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We use the two-atom concurrence and the visibility of interference fringes of photons to characterize a
quantum phase transition for a hybrid system consisting of an array of coupled cavities and each cavity doped
with a two-level atom. We compare them with the total excitation number fluctuation. Analytical and numerical
simulation results show quantum critical phenomena similar to the Mott insulator to superfluid transition. Here,
the contour lines of the atomic concurrence, the visibility of interference fringes of photons, and the excitation
number fluctuation in the phase diagram are consistent in the vicinity of the nonanalytic locus of the atomic
concurrence.
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I. INTRODUCTION

The concept of the local order parameter, which charac-
terizes different phases with symmetry breaking, is very cru-
cial to the modern theory of the second order phase transi-
tions. For the quantum phase transition �1�, however, the
conventional Ginzburg-Landau-Wilson paradigm does not
work well in some cases where there is no appropriate local
order parameter to correctly characterize the emergent phe-
nomena due to quantum criticality �2�.

In this paper we study the quantum phase transition for a
hybrid system consisting of a coupled waveguide resonator
array �CWRA� doped with atoms in each cavity, which has
been studied intensively �3–11�. We show that, though we
cannot make sure what is the appropriate order parameter for
the hybrid system, some physical observable quantities can
be used to witness its quantum critical phenomena. We no-
tice that this hybrid architecture has been suggested as a
quantum coherent device to transfer and store quantum in-
formation as well as to create the laserlike output �3,12,13�
and can be implemented with the defect array in the photonic
crystal by doping artificial atoms �14� or the Josephson junc-
tion array in the cavity �3�.

It was shown that such a doped CWRA can simulate the
Mott-like transition of light from “Mott insulator �MI� to
superfluid �SF�” �4� since a doped atom can induce an effec-
tive photon-photon interaction in each cavity. Together with
the intercavity hopping of localized photons, this nonlinear
photon-photon coupling can result in the Bose-Hubbard �15�
model for the Mott phase transition �16�. Here, the average
of the annihilation operator is employed as the order param-
eter while the number fluctuation is also used to probe the
quantum phase transition �17–19�. However, the study of the
quantum phase transition of light �4� in such a hybrid system
still assumes the same order parameter for photons, while a
more strict approach based on order parameter �5,6� was im-
plicitly made with respect to polaritons, the mixtures of pho-
tons and atoms.

The Bose-Hubbard model is the minimal model of
strongly interacting bosons on a lattice, and is believed to be
simulated by the cold-atom optical lattice system. However,
the doped CWRA as a hybrid system consists of two kinds of
excitations: Internal atomic excited states and photons.
Quantum phase transition from Mott insulator to superfluid
is contained within the solutions to both models of the Bose-
Hubbard and the hybrid system. The coupling between the
photons and the atom in a cavity can induce the nonlinearity
of photons. People try to seek the equivalence between such
two models. There are two mechanisms to accomplish this
task. The first one �4–7� considers a cavity array with each
one containing a single atom. In this scheme, the polariton is
treated as a boson. However, the effective repulsive strength
between polaritons is excitation number dependent. Then, in
this sense, the equivalence between two systems is qualita-
tive. The second one �8� is based on a cavity array with each
one containing an ensemble of four-level atoms. The photon
nonlinearities give rise to very pure photon-photon interac-
tions rather than polariton-polariton interactions in the first
scheme.

We focus on the observables as signatures of the quantum
phase transition �QPT� for the first scheme. The observables,
the local number fluctuation, and the visibility of interference
fringes, proposed for the QPT in the Bose-Hubbard model,
are borrowed to investigate such a hybrid system. In the
following section we shall introduce the concepts of the
atomic entanglement and the visibility of photon interfer-
ence. In Sec. III we present the model setup and the concept
of the quasiexcitation fluctuation. In Sec. IV we investigate
observable characterizations for the hybrid system. In Sec. V
the observables are computed analytically and numerically to
characterize the quantum criticality. Finally, a summary and
discussion are given in Sec. VI.

