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It is theoretically shown that the spectrum of a frequency mode-locked laser with an intracavity dielectric
plate, which modulates the cavity axial mode resonances, can undergo a kind of metal-insulator transition
analogous to that encountered in the incommensurate Harper model of solid-state physics. The transition
should be observable as a rather abrupt spectral broadening of the laser emission, accompanied by a transition
from exponential to Gaussian spectral localization, as the modulation depth is increased above a threshold
value.
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Mode locking is a well-established operational regime of
a laser in which the locking of multiple cavity axial modes
using either active or passive means leads to a pulsed output
radiation �see, for instance, Refs. �1,2��. The history of laser
mode locking, as described by Haus in one of his last review
papers, is “a progression of new and better ways to generate
shorter and shorter pulses, and of improvements in the un-
derstanding of the mode-locking process” �2�. As the advent
in the past decade of mode-locking methods and systems has
largely revolutionized their applications in different fields of
physics and science, mode-locked lasers have also offered to
physicists an experimentally accessible laboratory tool to in-
vestigate complex dynamical behaviors and rather universal
physical phenomena that go beyond traditional laser physics.
For instance, detuned mode-locked lasers can show instabili-
ties and turbulent behavior similar to hydrodynamic systems
�3,4�, whereas excess noise due to non-normal mode dynam-
ics has been predicted and observed in frequency-modulation
�FM� mode-locked lasers at the transition region between the
locking and FM operational regimes �5,6�. Temporal oscilla-
tions in the spectrum of a FM mode-locked laser, which
mimic the celebrated Bloch oscillations of an electron in an
ordered crystal driven by a dc electric field, have been pre-
dicted and observed in Refs. �7,8�. Recently, elegant termo-
dynamic approaches have been proposed to explain laser
pulsation threshold in passively mode-locked lasers as a
phase transition phenomenon �11,12�. Finally, FM mode-
locked lasers with strong intracavity dispersion have been
shown to exhibit a kind of spectral localization which is
analogous to dynamic localization of the quantum kicked
rotator and related to Anderson localization �9,10�. In this
work it is shown that a FM mode-locked laser can undergo a
kind of metal-insulator transition in its spectrum, i.e., a tran-
sition from extended to localized states, which is analogous
to the metal-insulator transition encountered in disordered-
free tight-binding lattice models with an incommensurate po-
tential �see, for instance, �13��. In particular, we show that a
FM mode-locked laser in a cavity with modulated axial reso-
nances realizes an optical analogue of the celebrated Harper
model �13,14�, which originally appeared in the description
of Bloch electrons in a magnetic field. In contrast to local-
ization in other tight-binding lattice models with disorder
�Anderson model� or in the periodically kicked quantum ro-
tator model �15� mimicked by a FM mode-locked laser with
strong dispersion in previous References �9,10�, in the in-

commensurate Harper model both localized and extended
states may exist with the interesting possibility of a metal-
insulator transition as a function of the strength of the poten-
tial �13�. Realizations of the Harper model have been previ-
ously presented for microwave transmission in waveguides
with scatterers �16�, in dual-periodic dielectric multilayer
structures �17�, and in Bose-Einstein condensates in aperi-
odic optical lattices �18�.

Let us consider an optical cavity made of two flat end
mirrors containing a homogeneously broadened slow-gain
medium �such as Nd: yttrium aluminum garnet �YAG�� with
a resonance frequency �0 and a phase modulator, placed
close to one of the two end mirrors. The other mirror, which
we assume to be a perfect reflector �similar to an ideal me-
tallic mirror�, is placed in contact with a transparent dielec-
tric medium �e.g., a thick glass plate� with flat facets of
thickness d and refractive index n1, as shown in Fig. 1�a�. As
discussed below, the role of the thick dielectric medium is to
slightly modulate the spacing of the cavity axial modes from
the uniform value ��ax=�c0 /Le imposed by the optical
length Le of the resonator. To study the mode-locking pro-
cess, we adopt a standard frequency-domain description �1�

