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Switching effect on the quantum Brownian motion near a reflecting boundary
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The quantum Brownian motion of a charged particle in the electromagnetic vacuum fluctuations is investi-
gated near a perfectly reflecting flat boundary, taking into account the smooth switching process in the mea-
surement. Constructing a smooth switching function by gluing together a plateau and the Lorentzian switching

tails, it is shown that the switching tails have a great influence on the measurement of the Brownian motion in
the quantum vacuum. Indeed, it turns out that the result with a smooth switching function and the one with a
sudden switching function are qualitatively quite different. It is also shown that anticorrelations between the
switching tails and the main measuring part plays an essential role in this switching effect. The switching
function can also be interpreted as a prototype of a nonequilibrium process in a realistic measurement, so that

the switching effect found here is expected to be significant in actual applications in vacuum physics.
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I. INTRODUCTION

It is well known that a nontrivial spectral profile of the
vacuum fluctuations produces observable effects. One impor-
tant example in this category is the quantum vacuum near
reflecting boundaries, which is directly related to various ap-
plications; Casimir effect, quantum effects in the early uni-
verse, quantum noise in a gravitational-wave detector, and so
on. One way of probing such nontrivial vacuum fluctuations
is to study the Brownian motion of a test particle released in
the vacuum in question [1,2]. Another approach is, for in-
stance, to investigate the interaction between a mirror and
the nearby vacuum fluctuations [3].

In the present paper, we study the velocity dispersions of
the Brownian motion of a charged test particle in the quan-
tized electromagnetic vacuum near a perfectly reflecting, flat
boundary. (Let us assume that the boundary coincides with
the x-y plane (z=0) for later convenience.) This analysis is
along the line of some preceding studies on the quantum
Brownian motion, among which the case of an uncharged,
polarizable test particle [1], and the case of a charged test
particle [2] are closely related to the present one. We here,
however, would like to pay special attention to the influence
of the switching process in measuring the velocity disper-
sions.

The reason why we focus on the switching process is as
follows. In Ref. [2], Yu and Ford calculated the velocity dis-
persions of a classical charged particle in the electromagnetic
vacuum near a reflecting boundary, assuming a sudden
switching process. Here the “sudden switching” process in-
dicates the measurement process in which the detector is
abruptly turned on and turned off at the time t=0 and t=r7,
say, respectively. They reported that the z component of the
velocity dispersion of the test particle, (Av?), does not vanish
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at late time, but shows an asymptotic late-time behavior
(Av?} ~C/z? (C is some constant). They interpreted this be-
havior as a transient effect due to a sudden switching pro-
cess. However, a sudden switching may not be very realistic
in view of the uncertainty principle between time and energy
since the sudden switching implies that a coupling between
the field and the particle is switched on and off instanta-
neously with some finite energy exchange. Furthermore, the
fact that the late-time behavior of (Av?) does not depend on
the main measuring time 7 suggests that there should be
cancellation during the time 7. If so, the switching tails at the
edge of the main measuring process might have significant
influence on the result.

It is desirable, thus, to reanalyze the same system under a
more realistic measuring process with smooth switching tails
and to see how the late-time behavior of the measured (Av?)
depends on the switching process. The aim of the present
paper is to undertake this analysis.

We will see that, contrary to the macroscopic measure-
ments, the measurement of the quantum vacuum fluctuations
is considerably influenced by the switching tails in a highly
nontrivial manner. In particular the anticorrelation between
the main measuring part and the switching tails plays an
essential role.

There are three time scales characterizing the present sys-
tem as is discussed below. We also study how the results
depend on the time scales to get basic ideas about when
switching is regarded as “smooth” or “sudden.”

The quantum switching effect analyzed here is expected
to find various applications related to nonstationary aspects
of the vacuum fluctuations.

In Sec. II, we first review some basic results of the case of
sudden switching discussed in [2], and then we show that a
smooth switching process leads to a totally different result.
In Sec. III, after introducing a reasonable switching function,
the velocity dispersions of the probe particle are explicitly
computed, paying special attention to the singular integrals
caused by the mirror reflections of the light signal. We find
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that a particular anticorrelation between the main measuring
part and the switching tails plays an essential role in the
measuring process. Section IV is to clarify the origin of the
anticorrelation effect found in the preceding section and we
confirm that it indeed comes from the interplay between the
measuring part and the switching tails. In Sec. V, the case in
which the measuring time is short enough (shorter than 2z/c,
the time scale for the mutual communication between the
particle and the mirror) is considered. Section VI is for sum-
mary and several discussions.

II. SUDDEN SWITCHING AND SMOOTH SWITCHING
A. Case of sudden switching

Let us first recall the analysis of the sudden switching
case discussed in Ref. [2].

A flat, infinitely spreading mirror of perfect reflectivity is
installed at z=0 and the quantum vacuum of the electromag-
netic field is considered inside the half space z>0. Then we
consider the measurement of the quantum fluctuations of the
vacuum by using a classical charged particle with mass m
and charge e as a probe. When the velocity of the particle is
much smaller than the light velocity ¢, one can assume that

the particle couples solely with the electric field E(f ,1). Then
the equation of motion for the particle is given by

-

& -
md—l;=eE(x,t). (1)

Furthermore, when the position of the particle does not
change so much within the time scale in question, Eq. (1)
along with the initial condition v(0)=v, is approximately
solved to

5(7) = Gy + — f Té(f,t)dt. 2)
mJo

Let us note at this stage that there are two time scales char-
acterizing the present situation. One is the measuring time 7,
characterizing how long the test particle probes the vacuum
fluctuations. The other is z/c, the time scale for the signal of
the light velocity c¢ to travel between the probe particle (lo-
cated at z=z) and the plate (at z=0). (Since we set c=1 in
this paper, we often use z to indicate this time scale z/c¢ as
well as the distance between the particle and the plate.)