II. ATOMIC ENTANGLEMENT AND VISIBILITY
OF PHOTON INTERFERENCE

Now, we adopt some observable quantities to characterize
the critical phenomena of a hybrid system. Comparing with
the Bose-Hubbard model, the mechanism of the QPT in a
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hybrid system is a little different. In the Bose-Hubbard
model, the competition between the on-site repulsion and the
hopping integral induces the QPT. For a hybrid system, the
fundamental excitation is the polariton which is a mixed ex-
citation of the cavity QED and the atom. The statistics of the
polariton depends on the coupling strength and the detuning
between the cavity and the atom, respectively. It is natural to
employ the properties of atomic and photonic observables to
investigate the critical behavior. In fact, in two limits of
larger detuning, the polariton reduces to a pure photon �bo-
son� and an atomic excited state �hardcore boson�. This fea-
ture is the root of the QPT. Obviously, the visibility of pho-
ton interference fringes can be employed to witness the
occurrence of the superfluid. But the photon number fluctua-
tion should be replaced by the excitation number fluctuation.
On the other hand, around the critical point, the tunneling of
photons between adjacent cavities can induce an entangle-
ment of atoms when the kinetic energy of photons starts to
overcome the photon blockade. Then the entanglement of
atoms should also show a critical behavior.

To this end, we make use of two-atom entanglement �20�
from the viewpoint of quantum information, as well as the
visibility of interference fringes of photons �VIFP� �21�. As a
measure of entanglement of two two-level systems i and j,
the two-atom concurrence �TAC� is defined as

Cij = max�0, �1 − �2 − �3 − �4� �1�

in terms of the square roots ��i� ��1=max��i�� of eigenvalues
of ��ij���y � �y���ij����y � �y� �22�. Here, ��ij� is the reduced
density matrix defined for two local atoms i and j; �y is the
Pauli matrix with respect to the ground and excited states �g�i
and �e�i of the local atom. The VIFP is defined as

V =
Vmax − Vmin

Vmax + Vmin
, �2�

for characterizing the coherence of photons, where Vmax and
Vmin are the maximum and minimum of the photon number
distribution of the ground state in k space. Both Cij and V are
observables and so can act as possible candidates to deter-
mine the critical point.

In the following, we examine the excitation number fluc-
tuation �ENF� in comparison with the above-mentioned two
observable quantities, TAC and VIFP, for lattice atom-photon
hybrid systems of small size by analytical and numerical
methods, respectively. Our results reveal nontrivial connec-
tions among the three quantities in such an intriguing way:
Contour lines of three quantities in the phase diagram are
approximately consistent with each other when the nonana-
lyticity of TAC occurs. It firmly shows that such three quan-
tities are signatures for the MI to SF transition in the present
hybrid system.

III. MODEL SETUP AND THE QUASIEXCITATION
FLUCTUATION

We consider an array of N coupled cavities with each one
containing a single two-level atom �3,4,6,9,10,12,13�, which
is illustrated in Fig. 1. The model Hamiltonian

H = Hfree + Hint + Hhop �3�

is decomposed as three parts: Free Hamiltonians of light and
atom,

Hfree = �a	
i=1

N

ai
†ai + �b	

i=1

N

�e�i
e� , �4�

the cavity-mode-atom interaction,

Hint = g	
i=1

N

�ai
†�g�i
e� + H.c.� , �5�

with strength g, and the photon hopping between nearest-
neighbor �NN� defects,

Hhop = − t	
i=1

N−1

�ai
†ai+1 + H.c.� , �6�

with hopping integral constant t for the tunneling between
adjacent cavities. Here, ai

† andai are the creation and annihi-
lation operators of the photon at defect i. Obviously the total
excitation number

N̂ = 	
i=1

N

N̂i = 	
i=1

N

�ai
†ai + Si

z + 1/2� �7�

is a conserved quantity for the Hamiltonian H, i.e.,

�H,N̂� = 0, �8�

where 2Si
z�e�i= �e�i and 2Si

z�g�i=−�g�i.

It can be seen that N̂ is just the excitation number of
polaritons. It is well known that the conventional MI to SF
phase transition occurs in a Bose-Hubbard model. Here,
when the on-site repulsive interaction between bosons is
large enough in the Mott phase, the number fluctuation
would become energetically unfavorable, forcing the system
into a number state and exhibiting a vanishing particle num-
ber fluctuation. In the SF regime, bosons are delocalized with
the nonvanishing particle number fluctuation. As for the
present hybrid system, the fundamental excitations are po-
laritons �6� and the mechanism of the Mott transition is due
to the effect of photon blockade. Since the photon number is
not conserved in such a system, the photon number fluctua-
tion �ni=��ai

†ai� is not appropriate to characterize the SF
phase as that for a pure Bose-Hubbard model. This is be-
cause �ni does not vanish even in the MI regime due to the

g
ba ωωδ −=

| : 0g >
aω | : be ω>

t

FIG. 1. �Color online� Schematic setup of a cavity array with
each one containing a two-level atom. Photons of mode �a can
tunnel between adjacent cavities with the hopping integral t and
couple to the atoms with the strength g. This atom-photon lattice is
expected to simulate the Mott insulator to superfluid transition.
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coupling between photons and atoms. Hereafter, we define
the variance �A by