FIG. 1. �a� Schematic of the laser cavity with a thick glass plate
placed in contact with an end metallic mirror. �b� Behavior of the
phase term contribution �����, accumulated by a reflected mono-
chromatic wave after incidence at plane z=0 on the thick glass, for
n1=1.5 and n0=1. The solid curve is the exact behavior given by
Eq. �2�, whereas the dotted curve �almost overlapped with the solid
one� is its approximation given by Eq. �3�.
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in which the electric field E�z , t� in the cavity is decomposed
as a superposition of normal �axial� modes Un�z� of the cold
cavity according to E�z , t�=�nEn�t�Un�z�exp�i��0+ in�m�t�
+c.c., where �m is the modulation frequency and the com-
plex mode amplitudes En�t� vary slowly in time over a
modulation cycle. For the sake of simplicity, we assume that
the resonance frequency of one normal mode of the cavity,
corresponding to the index n=0, coincides with the reso-
nance frequency �0 of the homogeneously broadened gain
medium. Indicating by �n=�0+n��ax+��n the resonance
frequency of the nth cavity axial mode, where ��n is a small
correction to ��ax that accounts for the presence of the di-
electric plate, for a synchronous modulation �m=��ax the
coupled mode equations for the mode amplitudes En read
�see, for instance, Ref. �1��

TR
dEn

dt
= �gn − l�En + 2�i� ��n

��ax
�En + i

�

2
�En+1 + En−1� ,

�1�

where TR=2� /��ax is the cavity round-trip time, gn and l
are round-trip saturated gain and loss parameters, and � is
the modulation depth. For a homogeneously broadened gain
medium with a slow relaxation time, one can assume for gn
the Lorentzian profile gn=g / �1+ �n�m /��g�2�, where ��g is
the gain linewidth and g the saturated gain parameter.
Atomic frequency pulling effects can be accounted for, if
needed, by shifting the modulation frequency �m to match
the effective cavity length and by adding a contribution to
the frequency shift terms ��n. For a low gain g, however,
such a contribution is typically smaller than that introduced
by the dielectric plate, and it will be thus neglected in the
following analysis. In writing Eq. �1�, we also assumed that
the presence of the dielectric plate does not appreciably
modulate the coupling strength � between neighboring spec-
tral modes �19�. To calculate the shift ��n of cavity reso-
nances due to the dielectric plate, let us first notice that the
effective field reflectivity r��� at the plane z=0 of the me-
tallic mirror with the dielectric plate �see Fig. 1�a�� can be
written as r���=exp�−2in1d�� /c0�+ i�+2i������, with

����� �
�n1d

c0
− arctan	n0

n1
tan��n1d

c0
�
 , �2�

where n0=1 is the refractive index of air. For a typical value
n1�1.5 of a transparent glass, the phase term ����� enter-
ing in Eq. �2� can be very well approximated by the relation
�see Fig. 1�b��

����� �
f

2
�1 −

n0

n1
�sin�2�n1d

c0
� , �3�

where f is a numerical factor, close to 1, which depends on
the ratio n1 /n0 �for instance, f �1.2 for n1 /n0=1.5�. The
resonance frequencies of cavity axial modes are then found
by imposing that the accumulated phase in one round-trip be
an integer multiple of 2�, i.e., �n are found as the roots of
the transcendental equation

�

c0
Le − ����� + �0 = l� , �4�

where �0 is a constant phase shift ��0=0 if both mirrors are
metallic� and l is an integer number. Taking into account that
f�1−n0 /n1��2�, from Eqs. �3� and �4� it follows that the
approximate solutions to Eq. �4� are given by

�n = �0 + n��ax + ��n �5�

�n=0, ±1, ±2, . . . �, where �0 is the cavity axial frequency in
resonance with the atomic transition,

��n

��ax
= V sin�2n1d�0

c0
+ 2��n� �6�

is the normalized frequency shift of cavity resonances intro-
duced by the dielectric plate,

� �
��ax

�c0/�n1d�
=

n1d

Le
�7�

is the ratio between the free spectral range of the full cavity
and that of the dielectric plate ���1�, and

V �
f

2�
�1 −

n0

n1
� . �8�

In the case where modal gain and loss were negligible, i.e.,
for gn= l=0, the spectral eigenmodes of Eq. �1� satisfy the
Harper equation

