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We propose to encode quantum information in rotational excitations in a molecular ensemble. Using a
stripline cavity field for quantum-state transfer between the molecular ensemble and a Cooper-pair-box two-
level system, our proposal offers a linear scaling of the number of qubits in our register with the number of
rotationally excited states available in the molecules.
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One obstacle which transcends all implementations of a
quantum computer �1–4� concerns the extension of current
proof-of-principle operations beyond a handful of qubits. At
the heart of this obstacle lies the exponential scaling of the
Hilbert space dimension with the number of qubits. If one
chooses to work with qubits encoded in separate particles,
the available state space is exponentially large in particle
number, but selective access to individual particles and pre-
cise control of the interactions among individual quantum
particles presents a formidable challenge. This has spurred
interest in quantum systems that intrinsically support a vast
Hilbert space. Obvious candidates are molecular quantum
systems which easily provide 100 accessible internal rota-
tional and vibrational levels �5,6�. The quantum information
capacity of such systems corresponds, however, to a mere
log2�100��6 qubits, and most molecular implementations to
date have not exploited the rich internal structure, but have
focused on other advantages provided by molecular systems
such as the large intermolecular dipole-dipole coupling �7�,
switchable interactions �8�, and long coherence times �6�.
These advantages also make molecules very attractive for
hybrid quantum computing schemes involving solid-state,
optical, and molecular quantum degrees of freedom simulta-
neously. Notably, in �9�, it has been proposed to trap a me-
soscopic molecular ensemble at an antinode of the quantized
field of a stripline cavity with a Cooper-pair box �CPB�
placed at the adjacent antinode. This setup is illustrated in
Fig. 1�a�. The energy scale for the stripline cavity mode
matches typical energies for rotational excitations of polar
molecules, providing a natural interface between the cavity
and molecular degrees of freedom. The large electric-dipole
moment of polar molecules makes the strong-coupling re-
gime relatively easy to achieve while strong coupling of the
field to the CPB has been demonstrated experimentally in
�10,11�. Furthermore, by using an ensemble of N molecules
one achieves a �N enhancement of the coupling to the weak
quantum field compared to the single-molecule vacuum Rabi
frequency g. In �9�, the essential idea is to counteract the
rapid decoherence in a Cooper-pair box by transferring the
quantum state to the molecular ensemble for storage of the
qubit in a collective molecular excitation between quantum
gates.

In this paper we shall present a method for many-qubit
quantum computing with a single molecular ensemble and a
Cooper-pair box. We shall apply an ensemble of N cold polar

molecules with a ground state and K accessible excited states
as illustrated in Fig. 1�b�. The potentially available Hilbert
space for the molecular system is of dimension �K+1�N, but
by limiting ourselves to symmetric states with at most one
molecule populating each of the excited states, this is re-
duced to 2K, the Hilbert space dimension of a K-qubit regis-
ter.

We assume all molecules are initially prepared in the
ground state �0�, which is coupled to the excited states �i�
through a Raman process involving the cavity field coupling
constant g and a classical field �i�t�. Since both fields couple
symmetrically to all molecules in the ensemble, elementary
excitations produce the symmetric �Dicke� states �i�
= �1 /�N�	 j �0102¯ ij¯0N� and so forth, where the index j
runs over all molecules in the cloud. We define the collective
raising operator mi

†= �1 /�N�	 j � i� j j
0�. In the regime with
only few excited molecules, the collective operators approxi-
mately obey the bosonic commutator relation �mi ,mi

†��1
and the cloud can be treated as a collection of K uncoupled
harmonic oscillators.

The conventional approach to encoding qubits in atoms
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FIG. 1. �Color online� �a� A Cooper-pair box is strongly coupled
to a stripline cavity as realized in �10�. Additionally a cloud of cold
polar molecules interacts with the quantized cavity field. �b� Inter-
nal level scheme for a single molecule. The reservoir state �0� is
selectively coupled to each of the excited states �i� by Raman tran-
sitions. �c� Encoding of K qubits in the symmetric states of an
ensemble of N�K identical particles.
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and molecules is to encode a single qubit in a single particle
�7,12�, or in a single collective degree of freedom in an
atomic or molecular cloud �9,13�. However, as was recently
proposed in �14�, one can encode K qubits in a single cloud
of identical particles, each with K+1 accessible internal lev-
els by associating the logical register state �a1a2¯aK�
�ai=0,1� with the collective state �i�mi