��A�2 = 
�A�2� − 
A�2. �9�

It is noticed that one can take the ENF per site �Ni as an
order parameter to characterize the Mott transition �5�. In the
large detuning limit �=�a−�b�0, all atoms are in excited
states, which are perfectly number squeezed states, i.e.,
�Ni=0 for all sites. In the other limit ��0, all atoms are in
ground states. Obviously the TAC vanishes and the ENF per
site becomes

�Ni = �
ai
†ai

†aiai� = ��N − 1�/N � 1 �10�

due to N=N in this case. On the other hand, the ENF in one
individual cavity can be measured via resonance fluores-
cence �5� This experimental scheme can be applied to the
current system to distinguish between the Mott insulating
and superfluid phases. In the next step, we will investigate
the ENF in comparison with other two observable quantities:
TAC and VIFP.

IV. OBSERVABLE CHARACTERIZATIONS

Intuitively, two atoms in two adjacent cavities should en-
tangle with each other due to the delocalization of photons,
which also enhances to coherence of photons. Then the ob-
servable quantities TAC and VIFP should be sensitive to the
critical point. The TAC can be expressed in terms of observ-
able quantities such as correlation functions of two atoms.
The creation and measure of an entanglement for two atoms
in separated cavities have been widely studied and regarded
as a resource for quantum-information processing �23�.

The complete basis vectors of the total system are denoted
by

��nj,sj�� = �n1, . . . ,nN;s1, . . . ,sN� = 
j=1

N

�nj� � �sj� , �11�

where �nj� is the Fock state of photons and �sj�= �g� j, �e� j for

sj =0,1, respectively. The fact that N̂ is conserved can be
reflected by the vanishing matrix element of the density op-
erator �=��H� on the above basis for any state �pure or ther-
mal equilibrium state� of the hybrid system; that is,

�nj�,sj�;nj,sj
� ��	 �nj + sj − nj� − sj��� . �12�

The reduced density matrix

��12� = Trp Tr3. . .N
s ���H�� �13�

for two atomic quasispins 1 and 2, e.g., s1 and s2, are ob-
tained as

���12��s1�s2�,s1s2
= 	

�nj;s3. . .sN�
�nj,s1s2s3. . .sN

nj,s1�s2�s3. . .sN��	 �sj − sj���

= ��s1 + s2 − s1� − s2�� 	
�nj;s3. . .sN�

�nj,s1s2s3. . .sN

nj,s1�s2�s3. . .sN

�14�

by tracing over all photon variables �with Trp� and atomic
variables except for s1 and s2.

The corresponding reduced density matrix for two atoms i
and j is of the form

��ij� =�
uij

+ 0 0 0

0 wij
1 zij

� 0

0 zij wij
2 0

0 0 0 uij
−
� , �15�

which is the same as that for a pure spin-1/2 system �24� in
the absence of photons. Using the observable quantities, the
quantum correlation

zij = 
	�Si
+Sj

−�	� ,

uij

 = 
	��1/2 
 Si

z��1/2 
 Sj
z��	� , �16�

the TAC is rewritten as a computable form

Cij = 2 max�0, �zij� − �uij
+uij

−� . �17�

The nonanalyticity of TAC arises from the abrupt switch of
the sign of quantity �zij�−�uij

+uij
− and can be used to determine

the quantum phase transition.
Similar to the transition of MI to SF in the Bose-Hubbard

model �21�, two phases of the atom-photon hybrid system
can also be delimited through the quantum coherence of the
ground state. In the MI phase, the quantum coherence of
photons is completely destroyed due to the photon blockade.
In the SF phase limit, the quantum coherence of photons gets
its maximum. Therefore, the quantum coherence of photons
can be employed to indicate phases, which is characterized
by an observable quantity VIFP �2�. In a lattice model, the
photon number distribution in k space is

V�k� =
1

N
	
j,l

eik�j−l�
aj
†al� . �18�

In the strong photon blockade limit, V=0, while in the SF
limit, V=1. Comparing with the local parameter 	= 
ai

†�
= 
ai� induced by the mean-field approach �4�, the VIFP is
more appropriate to discriminate two phases experimentally.