Now, based on Eq. (2), the velocity dispersions of the
particle, (Aviz) (i=x,y,z), can be represented by the renor-
malized two-point correlation functions (E;(x,t')E,(xX,!"))g.
[Here the suffix “R” is for “renormalized” and we also note
(E{(x,1))£=0.] Then (Av?) are given by

2 T T
<Av%>=:7 f d' f dPE(F, 1 EZ 1"))g 3)
0 0

with [4]

1

) . 1
(E(X,1)E(x,1")g = 2T

(4)
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(5)

where T:=¢'—1". (We set c=f=1 hereafter throughout the

paper.)
Now the explicit computation of Eq. (3) along with Egs.

(I) a“d (5) leSultS in 2
T 2Z 2
( T) ? (6)

e
327m?> 7 27—T

<Ex()?»t,)Ex()a t”)>R = <EV\'(£’t,)Ey(-f’ lJ’))R =

(Av2)y =

2 2
N . € T 27+ 7') B 7
(Bvg ={Aoy) ﬂ2m2{ 642’ m( 2z-7)  8Z(rF-47) }
(7)

irrespective of whether 7>2z or 7<<2z. Here we note that a
regularization using the generalized principal value [5] is
employed in Ref. [2] to get these results when 7>2z. We
introduce a special equality symbol “="[e.g., in Egs. (6) and
(7)] and an estimation symbol “~” [e.g., in Egs. (8) and (9)
below] to remind us that a regularization should be employed
to get the result when the integral is a multi-pole integral.
Indeed the kernel (E;(x,t')E;(x,t"))x possesses a double pole
and a triple pole for i=z and i=x,y, respectively, at T=2z.
Thus a regularization should be employed when 7>2z.

Now the results Eqgs. (6) and (7) yield the asymptotic
late-time behavior

62
(Av?) =~ I o((z/7?), (8)
(Av?y=(Av2) =~ - e +0((z/D)?%) 9)
O s '

Equation (8) indicates that (Avf} remains finite even in the
late-time limit, T/z— 0. It would mean that an energy of the
order of %m(Av?) is gained during this process.

Reference [2] interpreted this asymptotic behavior of
(Avf) in Eq. (8) as a transient effect caused by some energy
change due to the “sudden switching.” Indeed, the formula
Eq. (3) corresponds to the measuring process with sudden
switching in which the measuring device is abruptly
switched on and switched off at the time 0 and 7, respec-
tively. From the viewpoint of the switching function, this
measuring process is represented by a step function

O =1 (for0<t<r)
=0 (otherwise). (10)

It consists of the measuring part of the duration 7 and infi-
nitely steep switching tails. If the behavior could be inter-
preted as the transient effect during the switching process,
then it is expected to see more or less similar behavior even
when a different switching process is chosen other than sud-
den switching. Let us study this point next.
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B. Case of smooth switching

We now replace O(r) [Eq. (10)] with the Lorentzian func-
tion as a typical smooth switching function. The Lorentzian
function with the characteristic time scale 7 is

1 7
fT(t)=;—t2+72, (11)

normalized as

fwﬂmm=r

Instead of Eq. (3), velocity dispersions are given by

2 (o Y
W= 5 [ ar | ar por B OEG

(12)

The function f(zr) represents solely smooth switching tails
without any flat measuring part. In this case, the model is
characterized by two time scales, i.e., the switching-duration
time 7 and the traveling time z of the light signal from the
test particle to the plate.

If the asymptotic behavior [Eq. (8)] is due to the transient
effect caused by energy input during the switching process,
then a similar kind of behavior is expected for Eq. (12). It
turns out, however, these integrals are shown to be

5 &> 1
Qv = 167m>7 2\ (13)
[1+5)
22
2 1- ?
Wod=@o) = -1 (14)
[1+5)

Thus we see that (i) the short time behavior of (Av?) (7
<27) is the same,

2

7,2
(15)

for both the step-function case and the Lorentzian switching
case. (ii) However, the long time behavior (7>2z) of the z
component is quite different. For the Lorentzian switching
case, it turns out that

(Av?) ~ ((Avd) = (Av})) ~

2

o ¢
Q) = Tomm??

+0((ZnY), (16)

eZ
16w mP P

Thus the late-time behavior of (Avf) in the Lorentzian
switching case is quite different from the step-function case
[Eq. (8)]; as 7/z— 0, the former goes away while the latter

(Av)) =(Av)) = +0(ZDY.  (17)
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FIG. 1. Typical example of the Lorentz-plateau function.

remains finite independently of 7. The qualitatively different
late-time behavior of <Av§> shown in Eq. (8) and Eq. (16) is
quite puzzling. The former depends on z, an intrinsic scale of
the system, and remains even at late time, while the latter
does not depend on z and goes away at late time.