†�ai �0102 . . .0N� with
ai particles populating the ith level, illustrated in Fig. 1�c�.
The permutation symmetry among particles is important,
and, for instance, the logical two-qubit state �01� is an en-
tangled state with no particles populating the excited state
�i=1� and a unit population of state �i=2� evenly distributed
over all the molecules in the ensemble, in contrast to the
conventional simple product-state encoding of the same
state. The advantage of this encoding is that it circumvents
the need for addressing of individual particles, since qubit
access is granted by selective coupling of the ground state to
one of the K excited states. The complication of the method
lies in the restriction of the dynamics to the specified state
space with at most one particle populating each of the ex-
cited states and in the operations on these states that depend
on the population of the other excited states. In �14� it was
proposed to use the Rydberg blockade mechanism for con-
trolled dynamics of neutral atomic ensembles. In this Rapid
Communication we shall describe how the cavity field and
the two-level system offered by the Cooper-pair box can be
used to achieve the same goal for polar molecules.

We now turn to the setup indicated in Fig. 1�a�. The
Cooper-pair box is a superconducting circuit with an island
onto which charge may tunnel through an insulating
barrier as described by a phenomenogical Hamiltonian,
H=−�EJ /2�	n �n�
n+1 � + �n+1�
n� �15�. Due to the quadratic
nature of the electrostatic interaction, the energy levels are
nonequidistant, and using resonant transitions only, the sys-
tem may at cryogenic temperatures be restricted to the two
lowest quantum states with corresponding raising and lower-
ing operators �+ and �−. The CPB is mounted on a super-
conducting stripline cavity which can hold a cavity field with
creation and annihilation operators c† and c with very modest
field damping �16�. The combined system CPB-cavity sys-
tem is governed by the Jaynes-Cummings-type Hamiltonian

HCPB = gc��−c† + �+c� + �CPB�t��+�−, �1�

where �CPB�t�=�CPB�t�−�c is the tunable CPB detuning with
respect to the cavity field. A number of phenomena related to
the Jaynes-Cummings Hamiltonian in quantum optics have
been observed in the CPB-cavity system �10,11�, and two-
qubit gates on two Cooper-pair boxes coupled to a single-
cavity field mode have recently been demonstrated �4�. The
molecular ensemble is addressed by a Raman transition in-
volving the cavity field and a classical field with tunable
frequency and real amplitude �i�t� �see Fig. 1�b��. In the
rotating-wave approximation after adiabatic elimination of
the excited state �e� the coupling of the cavity field to the ith
molecular qubit is described by

HM = gi�t��mic
† + mi

†c� + �i�t�mi
†mi. �2�

Here gi�t�=�i�t�g�N0 /2� is the effective coupling strength
with � the detuning with respect to the intermediate excited

state and �i�t� is the two-photon Raman detuning of level �i�;
cf. Fig. 1�b�. Coupling by higher-order Raman processes
with the cavity field and multiple classical field components
allows exploration of a wider range of molecular states for
which Eq. �2� applies with modified expressions for gi�t�.

We will now describe how quantum information can be
encoded and processed in the combined system. Initially the
molecular ensemble is prepared with all molecules in the
zero state corresponding to all qubits set to the value 0. We
now need to specify how to carry out reliable one- and two-
bit gates on the system, and specifically for the ensemble
encoding, we have to ascertain that no register state is popu-
lated by more than a single molecule. The cavity and CPB
are also prepared in their ground states, and SWAP operations
of arbitrary unknown states between any qubit component of
the molecular memory and the CPB via the cavity field, com-
bined with an arbitrary single qubit rotation of the CPB two-
level system by resonant driving with a classical field, imple-
ments this rotation on the desired single qubit of the register.
As a fully entangling two-qubit gate we propose to SWAP one
molecular ensemble qubit to the CPB and then SWAP another
molecular ensemble qubit to the cavity field. The CPB-cavity
interaction can then provide a state-dependent phase remain-
ing with the two-qubit states when they are finally returned
to the collective molecular ensemble states. Before present-
ing the details of these processes we note that the main ele-
ments of these steps are, indeed, very similar to the ideas for
quantum computing with atoms coupled via a cavity field
�17� and with trapped ions coupled to each other via their
collective motional degree of freedom �18�. But we empha-
size the significant difference that our molecules do not need
to be individually addressed and that we need to pass the
cavity excitation through the Cooper-pair box to restrict the
Hilbert space to two states per qubit degree of freedom and
to provide the interaction in the system.

