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What are the orbital angular momentum correlations between spatially entangled photon pairs generated in
spontaneous parametric down-conversion? We show that the answer to this question can be given in two
alternative, although complementary, ways. The answer posed in this Brief Report explains satisfactorily the
seemingly contradictory results obtained in different experiments, and theoretical approaches.
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Within the paraxial quantum optics regime, the orbital
angular momentum �OAM� provides a useful description of
the spatial degree of freedom of photons. Photons whose
spatial waveform contains an azimuthal phase dependence of
the form �exp�im��, carry an OAM of m� per photon �1�.
Photons with diverse spatial waveforms can be easily gener-
ated, detected, and controlled. Therefore the OAM offers a
physical resource to explore deeper quantum features not
present in the two-dimensional �2D� Hilbert space addressed
when using the polarization �2,3�. Indeed, it allows us to
readily tailor the number of effective dimensions of the Hil-
bert space �4�.

During the last few years, several quantum features based
on the capacity of the OAM of photons to go beyond a 2D
Hilbert space have been demonstrated �see �5� and references
inside� using spontaneous parametric down-conversion
�SPDC�. These include the demonstration of the violation of
bipartite, three-dimensional Bell inequalities �6�, the imple-
mentation of the so called quantum coin tossing protocol
with qutrits �7�, and the generation of quantum states in ul-
trahigh dimensional spaces �8�.

All of these experiments make use of the existence of
specific quantum OAM correlations between the two en-
tangled photons generated in the SPDC process. Several ex-
periments �2,9–11� seem to support the validity of the selec-
tion rule mp=m1+m2, where mp� is the OAM per photon of
the classical pump beam, and m1 and m2 are the winding
numbers of the modes into which the quantum state of the
signal and idler photons are projected, respectively. Some
other experiments �12–14�, while not directly measuring the
OAM of the down-converted photons, demonstrate the exis-
tence of ellipticity of the spatial wave form, which should
make possible the detection of photons with mp�m1+m2.
Under some restrictive conditions, the selection rule mp
=m1+m2 can be derived from first principles �4,15,16�, al-
though, as it will be shown below, the same rule addresses
different physical quantities. The presence of Poynting vec-
tor walk-off can also strongly modify OAM correlations
�17�.

All this raises the question of what are the OAM correla-

tions between the down-converted photons generated in
SPDC, i.e., under which conditions the OAM of the en-
tangled photons fulfill the selection rule mp=m1+m2. Here
we show that this question can be formulated in two comple-
mentary scenarios, so that in each scenario the sought-after
OAM correlations can be different. The existence of previous
apparently contradictory results is due to the fact that the
sought-after OAM correlations are different.

In one scenario, the spatial properties of all the pairs of
photons generated are considered, therefore the global mode
function is obtained adding coherently all such possibilities.
In another scenario, which is relevant for current experimen-
tal applications, a small section of the full down-conversion
cone is considered. Only certain probability amplitudes are
now considered. Under these conditions, the noncollinear
SPDC geometry and the presence of spatial walk-off can
greatly modify the OAM correlations observed.

We consider a nonlinear crystal of length L, illuminated
by a monochromatic laser pump beam propagating in the z
direction, with frequency �p. The spatial shape of the pump
beam at the center of the nonlinear crystal �z=L /2�, in
the transverse wave-vector domain, writes Ep

+�p̄�
=E0�p̄x+ ip̄y�mp exp�−�p̄�2w0

2 /4�, which corresponds to a
beam which carries an OAM of mp� per photon. E0 is a
normalizing constant, p̄= �p̄x , p̄y� is the transverse wave vec-
tor, and w0 is the beam width. The signal and idler photons
are assumed to be monochromatic, with �s=�i=�p /2, where
�s,i are the frequencies of the signal and idler photons. This
is justified by the use of narrow-band interference filters in
front of the detectors.