It can be said that both the switching functions studied so
far are not realistic enough. On the one hand, a sudden
switching could have virtually picked up the contribution
from the highly fluctuating vacuum, which might have been
forbidden by the uncertainty principle. On the other hand, the
pure Lorentzian switching model we have just investigated
lacks a plateau of the measuring part, which is not realistic
either. In a proper measurement, the measuring time scale 7
should be large enough compared to z, the intrinsic scale of
the system, so that the measuring function is regarded as
nearly flat except for the switching ends.

We shall introduce a switching function which blends
smoothly the step function and the Lorentzian tails of arbi-
trary duration in the arbitrary ratio. In the next few sections,
we shall construct such a generalized model and investigate
it in detail.

II1. ANALYSIS OF THE VELOCITY FLUCTUATIONS OF A
PROBE PARTICLE WITH A LORENTZ-PLATEAU
SWITCHING FUNCTION

Here we undertake the reanalysis of the model introduced
above with a more realistic switching function. We start with
constructing a reasonable switching function.

A. Lorentz-plateau switching function

We here construct a switching function which is charac-
terized by a stable measuring part (of a time scale 7;) and
two switching tails describing the turn-on and the turn-off
processes (of a total time scale 7,). This “Lorentz-plateau”
function F,,(1) is a blend of a plateau part and the Lorentz
function (see Fig. 1), characterized by two parameters 7 and
m and defined as

F (=1 (for|f|<72)

u?

=————— (for |t| > 7/2). 18
(tl/ 7= 172)* + u? (for |1 > 7/2) (18)

Its flat part (corresponding to the main measuring period) is
matched to two tail parts (corresponding to switching tails)
each of which is half of the Lorentzian function. The
smoothness of the matching (C' class) is enough for our
analysis since partial integrals are not included in our analy-
sis scheme. (If one wishes, however, one may anytime
modify F,, to a smoother one.) The time scale characterizing
the measuring-part is 7:= 71|, while 7,:=mu7 characterizes
the time scale of the switching tails:
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72
f F(dt=1=m1,
-2

2f F (t)dt = mur=:1,. (19)
72

Thus the parameter

M= (20)
T

is the switching-duration parameter which characterizes the
switching duration relative to the main measuring time scale.
In this general setting, the situation described by Eq. (3) (as
considered in Ref. [2]) corresponds to the limit — 0 with a
fixed 7. Let us call this limiting situation the sudden-
switching limit, for brevity. On the other hand, the situation
described by Eq. (12) corresponds to the limit g— o with a
fixed 7, (i.e., 77— 0 with a fixed 7,), which we shall call the
Lorentzian limit. In most parts of the analysis below, it suf-
fices to assume w to be less than 1. (However, the case u

> 1 is also considered when necessary.)
In view of Egs. (3) and (12) along with Egs. (4) and (5),

what we need to estimate is of the form

I= f dt’ f ar'F ., (t"F ("K' —1"), (21)

where K is an even function of 7:=¢'—¢" with an appropriate
asymptotic behavior as |T|—o. General properties of the
integral Eq. (21) are analyzed in Appendix A.

Introducing dimension-free variables x:=(t'—¢")/7 and y
:=('+1")/ 7, Eq. (21) becomes

I= gﬁ) dxf_: dy FTM<§(J£ + y))FT,L(g(y —x)>’C(WC)~

(22)

Now the kernel K is essentially a two-point time-correlation
function, so that the integral region for Eq. (22) is naturally
divided into four classes of subregions: M, S;, S,, and MS
(“M” and “S” are for “measuring” and “‘switching,” respec-
tively). Namely the class M comes from the two-point cor-
relation solely within the measuring part (|f| < 7/2), the class
S, from the one within the same switching tail (either
t>17/2 or t<-71/2), the class S, from the one between dif-
ferent switching tails (> 7/2 and t<<—7/2) and finally the
class MS from the two-point correlation between the measur-
ing part (|f/<7/2) and the switching tails (|t|>7/2). (See
Appendix A for computational details.)

B. Estimation of velocity dispersions using the Lorentz-plateau
switching function

Having prepared a reasonable switching function, we now
estimate the velocity dispersions of a probe particle near a
perfectly reflecting plate.

First let us note that the model to be analyzed is now
characterized by three time scales rather than two, i.e., the
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measuring time 7= 7, the switching-duration time 7, and the
traveling time z of the light signal from the test particle to the
plate.

Let us focus on (Avf). We can make use of general for-
mulas given in Appendix A. Comparing Eq. (4) with Eq.
(21), we can set

K(T) = ¢ 1 e 11
TP [P - (22 w7 (3 - a))?
et 1 1

T @ (P - o))

Here several variables and parameters are introduced for
simplicity,

T:=t' -1, x:=T1, x:=xlu,

oy :=27/7,  0y:=27/(ur) = o)/, (23)

while 7= 7, and 7, are given in Eq. (19) and w is given in Eq.

(20).
Then Eq. (AS5) in Appendix A gives the formula for (Av?),

N 267 fl 1-x
<AUZ>_—772m272 . dx—(xz_o_%)2
4¢? “d 1 4¢?
"t )y Mo aoe -y et P

* 1 1
d _ F
Xfo X{ -2 {xr UnP- 05}2} )
= (Av2)y + (Av2)g + (Av2) s, (24)

where F(y) is given by Eq. (A6).

Let us investigate three terms (Avf)M, (Avf)s, and
(Avf)MS in Eq. (24) in more detail.

