy quantum effects of the
field �i.e., terms stemming from spontaneous emission� are
usually negligible: Semiclassically, the pump-probe signal is
obtained by calculating a third order response induced by
two fields in the direction k1−k1+k2. The resulting signal
field is then obtained using heterodyne detection, where
mode 2 acts as its own local oscillator field. Even though the
final expression for the signal is identical to a QED result,
the semiclassical approach creats an artificial asymmetry be-
tween the local oscillator �mode 2�, which by definition does
not interact with the molecule, and the remaining fields
�mode 1 and 2�, which give rise to the nonlinear polarization.
This asymmetry, which is eliminated here, is a direct conse-
quence of the limitations imposed by separately treating
various field modes within the semiclassical approach.

Finally, using the QED formalism, we are able to treat
both coherent and incoherent processes in a unified way. This
distinction comes about by calculating the signal for an as-
sembly of molecules rather than for a single particle. The
signal then splits into two parts, a coherent term scaling
�N�N−1� and an incoherent term �N, where N denotes the
number of particles. As the number of particles in the sample
is increased, the coherent term becomes more pronounced.
For experiments carried out with only a few molecules how-
ever, both coherent and incoherent terms will generally make
comparable contributions to the signal. In single molecule
experiments only the incoherent term survives.
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Since incoherent signals may not be calculated semiclas-
sically, this leads to a striking consequence. For an
�n+1�-wave mixing processes carried out on a single mol-
ecule we show that the signal is not given by an �n+1�-point
response function of the dipole operator related to P�n�, as
predicted by the semiclassical approach. It is rather given by
a different 2�n+1�-point combination of correlation func-
tions. This doubling arises since the signal may not be recast
as an amplitude square and we must calculate the signal it-
self, not an amplitude. The present formalism allows a mi-
croscopic calculation of nonlinear optical experiments on
single molecules which have only become feasible recently.

Finally, we address this apparent limitation of the semi-
classical description from a more general viewpoint and
show that heterodyne detection for an �n+1�-wave mixing
experiment can be simply viewed as an incoherent stimu-
lated emission process in the detected mode. In contrast,
homodyne-detected n-wave mixing is a coherent spontane-
ous emission process. For a macroscopic sample, by sum-
ming over the molecules in the interaction volume, we re-
cover the phase-matching condition, i.e., the heterodyne-
signal is finite only if the stimulating mode �i.e., the local
oscillator� matches this condition.
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APPENDIX A: DERIVATION OF EQ. (51)

In this appendix we illustrate the equivalence of the QED
expression for the pump-probe signal with the classical sig-
nal expressed in terms of ��3�. Starting from Eq. �49� and
applying the definition of Eq. �16�, we can write

Hint−��� =
1
�2

�Ê+�r,��V̂−
† + Ê−�r,��V̂+

† + Ê+
†�r,��V̂−

+ Ê−
†�r,��V̂+� . �A1�

Making use of Eq. �A1�, the correlation function in Eq.
�49� can be recast in terms of correlations of the system and
the field. Calculating the field correlations, only 6 of the
possible 16 terms are nonzero, giving

2TV̂+
†�t�V̂−���Hint−� ��1�Hint−� ��2�
 = TV̂+

†�t�V̂−���V̂−
†��1�V̂−��2�
TÊ+�r,�1�Ê+

†�r,�2�
 + TV̂+
†�t�V̂−���V̂−��1�V̂−

†��2�


�TÊ+
†�r,�1�Ê+�r,�2�


+ TV̂+
†�t�V̂−���V̂−

†��1�V̂+��2�
TÊ+�r,�1�Ê−
†�r,�2�
 + TV̂+

†�t�V̂−���V̂+��1�V̂−
†��2�


�TÊ−
†�r,�1�Ê+�r,�2�
 + TV̂+

†�t�V̂−���V̂−��1�V̂+
†��2�
TÊ+

†�r,�1�Ê−�r,�2�


+ TV̂+
†�t�V̂−���V̂+

†��1�V̂−��2�
TÊ−�r,�1�Ê+
†�r,�2�
 . �A2�

Note that since Eq. �49� is symmetric with respect to the
variables �1 and �2, Eq. �A2� simplifies further and only in-
cludes three distinct terms upon integration, i.e.,

� d�1� d�22TV̂R���V̂L
†�t�Hint−� ��1�Hint−� ��2�


= 2� d�1� d�2TV̂+
†�t�V̂−���V̂−

†��1�V̂−��2�


�TÊ+�r,�1�Ê+
†�r,�2�
 + TV̂+

†�t�V̂−���V̂−
†��1�V̂+��2�


�TÊ+�r,�1�Ê−�r,�2�
 + TV̂+
†�t�V̂−���V̂−��1�V̂+

†��2�


�TÊ+
†�r,�1�Ê−�r,�2�
 . �A3�

For a classical incoming field, the correlation function in Eq.
�A3� is equal to only the first term on the RHS where

TÊ+�r,�1�Ê+
†�r,�2�
 = E�r,�1�E*�r,�2� +

2���

�
ei���1−�2�.

