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We describe a three-dimensional model of the magneto-optical trap �MOT� for the simplest case of �1�3�-
level atoms. The atomic density matrix equations are solved up to eighth order in the Rabi frequency and
compared with experimental observations. We propose that coherences between the excited state sublevels can
largely explain the dependence of the atomic temperature on detuning and light intensity.

DOI: 10.1103/PhysRevA.77.015405 PACS number�s�: 37.10.De, 37.10.Gh, 37.10.Vz

I. INTRODUCTION

The cooling and trapping of atoms in a magneto-optical
trap �MOT� has been studied extensively in past years �1�.
Different kinds of MOTs have found applications in optical
and microwave spectroscopy, atomic and optical physics,
and atomic clocks. More recently, MOTs for even isotopes of
alkaline-earth atoms such as 24Mg, 40Ca, 88Sr, and 174Yb
have been proposed as a promising way to develop optical
lattice clocks with an accuracy of 10−17 �2–5�.

The dipole interaction of the above atoms with the MOT
light field can be described by a �1�3�-level atomic model
with Zeeman-shifted upper-state sublevels. The first example
of this model was a one-dimensional �1D� interaction
scheme which obtained expressions for the potential depth,
the friction coefficient, and momentum diffusion coefficients
�6�. It was found that at low laser intensity the damping
coefficient in the 1D �1�3�-level interaction scheme is close
to that derived from the 1D theory of Doppler cooling for
two-level atoms �7�. Hence experimental results for laser
cooling of �1�3�-level atoms in this regime are usually com-
pared with predictions based on the 1D theory for two-level
atoms.

For an MOT operating at high laser intensity, the mea-
sured temperature of �1�3�-level atoms has been found to be
significantly higher than expected from the 1D two-level
Doppler cooling model �8–12�. Various mechanisms have
been proposed to explain the additional heating. Inelastic
collisions can induce heating, but this mechanism becomes
significant only at atomic densities higher than typical for
MOTs �13�. Another mechanism is driven by transverse spa-
tial intensity fluctuations. An investigation of a 1D configu-
ration for cooling 88Sr has shown that molasses intensity
imbalances can be the dominant cause for extra heating �14�.

However, 88Sr atoms trapped in an MOT have been mea-
sured to be at temperatures above the Doppler limit even
when intensity imbalances are largely absent �8,9�. This in-
dicates the presence of yet another mechanism for additional
heating of �1�3�-level atoms. One possible explanation con-
siders the role of coherences between the sublevels of the
excited state �15�. The quantitative contribution of these co-
herences to the atomic temperature has remained an open
question for realistic experimental schemes. The difficulty
lies in the three-dimensional �3D� complexity of the optical
processes responsible for atomic excitation in an MOT. To
our knowledge, only one ab initio 3D MOT theory for �1
�3�-level atoms has been published in the literature �16�.
The theoretical treatment in Ref. �16� is however restricted to
the case of low light intensity and does not consider coher-
ences between the upper-state sublevels. The result is an
atomic temperature that agrees with the expectation from the
1D Doppler theory for two-level atoms.

In this paper, we present a 3D model of the MOT for the
simplest nontrivial case of �1�3�-level atoms. Our theory is
a 3D extension of previous ab initio calculations for 1D laser
cooling of atoms in an MOT �17,18�. In particular, it includes
contributions from upper-state coherences to the atomic tem-
perature which become significant as the light intensity in-
creases. Section II describes our 3D MOT model for �1�3�-
level atoms. Steady-state solutions for the friction force,
diffusion coefficients, and the atomic temperature are given
in Sec. III. In Sec. IV, the results from our 3D theory for the
atomic temperature are compared with the 1D case and ex-
perimental observations. Section V concludes with a sum-
mary and discussion.

II. 3D ATOMIC MODEL

We choose a standard geometry for the magnetic field
near the center of the MOT �1�:

B = −
a

2
�xex + yey − 2zez� , �1�

where a is the magnetic field gradient at the trap center r
=0. The 3D light field consists of three pairs of counter-
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propagating circularly polarized waves. In the laboratory
frame, the total field can be written as

E = �
j=x,y,z

E�j� + E�−j�, �2�

where the electric fields of the circularly polarized waves
written in standard notation �19� are

E�j� =
1

2
E0�e−

j ei�kj−�t� − e+
j e−i�kj−�t�� ,

E�−j� =
1

2
E0�e+

j e−i�kj+�t� − e−
j ei�kj+�t�� . �3�

Each pair of the laser fields E�j�+E�−j� represents a �+−�−

field configuration, and their polarizations are defined by
spherical unit vectors.

The atomic Hamiltonian can be written as �18�

H = H0 − ��2/2M��2 − � · B − d · E , �4�

where H0 describes the internal atomic states, the second
term is the kinetic energy operator, and the last two terms
describe the dipole interaction of the atom with the magnetic
field and the light field, respectively. The atom is assumed to
have total angular momentum quantum number Fg=0 in the
ground state and Fe=1 in the excited state. The Rabi fre-
quency � is defined as

� =
�d�E0

2�3�
, �5�

where �d� is the reduced dipole matrix element for the tran-
sition between the states Fg=0 and Fe=1. The spontaneous
decay rate Wsp of the upper-state magnetic sublevels and the
detuning � of the light field are defined as

Wsp = 2� =
4�d�2�0

3

9�c3 � = � − �0, �6�

where �0 is the atomic transition frequency in the absence of
the magnetic field.