We now focus on the case 7> 2z since our main interest is
in the late-time behavior of the vacuum fluctuations. (The
case 7<2z shall be treated separately in Sec. V.) In this case,
all of the three integrals in Eq. (24) are singular integrals
since 0<o;<1 and o< 0o, <1/ pu<0x.

Let us first estimate the integral (Av2),,, coming from the
M region. With the help of Eq. (C2) in Appendix C, we get

2

e 1 I ( 1+ 0'1) e (25)
“In _ ;
2w m* o-? -0 ﬂlmZTZO%

2
<AU§>M =

where in the last line ;<1 (7>2z) has been assumed. We
note that (Av?),, is the contribution purely from the M re-
gion, which corresponds to the velocity dispersion in the
case of sudden switching. The above expression exactly co-
incides with the result given in Ref. [2].

By a similar prescription for the singular integral along
with Eq. (B1) in Appendix B, we can estimate the term
(Av?)g, coming from the S; and S, regions, as

022107-4



SWITCHING EFFECT ON THE QUANTUM BROWNIAN...

22 1 2
<AU§>S = %m ~ 0(’;—%)<Av§)M (for u < o)
o
~ 0<,u )(AU Yy (for uw> o). (26)

The term (Avf)MS, coming from the MS regions along
with the S| and S, regions, is estimated as follows. Noting
that 0 < F(y) < /2, it follows

(Bo?)yys = O(1)—2% f [ (27)
U, /ms = ,u27'rm272 0 (X2_0_§)2 X-

We note that the integral above is a singular one since o,
<1/, which can be treated with the help of Eq. (B1). It is
notable that, in the above computation for <Av§>MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S, region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.
The integral can be estimated as

2

22
(A5 = 0<1>2—72{ 2‘(;1/) +0(p)
M_*( [
20\1-0% 20

1+o
n ‘)} (28)
1- (o]
When o<1, it is further modified as

2 1 2uo?
(Av2)ys=0(1) §272<;—‘§‘). (29)
7Tm0'1

As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side (RHS), yielding

2ue’
(AvDys = - O(I)W ~ -

Gathering Egs. (25), (26), and (30) together, and changing
back to the variables 7;, 7, and z, we get an estimation for
the total velocity dispersion in z direction

(A2 =(Av2yy + (Avd)g + (Av2) s

s 27, )
+4(ﬂ2 2 2 -0(1)7 ( 1) Tl}<sz>M-
(31)

O(pa)(Avd)y.  (30)

~11

Thus, under the condition 7,>2z, we derive the behavior
of the velocity dispersion (Av?) as a function of the three
parameters 7, 7, and z:

(i) When 7, <2z< 7, <Av§>%<Av§>M.

(ii) When 7, ~2z<7, (Av?) =~ 3(Av2),,.
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(iii) When 2z <7, <, and 7,/ 1, =0((7,/22)?),
(Av?) = (AvD)s.
(iv) When 2z <7 <7, and 7,/ > 77/(22)%,

(v = ~of(2)(5) )b
== o(552)(3)

When the time scale 7, of the switching tails is much
shorter than the time scale 2z, the velocity dispersion (Av?)
reduces to the result of the sudden switching case given in
Ref. [2] [case (i)]. As the time scale 7, increases up to around
the time scale 2z, however, (Av?) becomes around 3/2 times
of (Av?)M [case (ii)]. It means that the contribution from the
switching tails, (Av?}s, is almost of the same order as the
contribution from the measuring part, (Av2),. Hence the
condition for the switching to be regarded as the ‘“sudden
switching” is 7, <2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time 7, increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
[Eq. (11)] at around 7, ~ O((7/22)*)7; [case (iii)]. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case (iv) shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum [see below Eq. (1)]. The latter condi-
tion can be characterized by

VI(AvDIAT < z, (32)

where AT is the time scale of the whole probing process. For
case (iv), we set AT=1, to get

7.2 (3772’/”2 2)]/3

262 (33)

71
To get an idea, let us set m to be the electron mass. Then
7,/ 7, <12.7(z/\,)*3, where \, is the Compton length of the
electron (~107'° cm). This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that (Av?)MS
becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity (Av?)MS is the combination of contributions from
the MS, S;, and S, regions (see Appendix A), it is desirable
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to pin down where the negative correlation comes from.
Here the switching function shall be modified in three
ways to find out where the negative correlation comes in.

A. Measuring part with one switching tail

We choose as a switching function,
F&()=1 (for |1 < 72)

=0 (fort> 7/2)

2

- H (forr<-12). (34
G2l o 72). (34

The above switching function is not an even function in #; it
consists of the pre-measurement tail, the main measurement
part, and a sudden switching-off.

It is easy to see that only the M region and two MS
regions (among four) contribute to the integral Eq. (21).
Thus

700 00 4 2749

1
= 272J dx(1 — x)K(mx)
0

+ 2,u,272f dx{K(urx) - K[ur(x + 1/p)]}tan™" x
0

=7 L 7). (35)

Comparing with Eq. (A5), it is notable that the behavior of
tan~!y in I(A?S is very similar to F(x) given in Eq. (A6).
Indeed both are monotonically increasing functions which
approach 0 and 77/2 as y goes to 0 and o, respectively. Thus
we notice that I< 5 is qualitatively the same as IMS up to the
numerical factor about 5 (The factor around 5 comes be-
cause the number of the MS regions is now two rather than
four). Afterward the computations go almost the same as in
Sec. III. Thus we get

<AU?>(A) ( ~ <AU§>M + %<Av§>MS>

2 2/*"62

e
- ﬂ2m2720% 3am* P

~{1— (02)}<A 2%, (36)
1

It has turned out that, thus, the negative correlation comes
from the time correlation between the measuring part and
the switching tail. The result does not change even when we

-0(1)

choose F(A )(t) F(A( f) as a switching function. It is ex-
pected that the sw1tch1ng function F’ A )(t) itself is also useful
in some applications.