V. CHARACTERIZING QUANTUM CRITICALITY

For a lattice atom-photon system, we now consider con-
nections among three quantities �Ni, Cij, and V around the
critical point. It is hard to get the solution of the Hamiltonian
�3� for large N. We will investigate a minimal model which
contains the key physics of the lattice atom-photon system
and allows us to understand the character of the quantum
phase transition. The simplified Hamiltonian reads

H = Ha + Hb + H�, �19�

where

Ha = �a	
i=1

N

ai
†ai − t	

i=1

N−1

�ai
†ai+1 + H.c.� ,

Hb = �b	
i=1

N

�e�i
e� ,
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H� = g�aA
† �g�A
e� + aB

† �g�B
e� + H.c.� . �20�

Here, Ha and Hb describe two kinds of excitations, photons
and excited atoms, while H� represents the photon-atom cou-
pling only in two cavities A and B. Here the positions of A
and B are chosen arbitrarily. The purpose of this simplifica-
tion is to investigate the mechanism of creating entanglement
between two atoms in cavities A and B. In the following, we
will consider the case with N=N and small g, so that H� can
be treated as a perturbation term.

We start with the case of g=0, i.e., switching off H� first.
Since there is no coupling between photons and atoms, the
ground state of Ha+Hb is determined by the competition of
the ground state energies of Ha and Hb. In the region �
�2t, the ground state is l�e�l, where l represents each cavity
l. Such a state is an insulating state with �Ni=0, V=0, and
Cij =0. On the other hand, in the region ��2t, the ground
state is �N�k=0l�g�l, where �n�k denotes the photon Fock state
in k space. It is a superfluid state with �Ni=��N−1� /N, V
=1, and Cij =0. At line �=2t, the model admits multifold
degenerate ground states with energy �0�=N�b, which can
be expressed as

��� = �n�k=0
l=1

N

�sl� , �21�

where n+	l=1
N sl

z+N /2=N to ensure the conservation of the
excitation number and �sl�= �g�l, �e�l for sl=0,1, respectively.
Then the ENF and VIFP experience a big jump, while the
TAC is “uncertain” due to the energy-level crossing.

Next, we will consider the entanglement between two at-
oms in cavities A and B when H� is taken into account as a
perturbation term with a small g�4�2t /N2 �25�. In the re-
gion ��−2t��g, H� should not affect the ground states sig-
nificantly. Thus the TAC remains vanishing. However, when
the interaction H� is switched on at �=2t, it leads to an
avoided energy-level crossing. This fact results in a quantum
fluctuation which can drive the transition from the MI to SF
phase. This transition also corresponds to the nonvanishing
TAC. In fact, for a small g�4�2t /N2, all the unperturbed
ground states with excitation number N=N are Eq. �21�.
Among them, states

��1� = �N�k=0�g�A�g�B�GA,B� ,

��2� = �N − 1�k=0�e�A�g�B�GA,B� ,

��3� = �N − 1�k=0�g�A�e�B�GA,B� ,

��4� = �N − 2�k=0�e�A�e�B�GA,B� �22�

span an invariant subspace, in which the first-order perturba-
tive ground state can be obtained. Here state

�GA,B� = 
l�A,B

�g�l �23�

denotes the product of the ground states of all atoms except
the two in cavities A and B.

Up to the first-order perturbation we have the ground state
energy

 = �0� + �1�,

�0� = − 2t = − � ,

�1� = − g�2�1 + �2� = −
g

�
, �24�

where

� =
1

�2�1 + �2�
,

� = ��N − 1�/N . �25�

The perturbed ground state is

�	g� = ����1� + ���4�� −
1

2
���2� + ��3�� . �26�

Then the corresponding TAC between two atoms in two
cavities A and B can be calculated as

CAB =
�1 − ��2

2�1 + �2�
. �27�

Note that �	g� and CAB only depend on the size of the system
N. This is because they are just the first-order perturbation
results for the simplified Hamiltonian �19� at �=2t. Obvi-
ously, it is not true for finite g and the full Hamiltonian �3�.
This can be seen from the following numerical results for
small size systems. Nevertheless, it qualitatively indicates
that the photon-atom coupling can induce entanglement be-
tween atoms. As � is apart from the degenerate point, CAB
decreases due to the energy competition of two ground states
of Ha and Hb. Therefore, this heuristic analysis has shown a
simple relation among TAC, VIFP, and ENF around the
quantum phase transition critical point: The ENF and the
VIFP both exhibit an abrupt jump while the TAC has a sharp
maximum. It can be predicted that, as g increases, changes of
the three quantities will be slow due to the strong coupling
between atoms and photons, i.e., the abrupt jump of the ENF
and the VIFP; the pointlike shape of the TAC should be
smooth for a finite system. In the following, these will be
investigated for small systems in a wide range of parameters
by numerical simulations.