The photons are known to be generated into cones, whose
shape is determined by the phase matching conditions inside
the crystal. For the sake of clarity, let us consider first non-
critical, i.e., negligible walk-off, noncollinear SPDC in a pe-
riodically poled nonlinear crystal. The angle of the down-
conversion cone is assumed to be small, so that the
polarization �18� and refractive index do not show noticeable
changes with the direction of propagation. Similarly, the non-
linear coefficient is assumed to be constant along the down-
conversion cone.

The SPDC process can be described in the
interaction picture by an effective Hamiltonian given
by �19� HI=�0�VdV��2�Ep

+Es
−Ei

−+c.c., where Es
−�x ,z , t�*juan.perez@icfo.es
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��dKsdP exp�−iP ·x− iKsz+ i�st�a†�Ks ,P� refers to the
negative-frequency part of the signal electric field operators,
and similarly for the idler photon. The two-photon quantum
state ���, within the first order perturbation theory, can be
written as ���=�dPdQ��P ,Q�as

†�P�ai
†�Q��0,0�, where P

and Q are the transverse wave vector for the signal and the
idler, respectively, and the mode function � is given by

��P,Q� = Ep�P + Q�sinc		kL

2

 �1�

where 	k=Kp�P+Q�−Ks�P�−Ki�Q�, the wave vectors
�j=s , i , p� write Kj�P�= ��� jnj /c�2− �P�2�1/2, depends on the
modulus of the corresponding transverse wave vectors, and
nj are the corresponding refractive index. The mode function
of the biphoton in the spatial domain �x1 ,x2� is the spatial
Fourier transform of the mode function given by Eq. �1�.

We can write �P+Q�2=
s
2+
i

2+2
s
i cos��s−�i�,
where 
s= �P�, and �s=tan−1Py / Px are the modulus
and phase of the transverse wave vector P in
cylindrical coordinates. For the idler photon we have,
similarly, 
i= �Q� and �i=tan−1Qy /Qx. One can write
sinc�	kL /2�=�l=−�

� Hl�
s ,
i�exp�il��s−�i�
. Ks,i depends on
the moduli 
s,i, respectively. The pump beam can also be
written as

Ep = E0 exp�−
�
s

2 + 
i
2 + 
s
i cos��s − �i��w0

2

4
�

� �
l=0

mp 	mp

l


s

l
i
mp−l exp�il�s + i�mp − l��i
 . �2�

Therefore the mode function given by Eq. �1� can be written
as

��P,Q� = �
m=−�

�

Gm�
s,
i�exp�im�s + i�mp − m��i� . �3�

The main conclusion to be drawn from Eq. �3� is that if
polarization, refractive index, and nonlinear coefficient show
negligible azimuthal variations around the down-conversion
cone, the OAM correlations of the spatial waveform of the
biphoton state fulfill mp=m1+m2 �15�. Importantly, this re-
sult requires considering the whole spatial waveform of the
down-converted photons, i.e., the full down-conversion cone.
Notwithstanding, these are not the OAM correlations that
typical quantum information experiments based on spatial
entanglement measure. An experiment aimed at detecting the
global OAM of the down-converted photons is a significant
experimental challenge that it is yet to be solved.

All relevant experiments reported to date detect only a
small section of the full down-conversion cone. In other
words, the wave vectors of the signal and idler photons be-
long to a narrow bundle around the corresponding central
wave vectors, i.e., P=P0+	P and Q=Q0+	Q. As shown in
Fig. 1, the signal photon propagates along the direction ẑ1
with longitudinal wave vector ks�p�= ��wsns /c�2− �p�2�1/2,
and transverse wave vector p= �px , py�, so that 	Px= px and
	Py =cos 
1py −sin 
1ks. And similarly for the idler photon,
which propagates in the direction ẑ2 with longitudinal wave

vector ki�q� and transverse wave vector q, so that 	Qx=qx

and 	Qy =cos 
2qy −sin 
2ki. We restrict ourselves to the case

1=−
2=
.