For confirmation, we also consider two more modified
switching functions below.

B. Single switching tail

We choose as a switching function,

PHYSICAL REVIEW A 77, 022107 (2008)

2

FB() = B S fort<—17/2
wl) = Grrinpe e fort=-m2
=0 (otherwise). (37)

The above switching function consists only of half of the
Lorentzian function with a sudden switching-off.

Only one S, region (among the two) contributes to the
integral Eq. (21). Then we get

T
‘ 2m* 7 (o7 + 4u?)?
1 2
~ (80, (38)

Note that the above result is half of the result given in Eq

(26). There is no change even when we choose F (t)
—F(i)( t) as a switching function. Thus the correlatlons
within the same switching tail are not involved in the nega-
tive correlation effect.

C. Switching tails without the measuring part

We choose as a switching function,

FO(1)=0 (for |f| < 712)

2

=——>—— (for |t| > 72). 3
(|t|/7'—l/2)2+,ud2 (for [} > 712) (39)

The above switching function consists only of the switching
tails. Only the S; and S, regions contribute to the integral Eq.
(21).

Following the estimations in Sec. III, we easily get

4Zue?

(M) = (Avl)s + PR
where the factor Z is some numerical factor much smaller
than 1 and o;<<1 has been assumed. Thus the correlations
between the two switching tails and those within the same
switching tail do not yield negative contributions. Noting the
inequality (Av2)(©>2(Av2)P), it is seen that the correla-
tions between the two switching tails cause a small enhance-
ment of (Avf).

(40)

D. Origin of the negative correlation effect

From the results of the Secs. IV A-IV C, it is now clear
that the origin of the negative correlation effect resides in the
correlation between the measuring part and the switching
tail. Furthermore, one switching tail along with the measur-
ing part is enough to cause this effect. In this way, it is seen
that the interplay between the measuring part and the switch-
ing tail is a key to understand the measurement process of
quantum vacuum.

V. ANALYSIS FOR THE CASE 7<2z

We have mainly studied the case 7;>2z so far. In this
section, let us investigate the case 7y <2z in some detail.
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The analysis goes in a similar manner up to Eq. (24). We
note that o, >1 and

05 = o/ > max(oy, 1/u) > min(oy, 1/u) > 1

in this case. The situation now is that the measuring time
scale 7, is shorter than the intrinsic time scale 2z, and the
switching time scale 7, is even shorter than 7. Contrary to
the case o<1 (7,>2z), the first term (Avf)M in Eq. (24),
which comes purely from the M region, is now a regular
integral due to o;>1 and it exactly matches the original
result of the step-function case shown in Ref. [2] [Eq. (15)].
Physically, it corresponds to the situation in which the mea-
suring time 7 is so short that the information exchange be-
tween the mirror and the particle has not yet taken place.
Therefore it is expected that the presence of the reflecting
boundary does not play a vital role in this case. This is why
the integral for (Avg)M is regular when 7, <2z.

On the other hand, (Avf)s, which comes from the S, and
S, regions, is given by a singular integral. The appearance of
the singular integral is understood as the long-tail nature of
the Lorentzian function. Though the measuring part is too
short to cause correlations due to the reflecting boundary, the
long tails of the switching-part still pick up correlations. By
a regularization, (Avf)s is given by

,u2e2 1 ,u2e2
mza'?T2 ( 4,4L2)2 mzo"l‘a'z.
1+—
ol
Finally (Av2)s in Eq. (24), coming from the MS, S}, and

S, regions, turns out to be finite. By shifting the variable
x' = x+1/p in the second term, it can be estimated as

<AU§>S =

5 262 Ve
A ~0(1 dx,
(Av ) ys ( )WWZMZTZJO (=) X

which is a regular integral since o,>1/u. Performing the
integral, we get

2
e o +1
Av?),s ~ 0(1 ]n( )
(A0 s ( )27Tm2(7?72 o -1

e’ 1 2ue’

+0(1) ~0(1)

o’ 7 ! 1 mm*oi 7

of

It is curious that (Avf)MS does not contain any singular inte-
gral when 7<<2z although the Lorentzian switching tails take
part in (Av?) wus- The reason may be that this sector contains
the description of cancellations between the pre- and post-
measurement tails (the S, region).

Leaving only the most dominant terms, we get the esti-
mation

2

m (for oy < 1), (41)
1

(Av?) =
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2 2
go(])L

for uo; > 1), 42

where Eq. (41) comes from the M region and coincides with
Eq. (15), while Eq. (42) comes from the S, S,, and MS
regions.

VI. SUMMARY AND DISCUSSIONS

In the present paper, the effect of a switching process
upon the measurement of the Brownian motion of a charged
test particle near a perfect reflecting boundary has been in-
vestigated.