��/2��En+1 + En−1� + 2�V sin�2��n + 	�En = 
En, �9�

where 
 is the eigenvalue and 	= �2n1d�0� /c0 an unimpor-
tant phase term. It is well known that, for an irrational value
of �, there is a metal-insulator transition at 2�V=�, with all
spectral eigenmodes extended for ��2�V and exponen-
tially localized for ��2�V, with an inverse localization
length given by �=2 ln�2�V /�� �see, for instance, �13��. In
presence of gain and losses, the eigenvalues 
 become com-
plex valued, the imaginary part of 
 being the decay rate of
the corresponding spectral eigenmode. Moreover, the spec-
tral mode extension is determined not only by the incom-
mensurate modulation ��n of cavity resonances, but also on
the gainline of the gain medium. Even though for ��2�V
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FIG. 2. Behavior of spectral variance ��n2 versus modulation
depth for V=0.4 / �2�� �solid curve� and for V=0 �dashed curve�.
The arrow in the figure indicates the metal-insulator transition point
2�V=�.
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the spectral eigenmodes will not be fully extended but spec-
trally limited owing to the finite bandwidth of the atomic
medium, a metal-insulator transition in the laser output spec-
trum is nevertheless expected to be observed. In this case,
above the metal-insulator transition point 2�V=� localiza-
tion does not lead to an exponentially decaying spectrum,
rather to a Gaussian spectral shape as in the usual FM mode-
locking regime �1�. We checked the occurrence of such a
kind of metal-insulator transition by numerically computing
the spectral eigenmode of Eq. �1� corresponding to the low-
est threshold lasing mode, which provides the shape of the
output laser spectrum observed close to threshold �20�. The
lasing threshold is attained for a gain parameter g=gth such

that the most unstable eigenmode of Eq. �1� shows a vanish-
ing imaginary part of its eigenvalue 
. As the threshold of
low-order modes is expected to slightly deviate from l, to
compute the oscillating spectral eigenmode we may assume
g� l in Eq. �1� for the saturated gain parameter. As an ex-
ample, Fig. 2 shows the numerically computed spectral vari-
ance ��n2���n− �n�2�En�2 /�n�En�2 of the laser spectrum
versus the modulation depth � for parameter values n1=1.5
�i.e., 2�V�0.4�, �=1 / �4�2�, l=0.02, ��g /�m=60, and 	
=� /2 �mod 2��. For comparison, in the figure it is also
shown the behavior of the spectral variance ��n2 versus �

for a usual FM mode-locked laser, i.e., for V=0. Note that in
this case, according to the standard Kuizenga-Siegman

FIG. 3. Spectrum �in logarit-
mic scale, left columns� and cor-
responding pulse intensity profile
�right columns� of the mode-
locked laser for increasing values
of the modulation depth � for
2�V=0.4 and 	=� /2. �a� �=0.1,
�b� �=0.2, �c� �=0.3, �d� �=0.5,
and �e� �=0.7. In the left plots of
�a�, �b�, and �c� the dashed curves
show the exponential localization
behavior predicted by the Harper
model in absence of gain and loss.
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theory of FM mode locking �21�, the spectral variance ��n2
increases monotonously with � according to the square-root
law ��n2��, without any abrupt transition. Conversely,
for V�0 a clear transition in the spectral extension, from a
strongly localized spectrum to a broad spectrum, is observed
at the transition point ��2�V, indicated by the arrow in the
figure, which is the signature of a metal-insulator transition.
For example, for a Nd:YAG laser ���g /��120 GHz�, the
parameters used in the simulations correspond to a modula-
tion frequency �m / �2���1 GHz, an optical cavity length
Le=15 cm, and a glass thickness d�11.7 mm with n1=1.5.
The behavior of the spectral variance ��n2 versus modula-
tion depth � and the onset of the metal-insulator transition
turns out to be rather insensitive to a change of the phase 	.
Figure 3 shows a few examples of spectral and temporal
laser output at a few values of the modulation depth both
below and above the transition point �=2�V. Note that for
��2�V the spectral localization is exponential, with an in-
verse decay length which is well described, at least far from
the transition, by the theoretical relation �=2 ln�2�V /��
�see Fig. 3�a��. Conversely, for ��2�V the oscillating spec-

trum, besides to be much broader, shows a typical Gaussian
�rather than exponential� localization with a modulated spec-
trum at the free-spectral range of the dielectric plate which
resembles the spectrum of a FM mode-locked laser in pres-
ence of étalon effects �see, for instance, Refs. �1,22��. How-
ever, it should be noted that the metal-insulator transition
predicted in this work is related to a sinusoidal modulation of
the cavity axial mode resonances, not to an effective spectral
modulation of the gainline induced by étalon effects as in
Ref. �22�, which does not lead to a metal-insulator transition.

In conclusion, in this work it has been theoretically shown
that the spectrum of a frequency mode-locked laser contain-
ing an intracavity dielectric plate can undergo a kind of
metal-insulator transition analogous to that encountered in
the Harper model describing the localization-delocalization
transition of tight-binding incommensurate lattices. The pre-
dicted transition should be observable as an abrupt spectral
broadening and corresponding temporal narrowing of the la-
ser emission as the modulation depth is increased above a
threshold value.
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