The quantum state of the biphoton at z1=L /cos 
 can be
written as ���=�dpdq��p ,q�as

+�p�ai
+�q��0,0�, where the

mode function writes �20�

��p,q� = Ep�px + qx,�0�sinc	�kL

2

 �4�

where �k=kp− �ks+ki�cos 
− �py −qy�sin 
 and �0

= �py +qy�cos 
− �ks+ki�sin 
.
The mode function given by Eq. �4� shows ellipticity in

the �p ,q� domain, as has been demonstrated experimentally
�12,14�. An increasing degree of ellipticity of the spatial
mode function enhances the quantum probability
amplitude of paired photons with mp�m1+m2. To get
further insight in the nature of the OAM correlations, let us
consider that the idler photon is projected into a gaussian
mode �m2=0�, so that the quantum state of the signal
photon is described by the reduced mode function
�s�p���dq��p ,q�exp�−�q�2w1

2 /4�, where w1 is the beam
width of the idler mode at the center of the nonlinear crystal.
To elucidate the OAM content of the signal photon, one has
to project the spatial mode function into spiral harmonics
exp�im��. The weights for each m of such decomposition
gives us the sought-after OAM decomposition �3�.

Figure 2�a� shows the total weight corresponding to OAM
modes with m1�0, which is a measure of the degree of
violation of the selection rule mp=m1+m2, for different val-
ues of the noncollinear angle and the pump beam width.
Notice that the larger the noncollinear angle 
, and the
smaller the pump beam width w0, the larger is the probability
to detect signal photons with m1�0. Figures 2�b� and 2�c�
show two OAM distributions for 
=5°, one which shows an
OAM distribution with modes with m1�0, while the other
shows a single peak for m1=0.

The strength of the violation of the selection rule mp
=m1+m2 can be quantified through the noncollinear length
�17� Lnc=w0 /sin �. If the crystal length is much smaller than
the noncollinear length �L�Lnc�, the ellipticity of the mode
function is small, and thus the selection rule mp=m1+m2 is
fulfilled. This turns out to be the case of nearly all of the
experiments that make use of the OAM of photons �2,6–11�.
Typical noncollinear angles and crystal lengths used in these

FIG. 1. �Color online� Schematic diagram of a noncollinear
SPDC. �a� Top view of the noncollinear configuration. �b� The
down-conversion cone.
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experiments are 
�1–2° and L�1–5 mm. For w0
=500 �m, one obtains Lnc�15–30 mm, so that L�Lnc. On
the contrary, if L�Lnc, strong departures from the selection
rule mp=m1+m2 are expected. This is the experimental con-
figuration in �12–14�, due to the use of a highly focused
pump beam or longer crystals. For w0=90 �m and 
=2°,
one has Lnc�2.5 mm.

According to Eq. �3�, the OAM of the spatially entangled
photons fulfill the relationship mp=m1+m2, while Fig. 2
shows that strong departures from this selection rule can be
observed if highly focused pump beams, highly noncollinear
configurations, or longer nonlinear crystals are used. Actu-
ally, we are describing the same quantum process in two
complementary scenarios. Figure 2 would give us the OAM
correlations measured in typical experiments that use the
OAM as a physical resource for quantum information, thus it
is relevant for experimental configurations currently used. In
this scenario, the fulfillment of the condition mp=m1+m2
depends on the pump beam width and the noncollinear angle,
as dictated by the interplay between the noncollinear and
crystal lengths.

On the other hand, Eq. �3� corresponds to a global view of

the SPDC process, where the full down-conversion cone is
considered. The question of angular momentum conservation
balance in SPDC requires the simultaneous consideration of
the angular momentum of the electronic spins and orbitals,
the crystalline structure of the nonlinear crystal, and of the
electromagnetic field �21�. The analysis presented here might
be an important step towards clarifying how angular momen-
tum is effectively conserved, since to evaluate conservation
laws, one should take into account all probability amplitudes
that contribute to the quantum process.