We have started with the fact that the late-time asymptotic
behavior of <Av§> does not depend on the measuring time 7
but only on the distance to the boundary, z, when sudden
switching is employed [Eq. (8)] [2]. The 7, independence
suggests that effective cancellations should be taking place
during the measuring process and, if so, the result should be
sensitive to the switching tails at the edge of the measuring
part. This is a natural reasoning considering the highly fluc-
tuating nature of the vacuum. In the measurement of a nor-
mal system, the switching effect is likely to be ignored if the
measuring time scale is much larger than the switching time
scale. When dealing with the quantum vacuum like the
present case, however, the highly fluctuating vacuum might
cause the cancellations during the main measuring process so
that the switching effect can also be an important ingredient.

Next we have proceeded to calculate the velocity disper-
sion with a Lorentzian function, which represents a pure
smooth switching-process without a flat measuring part. We
have then shown that the result is very different from the
sudden-switching case [Eq. (16)].

Finally constructing the Lorentz-plateau switching func-
tion, we have shown that the result is very sensitive to the
switching tails in probing the quantum vacuum. We have
also derived a reasonable criteria for the switching to be
regarded as “sudden” or “smooth.” Only the condition that
the switching time scale 7, is much smaller than the measur-
ing time scale 7| is not enough for the switching to be quali-
fied as “sudden.” As clarified in Sec. III [the case (i) there],
the criteria for the validity of the sudden-switching approxi-
mation should be 7,<<z as well as 7, <71, where z is inter-
preted as the traveling time of a signal from the particle to
the reflecting boundary.

The above criteria, however, may not be easy to be satis-
fied so that the sudden-switching approximation should be
taken care of with caveat when we consider an actual proce-
dure of measurement. We can imagine an example for mea-
suring (Avf) as follows. Assume a wide conducting plate of
a square shape (the edge size L) is fixed in the vacuum. For
clarity of the argument, let us introduce the standard (x,y,z)
coordinates in such a way as the plate is contained in the x-y
plane with the origin O being at the center of the plate. From
a distant point P(-A,0,z) (A>L and z<<L), a charged par-
ticle is shot parallel to the plate with an incident velocity
Uo=(v,0,0). The particle initially goes in the empty space
far away from the plate and then passes near the edge of the
plate, and finally enters into the region bounded by the plate.
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The smooth switching function discussed in the paper would
be interpreted as a mathematical description of this process
of shooting a probe from a far distance. In this situation, the
switching time scale is around z/v, and the intrinsic time
scale determined by the system configuration is z. It is obvi-
ous that the switching time scale cannot be smaller than the
intrinsic time scale z in this case, since vy<<1. This is just
one example, but it at least shows that the sudden-switching
approximation is not always valid and that we should be
more careful about the switching effect in the process of the
quantum vacuum.

In view of the above example, it might also be possible to
look at the switching function from a different angle, i.e., as
a mathematical description of what the test particle would
experience when the vacuum shifts from the Minkowski
vacuum to a Casimir-like vacuum. Based on this interpreta-
tion, it is not surprising to see (AvZ) remain constant at late
time, depending only on z for the sudden switching case. For,
it is interpreted as the sudden energy shift due to the sudden
change of vacuum state. In the case of the pure Lorentzian
switching-function, on the other hand, the corresponding in-
terpretation is that the vacuum changes smoothly from the
asymptotic Minkowski vacuum to the Casimir-like vacuum,
going back to the asymptotic Minkowski vacuum again.
Then the test particle is never stabilized in this varying
vacuum so that the result is naturally different from the sud-
den switching case. Then the setup using Lorentz-Plateau
function in this connection would be interpreted as describ-
ing a smooth transient process from the Minkowski vacuum
to the Casimir-like vacuum. Thus it is expected that the
Lorentz-Plateau function constructed in the present paper
might be very useful to analyze the situations such as a
smooth transient from one vacuum to another.

Finally it is appropriate to make some comments on the
singular integrals and their regularization procedure. Tracing
back the origin of the singular integral, it comes from the
singularity at 7=2z in the integral kernel [Eq. (23) or Eq.
(4)]. This singularity is understood as produced by the re-
flecting boundary. Due to the mirror reflections of signals
with the light velocity, the values of the electric field at the
two world points (¢',x,y,z) and (,x,y,z) are expected to
be strongly correlated when 7=¢'—1"=2z. These correlations
accumulate in the velocity fluctuations of the particle at z
when the measurement time 7 is longer than the travel time
2z for the signals. It is natural, thus, to expect that the result-
ing singular term of the form A/p (A>0 and p—0) contain
information on the reflecting boundary. However, the stan-
dard regularization procedure [5] corresponds to discarding
such a singular term in effect. It should be clarified when this
type of regularization is valid and when not.

With the above physical interpretation of the singular in-
tegrals, another natural way of regularization should be pos-
sible. It has been assumed that the probe particle and the
reflecting boundary or the mirror are treated as classical ob-
jects. However in reality they also cannot escape quantum
fluctuations. Taking into account their quantum fluctuations,
the effective path lengths of signals are not sharply defined.
It is estimated that the quantum fluctuations of the probe
particle are more significant than those of the mirror. It is
natural to assume the effective size of the particle to be of the
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FIG. 2. Illustration of four types of integral regions.

order of its Compton length A.=1/m, corresponding to set-
ting the infinitesimal parameter p to be p=\./7=1/m7. Just
for an illustration, let us consider the case of an electron
(N\,~ 1071 cm) with 7=1 usec. Then p~ 107, It turns out
that, thus, the singular terms always dominate in the velocity
fluctuations. Since the results could be drastically influenced,
it should also be clarified whether the cutoff type of regular-
ization is valid.
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APPENDIX A: GENERAL FEATURES OF THE INTEGRAL
WITH A LORENTZ-PLATEAU SWITCHING
FUNCTION

We here analyze general properties of the integral given in
Eq. (21) or Eq. (22).