The SWAP operations can be realized by adiabatically
sweeping the detunings across resonance. When transferring
a molecular state to the empty cavity the coupling gi�t� is
turned on with �i�t=0� /gi�1. As �i�t� passes through reso-
nance each basis state adiabatically evolves into the corre-
sponding dressed state:

� + ,n� = cos�	��1�m�n�c + sin�	��0�m�n + 1�c, �3�

�− ,n� = − sin�	��1�m�n�c + cos�	��0�m�n + 1�c, �4�

with tan�2	�=2gi
�n+1 /�i�t� and energies E
,n

= 1
2�i�t�


1
2
��i

2�t�+4gi
2�n+1�. Here n+1 is the number of el-

ementary excitations—i.e., n=0 for the states �0�m �1�c and
�1�m �0�c and n=1 for �1�m �1�c. As a result each state
acquires a nonlinear phase relative to the ground state of
�
,n= 1

2�0
T−�i�t����i

2�t�+4gi
2�n+1�dt. Thus the logical state

�1� acquires a phase relative to �0� while following �+ ,0�
�see Fig. 2, left panel�. When returning the state to the en-
semble the �1� component can either be made to follow
�+ ,0� �by sweeping from negative to positive detuning� or
�−,0� �by sweeping from positive to negative detuning�. By
choosing the latter option the total dynamical phase
exp�−i�0

T�E+�t�+E−�t��dt is exactly canceled for any sweep

KARL TORDRUP AND KLAUS MØLMER PHYSICAL REVIEW A 77, 020301�R� �2008�

RAPID COMMUNICATIONS

020301-2



that is antisymmetric about t=T /2. The �1� state then only
acquires a geometric phase of e−i. The effective coupling of
the ground to any particular excited states is amplified by the
number of participating molecules; i.e., it is g�N0 with N0
the number of ground-state molecules. This number has a
quantum mechanical uncertainty when some of the other ex-
cited states are in superposition states of being populated and
unpopulated. The relative variation in the coupling strength
due to this uncertainty can be suppressed by requiring
N�K, but we observe that since we accumulate opposite
phases in the two adiabatically swept passages, indicated by
the dotted�N�N0� and dashed �N�N0� curves in the figure,
the difference will effectively cancel.

The phase dynamics is most easily visualized by viewing
the dynamics as a spin-1/2 precessing about a fictitious mag-
netic field B�t�=−(gi ,0 , 1

2�i�t�). Two consecutive sweeps of
�i�t� in the same direction correspond to a 2 rotation of
B�t�, giving a geometric phase of e−i. This SWAP operation
thus incurs an extra single-qubit Z gate which must be ab-
sorbed into future operations. When transferring between the
cavity and CPB we have an always on interaction gc and two
consecutive sweeps must be in opposite directions �see
Fig. 2, right panel�. This corresponds to following the
�+ ,0� ��−,0�� state twice, and hence there is no cancellation
of the dynamical phase. However, in this case the geometric
phase vanishes since the fictitious B field traces out a path
enclosing a vanishing solid angle. The sweep may then be
chosen such that the dynamical phase becomes 0 mod 2
since there is no fluctuation in the coupling gc. For instance,
the cubic parametrization �CPB�t�=�0�2t /T−1�3 with �0

=19.24gc and T=20.77gc
−1 gives a cancellation of the dy-

namical phase. The cubic form was chosen since it is odd
about t=T /2 and offers faster implementation than a linear
chirp while remaining in the adiabatic limit.

To implement a single-qubit gate on qubit i we transfer
the molecular state to the cavity by tuning �i�t� across reso-

nance and then transfer the state to the CPB by a similar
sweep of �CPB�t�. A single-qubit gate may then be imple-
mented on the CPB using microwave pulses �19� whereafter
the state is transferred back to the ensemble via the cavity. To
implement two-qubit entangling operations we make use of
the cavity-CPB coupling described by Eq. �1�. The control
qubit is transferred to the CPB and the target qubit is subse-
quently transferred to the cavity field as described above.
From an initial detuning of �CPB /gc�1 the CPB detuning is
tuned close to resonance and back, the computational states
evolving adiabatically along the dressed states as seen in Fig.
3. In order to implement a fully entangling controlled phase
operation the functional form of �CPB�t� must be chosen such
that �
,0=0 mod 2 and �+,1= mod 2. We find that
parametrizing �CPB�t�=a�2t /T−1�2+b with a=33.05gc,
b=0.6664gc, and T=58.07 /gc produces a controlled phase
gate with near unit fidelity.