Next we investigate three quantities in small size systems
by the exact diagonalization method. For open chain cavity
array systems, the VIFP V can be calculated by

V�k� =
2

N + 1	
i,j

sin�ki�sin�kj�
ai
†aj� , �28�

where k=n� / �N+1�, n� �1,N�, while the TAC and the ENF
can be characterized as average TAC

C̄ =
1

N
	
i�j

Cij �29�

and average ENF
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�N =
1

N
	

i

�Ni. �30�

For given parameters �, t, and g, the ground state wave func-
tion of the Hamiltonian for N=2,4 can be computed by the
exact diagonalization. Then the corresponding quantities V,

C̄, and �N can be obtained. In Fig. 2, contours of three
quantities obtained by the exact diagonalization are plotted
in the � /g-t /g plane for two- �Figs. 2�a� and 2�b�� and four-
�Figs. 2�c� and 2�d�� cavity systems. Contours of the average
ENF �N �dark lines in Figs. 2�a� and 2�c�� and the VIFP V
�dark lines in Figs. 2�b� and 2�d�� are compared with the

average TAC C̄ �color maps in Figs. 2�a�–2�d�� as functions
of the scaled detuning � /g and the photon hopping integral
t /g. We see that contour lines of three quantities are consis-
tent in the vicinity of the locus at which the nonanalyticity of

C̄ occurs. The nonanalytic locus of C̄ in the � /g-t /g plane is
defined by the equation �zij�−�uij

+uij
− =0. Red lines in Figs.

2�a�–2�d� denote closer contour lines of �N and V to the

nonanalytical curve of C̄. It also shows that �N and V start

to jump at the nonanalytic locus of C̄. There is a slight dif-
ference between profiles of two- and four-cavity systems.
The red contour line of V in the four-cavity system is closer

to the nonanalytic locus of C̄ than that in the two-cavity
system. It indicates that contour lines of three quantities will

cover in the vicinity of the nonanalytic locus of C̄ in the

thermodynamics limit. Although quantum phase transitions
occur in infinite lattice systems, our results indicate that the
critical signatures of such a transition are robust and evident
even in small systems, which may create the possibility of
simulating the transition via a nanoquantum device.

The numerical results of C̄ for small systems confirm the
sketch description of the behavior of the TAC by the pertur-
bation process. In fact, in the strong photon blockade regime,
the whole ground state is a simple direct product of the po-
lariton state of each cavity. So the TAC should be zero due to
the confinement of photons in each cavity. As the kinetic
energy of photons increases, the tunneling of photons leads
to a nonzero TAC. In the deep superfluid region, the polari-
tons reduce to photons and leave all the atoms in their
ground states. Although the whole ground state is entangled,
the TAC is vanishing. Then the TAC experiences a maximum
around the critical point. In addition, results in Fig. 2 show
that the relationship among the signatures does not seem
sensitive to the size of the system.

VI. SUMMARY AND DISCUSSION

In summary, we have investigated the MI to SF transition
in a hybrid system consisting of an array of coupled cavities
doped with two-level atoms. We investigate two nonlocal
observable quantities, TAC and VIFP, in comparison with a
local order parameter, ENF, for the MI to SF transition. Nu-
merical results obtained the complete information about the
relationship among the signatures for small size systems. Al-
though these results cannot be extrapolated, they predict a
possibility of larger systems. It can be observed from ana-
lytical and numerical simulation results that the TAC and the
VIFP in the phase diagram indeed can reflect the quantum
critical phenomena signatured by the total ENF. In principle,
such nonlocal observable quantities can be used to detect the
critical point in experiments for all atom-photon systems
with strong couplings. The higher quality factor Q of the
cavity and the long coherent time of the qubit are necessary.
Many systems such as the photonic crystal �14�, the super-
conducting circuit QED �26�, etc. can be potential candidates
to demonstrate the above observations. Among them, as
pointed out by Ref. �4�, a diamond based on cavity array
with individual negatively charged nitrogen-vacancy �NV�
centers placed in each cavity is a promising hybrid system
for detecting the criticality via the observable quantities due
to its applicable nature �for a review, see �27� and references
therein�. On the other hand, signatures simulated for a small
finite number cavity array in this paper could also be ex-
ploited for quantum coherent control of on-chip devices in
quantum-information processing.
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FIG. 2. �Color online� Contours of three quantities, �N �dark

lines in �a�,�c��, V �dark lines in �b�,�d��, and C̄ �color maps in
�a�–�d��, obtained by the exact diagonalization for �a�,�b� two- and
�c�,�d� four-cavity systems. Red lines in �a�–�d� denote closer con-

tour lines of �N and V to the nonanalytical curve of C̄. It shows
that contour lines of three quantities are consistent in the vicinity of

the nonanalytic locus at which the nonanalyticity of C̄ occurs.
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