We note that the x-y plane is divided into nine integral
regions by four border lines, x+y=*1 and y—x==*1, and
the nine regions are further classified into four classes, M, S|,
S, and MS, as discussed after Eq. (22). In each integral re-
gion, the y integral can be done independently of the kernel
IC, leaving the x integral. Now we shall investigate each of
four types of integral regions one by one. (See Fig. 2.)

(i) M Region. The region defined by |x+y|<1 and |x—y|
=< 1. It coincides with the sudden-switching case considered
in Ref. [2]. The integral 7™, coming from this region, is
computed as

72 0 x+1 1 —x+1
I(M)=E<f dxj dy+f dxf dy)IC(rx)
-1 —x—1 0 x-1

1
:27’2f dx(1 -=x)K(7x), (A1)
0

where the last line follows using the even function property

of IC.
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(ii) MS Regions. The four regions defined by “x+y=1
and |y-x|<1,” “lx+y|<1 and y-x=1," “x+y<-1 and
[y—x|<1,” and “|x+y|<1 and y—x<-1.” For illustration,
let us focus on the region “x+y=1 and |y—x|=<1.” The in-
tegral ZM9 coming from this region, is computed as

7_2 1 x+1 o x+1
M) = — dx dy + dx dy
2
0 —x+1 1 x-1
2
)%

K
<x+y l)2+ 2 ()
2 2) TH

X

= 47'2,u,foo dx{KC(7x) = K[x + 1)]}tan™" :C—L,
0
(A2)

where the even function property of & has been employed to
get the result. It turns out that each of the four regions yield
exactly the same contribution Z5) given by Eq. (A2).

(iii) S| Regions. The two regions defined by “x+y=1 and
y—x=1" and “x+y=<-1 and y—x=<-1.” By performing the
y integral and using the even function property of /C, it turns
out that these two regions yield the same contribution,

I(Sl)=272,u,3J dx )

0 .x2 + 4’1/2

2
X{fn—tan_li—ﬁln(l+x—2)}. (A3)
moox %

(iv) S, Regions. The two regions defined by “x+y=1 and
y—x<-1"and “x+y<-1 and y—x=1.” By performing the
y integral and using the even function property of /C, it turns
out that these two regions yield exactly the same contribu-
tion,

Klrx+1)]

x4+ 4u?

2
X {tan_1 £+&ln(1+x—2>}.
7R M

Gathering the results Egs. (A1)—(A4), we get

) = 272/1,3f dx
0

(A4)

T=TM 4 47M9) 4 27050 4 2752

K(urx)
X +4

1 o]
=21’2f dx(1 — x)K(7x) +47T/.L27'2J dx
0 0

e f At () - KLy + U ()
0
=Ty+Ts+Tys, (AS)

with
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N 1 -1 ! 2
Flx) = (1 X2+4>tan X ) In(1 + x°).
(A6)

Here a variable y:=x/u has been introduced in Zg and 7,
[see Eq. (23) for definitions of variables and parameters].
The expression Eq. (A5) reveals several general proper-
ties of the integral representation Eq. (21). First of all, the
two limiting cases of Z, u—0 and u—, can be easily
obtained [let us once again recall w is the switching-duration
parameter defined in Eq. (20)]: On the one hand, we see

1
77— IM:ZTZJ dx(1 —x)K(7x)
0

as u—0 with a fixed 7 (or equivalently 7,— 0 with a fixed
7). This limiting expression is a general formula correspond-
ing to Eq. (3), so that the sudden-switching limit (x— 0 with
a fixed 7) is well defined in general.

On the other hand, expressing Eq. (A5) in terms of 7,
instead of 7, it follows

275 f © o K(né)
I—T¢=— | dé5——
Ry i §§2+4/772
as 7—0 with a fixed 7, (or equivalently 7— 0 with a fixed
7). This limiting expression is equivalent to the result ob-
tained from Eq. (21) with F,(¢) being replaced by the fol-
lowing Lorentzian function

173
w2+ (rpfm)?

which is nothing but the limiting function of F,,(1) as 7
—0 with a fixed u (or equivalently 7— 0 with a fixed 7).
Thus the Lorentzian limit is also well-defined in general.

In this manner, the switching function F,(f) smoothly
bridges the gap between the step function and the Lorentz
function and is expected to be quite useful for investigating
various switching effects in quantum vacuum.

Next, let us assume C(7) >0 for the sake of later appli-
cation. It is easy to see that F(y) is a monotonically increas-
ing function with 7(0)=0 and lim,_,..7(x)=/2. Then one
can estimate

flt)=

1/

Tys ~ 0(1)27T/L272f dx K(ury).