�A4�

For a classical field the second term in Eq. �A4� will be
negligible.

The last two terms in Eq. �A3� are due to the quantum
character of the incoming field, since

TÊ+�r,�1�Ê−
†�r,�2�
 =

2���̂

�
e−i���1−�2����1 − �2� ,

TÊ+
†�r,�1�Ê−�r,�2�
 = −

2���

�
e−i���2−�1����1 − �2� .

�A5�

Hence, neglecting the last two terms in Eq. �A3� and making
use of Eq. �A4�, we obtain Eq. �50�.
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APPENDIX B: TIME DOMAIN EXPRESSIONS FOR THE
PUMP-PROBE SIGNAL

In this appendix we give the expressions for the pump-
probe signal in the time domain obtained by applying the
rules summarized in Sec. III to the loop diagrams in Fig. 4.
This complements the frequency-domain expression given in
Eq. �52�. Applying the time-domain rules for the loop dia-
grams in Fig. 4, we obtain

SPP�t� =
4

�3 Re��
−�

t

d�� d�1� d�2E2
*�r,t�E2�r,��

�TVL�t�VR
†���VL

†��2�VR��1�
TÊ1,L�r,�2�Ê1,R
† �r,�1�


+ �
−�

t

d�� d�1� d�2E2�r,t�E2
*�r,��

�TVL
†�t�VR���VL��1�VL

†��2�
TÊ1,L
† �r,�1�Ê1,L�r,�2�


− TVL
†�t�VR���VL

†��1�VR��2�
TÊ1,L�r,�1�Ê1,R
† �r,�2�


+ TVL
†�t�VR���VR

†��1�VR��2�


��TÊ1,R�r,�1�Ê1,R
† �r,�2�
�� , �B1�

where we kept the order of the diagrams in Fig. 4. Similar to
Eq. �33�, an additional factor of 2 accounts for the symmetry
with respect to �1 and �2. This can again be broken into fully
time-ordered terms using the double sided Feynman dia-
grams displayed in Fig. 5. We then get

SPP�t� =
4

�3 Re�
−�

t

d� � d�1 � d�2E2
*�r,t�E2�r,��

�E1
*�r,�1�E1�r,�2����t������1����1�2�V̂L�t�V̂R

†���V̂R��1�V̂L
†��2�


+ ��t�2����2������1�V̂L�t�V̂L
†��2�V̂R

†���V̂R��1�
 + ��t�2����2������1�V̂L�t�V̂L
†��2�V̂R

†���V̂R��1�


+ ��t������2����2�1�V̂L�t�V̂R
†���V̂L

†��2�V̂R��1�
� + E2�r,t�E2
*�r,��

��E1
*�r,�1�E1�r,�2����t������1����1�2�V̂L

†�t�V̂R���V̂L��1�V̂L
†��2�
 + ��t�1����1������2�V̂L

†�t�V̂L��1�V̂R���V̂L
†��2�


+ ��t�1����1�2����2��V̂L
†�t�V̂L��1�V̂L

†��2�V̂R���
� − �E1�r,�1�E1
*�r,�2�����t������1����1�2�V̂L

†�t�V̂R���V̂L
†��1�V̂R��2�


+ ��t�1����1������2�V̂L
†�t�V̂L

†��1�V̂R���V̂R��2�
 + ��t������2����2�1�V̂L
†�t�V̂R���V̂R��2�V̂L

†��1�


+ ��t�2����2�1����1��V̂L
†�t�V̂R

†��2�V̂L
†��1�V̂R���
 + ��t�1����1�2����2��V̂L

†�t�V̂L
†��1�V̂R��2�V̂R���


+ ��t�2����2������1�V̂L
†�t�V̂R��2�V̂R���V̂L

†��1�
� + E1�r,�1�E1
*�r,�2����t������1����1�2�V̂L

†�t�V̂R���V̂R
†��1�V̂R��2�


+ ��t�2����2�1����1��V̂L
†�t�V̂R��2�V̂R

†��1�V̂R���
 + ��t�1����1������2�V̂L
†�t�V̂R

†��1�V̂R���V̂R��2�


+ ��t�1����1�2����2��V̂L
†�t�V̂R

†��1�V̂R��2�V̂R���
�� . �B2�

Comparison of Eqs. �B1� and �B2� illustrates the tremendous simplification achieved by the more compact partially
time-ordered approach. Employing the diagrammatic Keldysh-Schwinger loop technique, the number of diagrams is reduced
by half �16 versus 8 diagrams�.
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