Let us now address the feasibility of our proposal with
current physical parameters. For the Cooper-pair box, the
dominant source of decoherence is second-order charge
noise, which is minimized by operation at the so-called
sweet spot, leading to dephasing times of the order
T2�1 �s �20�. By comparison the vacuum Rabi
frequency of the CPB-cavity field coupling is of the order
gc�2�50 MHz, so for single-qubit rotations on the CPB
we obtain gcT2�300; i.e., one can implement on the order of
300 CPB-cavity SWAP operations before the qubit decoheres.
The conditional phase gate we have proposed has a gate time
of T=58.07gc

−1 giving T /T2�0.1. This ratio can be improved
by more than an order of magnitude by replacing the con-
ventional CPB with a recently improved so-called transmon
design �20�, which operates in a regime where the dominant
decoherence process is relaxation with T1�16 �s. The co-
herence time of the molecular ensemble is limited mainly by
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FIG. 2. Left: in order to transfer a molecular state to the cavity
we turn on a far-detuned field with �i /gi�1 and sweep through
resonance adiabatically following the dressed state �+ ,0�. To trans-
fer the state back to the molecular ensemble the field is again turned
on at �i /gi�1, this time following the �−,0� state through reso-
nance. Phase errors due to fluctuating N0 �illustrated by the dashed
and dotted lines� are exactly canceled, leaving only a geometric
phase of e−i. Right: when transferring states between the cavity
and CPB one must follow the same path back and forth. Hence the
geometric phase vanishes. Since there is no fluctuation in the inter-
action strength gc, the dynamical phase can be tailored to 0 mod 2.
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FIG. 3. A conditional phase shift is performed by exploiting that
the dressed-state energies are nonlinear in the excitation number n.
Starting at �CPB�0� /gc�1 the CPB is tuned close to resonance
��CPB�T /2��gc� and back to end at �CPB�T� /gc�1. The functional
form of �CPB�t� is chosen such that �+,1= mod 2 while
�
,0=0 mod 2. The dashed line represents the dressed state
�−,1� which at �CPB /gc�1 corresponds to �2�c �g�CPB—i.e., a dou-
bly excited state which is not part of the computational Hilbert
space.
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the collision rate and by coupling due to the long-range
dipole-dipole interaction. In a magnetic trap, at T=1 mK the
scattering rate due to the asymptotic r−6 interaction is esti-
mated to be ��2�700 Hz �9�. In an electrostatictrap the
induced dipole moment �ind leads to an r−3 interaction, but at
T=1 mK and �ind�1 D, the above estimate for the scatter-
ing rate still holds and we conclude that the interactions
within the molecular ensemble should not significantly lower
the effective decoherence time. With photon loss rates
down to 2�10 kHz and realistic values of gi up to
2�10 MHz �9�, with current technology one could imple-
ment hundreds of gates, sufficient to provide proof of con-
cept for the present scheme and to carry out simple error
correction algorithms.

In conclusion we have described a system which with
current technology could provide quantum computation with
an appreciable number of qubits. The ensemble encoding we
have used is applicable to systems which contain a saturable
element such as the Cooper-pair box which furthermore

serves to provide an entangling conditional phase gate. The
molecular ensemble provides an efficient encoding scheme
for many easily accessible qubits and long coherence times
which may be improved even further by adopting a crystal-
line ensemble in which collisions are suppressed. If addition-
ally one chooses a trapping scheme which is independent of
the rotational state, there exist certain “magic” configurations
for which detrimental coupling to the phonon spectrum is
completely suppressed �21�. Potentially in future applications
several ensembles could be coupled to an array of Cooper-
pair boxes in several interconnected cavities, providing scal-
ability as well as the benefit of parallel processing. Further
improvements in the present work could include the applica-
tion of optimal control theory �6� to improve the gate time
for the conditional phase shift as well for the SWAP opera-
tions.
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