0

Since Z), and 7,5 are estimated by integrals with a compact
integral region, they may or may not be singular integrals
depending on whether the pole of K(T) is included inside
their integral regions. In our model, the case 7>2z makes
them singular while the case 7<<2z nonsingular. On the other
hand, Zg is always a singular integral due to the long-tail
nature of the Lorentzian function. When integrals are singu-
lar due to the pole of the kernel K(T), some regularization
procedure can enter the analysis. The regularization em-
ployed in the present context [5] (following Ref. [2]) is in
effect to throw away an infinitely large positive terms. [See
arguments after Eq. (7).] Thus the apparent positive quantity
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can become negative after regularization. We encounter this
situation in Sec. III B. In the case discussed in Sec. III B, the
integrals Z,, and Zg remain positive, while Z,,¢ becomes
negative after regularization. What happens then is that, as
the switching time scale becomes longer, either Zg or Z,,¢
dominates depending on the choice of the time-scale param-
eters. When Z; dominates, the situation is close to the
Lorentzian smearing case [Egs. (11)-(16)]. When the nega-
tive term Zy dominates, on the other hand, the velocity dis-
persion in z direction becomes negative.

APPENDIX B: FORMULAS FOR SINGULAR INTEGRALS

Here we present the formulas for particular singular inte-
grals needed in our analysis:

. -—_ —1_§Z
o) =k | R
1_
_ 202§;+0(p) (,6€R),  (BI)
L 1-&
Z((T,f:;) = Ref U) (Z _0_2)3
3_
_ Sof:-+0(p) (0.6cR).  (B2)

Here ﬁp(o) indicates a semicircle (with an counter clock-
wise direction) in the upper plane of z with its radius being p
(>0) and its center located at z=0. More precisely, " (o)
={ze Clz=0+pe'?,0 [0, 7]} with its direction matched
with increasing 6.

We here derive only the formula Eq. (B1). One can derive
Eq. (B2) in the same manner. Now setting z=0o+pe'?, it is
straightforward to see that

A 2) = lfwwda B3
(0-5§' )__p 0 D2(0) s ( )
where  A(6):= 2o+pe ) (1-E0)e™-&p] and  D(6)

=402+ p*+40ap cos 6.

Due to the relation, cos 8={D(6)—(45>+p?)}/40p, the
imaginary part of the function A(6) can be expressed in
powers of D:

Im A(6) =-[pD(6)* - ¢gD(6) + rlsin 6,
where
_B
Py 17 502

with B:=1-¢0. Thus
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r .
pL(o,&2) = f < _D(0) D(0)2>s1n0d0
2
P
1+%_ . 92 P
=2p——1In —4<1 —)
ap P 80 407
20
252+0(p2) (B4)

yielding the formula Eq. (B1).

We note that the results remaln the same even when
M,(0) is replaced by {,, (@} in Egs. (B1) and (B2). Here
{f\ (0')} denotes the complex conjugate of the curve
2 (0') ie, {", ()} :={z e Clz=0+pei?,0 [0, 7]} with
its dlrectlon matched with increasing 6. This is obvious since
integrals in Egs. (B1) and (B2) are computed from the real
part of the integrands.

One can also check the above claim by the following
consideration. Let f(z) be any function which has an isolated
pole at z=0 with its residue, Res(f, o), being real. Let C, (o)
be a circle (with the counter clockwise direction) of radius p
with its center at z=0. When p is chosen to be sufficiently
small, then,

f f=f —f . =21i Res(f,0).
o) o oo

Considering the real part of this equation, we get

Ref :Ref .
(@) {0}

Thus the claim is confirmed once again by choosing f(z)

=(1-&)/(Z=0? or f(D)=(1-&2)/ (=),

APPENDIX C: ASYMPTOTIC PRINCIPAL VALUES
OF SINGULAR INTEGRALS

Here we introduce a special treatment for a singular inte-
gral, represented by a symbol ). Let f(x) be a real function
which is possibly singular at x=0. Now, for a sufficiently
small p (>0), we define

B a-p B
SO(p)f fx)dx := (J +f )f(x)dx, (C1)
A A a+p

where A <o <B. Conventionally, if the RHS of Eq. (Cl)
converges as p—0, the value of convergence is called the
principal value of the integral [f(x)dx, denoted by
p.v.Jf(x)dx. We here have generalized the concept of the
principal value and have left the positive small quantity p as
a free parameter. Let us call the above g, [f(x)dx an
asymptotic principal value of order p. Note that g, [ f(x)dx
need not necessarily converge as p—0. For neatness, we
shall write it just ¢ [ f(x)dx from now on.

We now show the following integral formula, needed in
our analysis: For 0<o<1,
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fld 1-x _L1<1+0')2 l-o 0(o)
2], M-8 \i=g) T 202 TP
(C2)

To show this formula, set f(z):=(1-z)/(z>~02)%. Circum-
venting z=o0 from above, we enclose the contour in the com-
plex plane to get

1 1+iR iR 0
pf +J +f +f +f =0.
0 ~pl0) 1 1+iR iR

Here the path ™ (o) is the same as in Appendix B; the paths
for [ }“R and [ ?R run parallel to the imaginary axis, while the
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path for [*% . runs parallel to the real axis. Taking the limit
R— o, then the real part of the above equation yields

1 i 14+
KJJ =Ref —Ref +72(0,1:2),
0 0 1

where the last term is given by Eq. (B1) with £=1. It is now
straightforward to compute the first two integrals on the
RHS, yielding the formula Eq. (C2). By the similar argu-
ments as in Appendix B, the same formula Eq. (C2) is ob-
tained even though we choose a contour circumventing z
=o from below.
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