Another important effect that might modify the OAM cor-
relations is the presence of Poynting vector walk-off in some,
or all, of the interacting waves. In type I and type II SPDC
configurations, some of the interacting waves are extraordi-
nary waves, thus show Poynting vector walk-off. For the
sake of simplicity, let us consider a type I configuration,
where only the pump beam presents spatial walk-off. An
initially gaussian pump beam, at each position z inside the
nonlinear crystal, can be decomposed into spiral harmonics
as

Ep�
p,z� = E0 exp�− 
p
2	w0

2

4
+ i

z

2kp
0
�

� �
n=−�

�

Jn�z
p tan 
0�exp�in�p
 , �5�

where 
0 is the spatial walk-off angle, �p is the azimuthal
angle in cylindrical coordinates and Jn are Bessel functions
of the first kind, and kp

0 is the longitudinal wave vector. As
shown in Fig. 3, the OAM distribution of the pump beam
increases its width with distance z. A gaussian beam incident
from air into the nonlinear crystal is no longer a Gaussian
beam, i.e., the pump beam is no longer a wave with mp=0.

This effect becomes noticeable only if L�Lw, where the
walk length writes Lw=w0 / tan 
0. Figure 3�a� shows the ini-
tial OAM distribution of a Gaussian beam, which corre-
sponds to a single peak with mp=0. Figures 3�b� and 3�c�
show the OAM distribution at L=5 mm for a walk-off angle
of 
0=5°. For highly focused pump beams, the walk-off
length can become smaller than the crystal length, thus the
OAM distribution no longer shows a single peak, as shown
in Fig. 3�b�. In this case, Lw�1 mm. The walk-off effect
might be negligible for larger beam widths, as one can see in
Fig. 3�c�. Now, one obtains Lw�12 mm.
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FIG. 2. �Color online� Orbital angular momentum of the signal
photon in noncollinear SPDC in a L=10 mm long PPKTP crystal.
The pump beam is Gaussian �mp=0�. Both photons traverse 2f
systems. The idler photon is detected with q=0, which corresponds
to w1→�. �a� Total weight of the OAM modes with m1�0, as a
function of the pump beam width �w0�. The label designates the
noncollinear angle. �b�, �c� OAM mode distribution for 
=5° for
two values of the pump beam width: w0=100 �m and w0

=1000 �m.
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FIG. 3. Orbital angular momentum distribution of the pump
beam in different positions inside the nonlinear crystal. �a� z=0, �b�
z=5 mm and w0=100 �m, and �c� z=5 mm and w0=1 mm. The
walk-off angle is 
0=5°.
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In the walking SPDC consider the spatial waveform of the
two-photon can be written as

��P,Q� = Ep�P + Q�sinc�	kL/2� �6�

where 	k=kp�P+Q�+ �Px+Qx�tan 
0−ks�P�−ki�Q�. The
phase matching function no longer depends on �s−�i due to
the presence of the spatial walk-off.

The mode function of the two-photon state is a coherent
sum of all the partial amplitudes due to the possible genera-
tion of a pair of photons at position z inside the crystal �22�.
Since the beam moves in the xz plane with angle 
0 when
propagating along z, the amplitude for each z shows increas-
ing ellipticity, contributing differently to the total OAM de-
composition of the spatial waveform of the two-photon state.

In conclusion, we have shown that the elucidation of the
OAM correlations of entangled photons generated in SPDC
can be addressed in two complementary scenarios, giving
correspondingly different OAM correlations between the
photons. One scenario considers the quantum amplitudes in
the whole down-conversion cone, while the other scenario,
experimentally relevant for quantum information protocols

that make use of the OAM, pays attention to a small section
of the down-conversion cone.

The results obtained here are of great importance for other
configurations where entangled paired photons are generated.
This is the case of pairs of photons generated through two-
photon Raman transitions in electromagnetic induced trans-
parency schemes �23�. Recently, the OAM correlations be-
tween stokes and antistokes photons have been measured in
trapped rubidium cold atoms in a counterpropagating nearly
collinear geometry �24�. The measured correlations comply
with the selection rule mp−mc=m1−m2, where mc refers to
the OAM per photon of a laser control beam that counter-
propagates with the pump beam. The corresponding selection
rule for counterpropagating signal and idler photons �20� in
SPDC would be mp=m1−m2. We expect that a similar ex-
periment in a highly noncollinear geometry, such as a trans-
verse emitting configuration �25�, would yield strong depar-
tures from the selection rule mp−mc=m1−m2 measured for a
nearly collinear geometry.
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