Equations �1�–�6� and a standard set of atomic density
matrix equations �19� lead to explicit equations for the den-
sity matrix elements �kl that describe the dipole interaction of
a �1�3�-level atom with a 3D light field. The kinetic equa-
tion for the Wigner function w�r ,p , t�=�gg+�−1−1+�00+�11

is derived by a standard procedure �19�.
Let us consider the atomic motion in the MOT on a spatial

scale that exceeds the optical wavelength. In this case the
kinetic equation for w=w�r ,p , t� considered to second order
in the photon momentum �k assumes the form of a Fokker-
Planck equation �19�,

�w

�t
+ v

�w

�r
= −

�

�p
�F0w� + �

j=x,y,z

�2

�pi � pj
�Dij

0 w� , �7�

where F0 is the spatially averaged radiation force and the
spatially homogeneous momentum diffusion tensor is de-
fined by Dij

0 .

III. FRICTION, DIFFUSION, AND TEMPERATURE

For negative detuning near the trap center, the velocity-
dependent force F0=F�v� reduces to the friction force

F�v� = − M	v , �8�

where M and 	 are the atomic mass and the friction coeffi-
cient, respectively. The friction force is calculated to eighth
order in the Rabi frequency �fourth order in the saturation
parameter G� to account for the multiphoton processes that
contribute to the force near zero velocity �17�. Then the fric-
tion coefficient is found to be

	 =
�k2

M

4G����/��
�1 + �2/�2�2	1 −

14G

1 + �2/�2 +
15

8

�65 − 3�2/�2�G2

�1 + �2/�2�2

−
1

8

�10434 − 905�2/�2�G3

�1 + �2/�2�3 
 , �9�

where

G =
2�2

�2 =
�d�2E0

2

6�2�2 . �10�

Next, the diagonal components of the diffusion tensor are
evaluated at the center of the trap and at zero velocity. To the
eighth order in the Rabi frequency Dii

0 =D becomes

D = 2�2k2�
G

1 + �2/�2	1 −
21

4

G

1 + �2/�2 +
93

2

G2

�1 + �2/�2�2

−
1769

4

G3

�1 + �2/�2�3
 . �11�

The atomic temperature can be estimated by applying
Eqs. �9� and �11� to the standard relation

T =
D

MkB	
, �12�

which gives an estimate for the temperature valid up to sixth
order in the Rabi frequency,

T =
��

2kB
	 �

���
+

���
�

	1 +

35G

4�1 + �2/�2�
+

�377 + 45�2/�2�G2

8�1 + �2/�2�2

+
�14571 + 475�2/�2�G3

32�1 + �2/�2�3 
 . �13�

At low saturation, the temperature is reduced to a well-
known formula initially derived for two-level atoms �19�,

T =
��

2kB
	 �

���
+

���
�

 . �14�

According to Eqs. �9�–�13�, our perturbation approach
converges for any detuning if the saturation parameter G

1, i.e., when the light field intensity is less than the satu-
ration intensity.

IV. COMPARISON WITH 1D AND EXPERIMENT

An analytical evaluation of the temperature at high inten-
sities meets considerable difficulties due to the large number
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of spatial harmonics generated by multiphoton processes.
This difficulty does not exist in the 1D model, for which the
temperature can be calculated exactly at an arbitrary intensity
of the light field. It is instructive to compare our 3D results
with those from the 1D model.

The 1D case follows directly from the density matrix
equations if one assumes that the light field consists of a
single �+−�− field configuration. The exact solution of the
density matrix equations at the trap center in a one-
dimensional field gives the friction coefficient as

	 =
�k2

M

4G����/��
�1 + �2/�2 + 2G��1 + �2/�2 + G + G2/4�

, �15�

and the diffusion coefficient at zero velocity as

D = �2k2�
2G

1 + �2/�2 + 2G
. �16�

Therefore, the atomic temperature is

T =
��

2kB

1 + �2/�2 + G + G2/4
���/�

. �17�

For sufficiently low light intensity, the temperature shown
in Eq. �17� converges to the value found in the 3D model.
When G becomes larger, the two models exhibit a difference
in temperature behavior as a function of detuning, as shown
in Fig. 1. The temperature in the 3D case grows faster as
detuning is decreased mainly because its diffusion coefficient
increases at a higher rate.

The validity of our 3D MOT theory for �1�3�-level atoms
is tested by comparing with experimental data in the pub-
lished literature that indicate an additional, previously un-
considered heating mechanism �8,9�. In these experiments,
88Sr atoms are excited in an MOT by a laser field with wave-
length �=461 nm resonant to the dipole transition 1S0− 1P1.
The radiative lifetime �=5 ns for the excited state corre-

sponds to the natural linewidth 2� /2=32 MHz. Figures 2
and 3 compare the atomic temperature data of Refs. �8,9�
with the temperature calculated from Eq. �13�.

Figure 2 shows that the theoretical dependence of the
temperature on detuning approaches the experimental data as
the perturbation series is successively expanded to higher
orders. The convergence rate of the successive theoretical
curves to the experimental data is relatively slow since the
value of G=0.64 in Fig. 2 is fairly large. The dependence of
the temperature on the saturation parameter G is shown in
Fig. 3. For G
1, successive increases in the order of the
perturbation series expansion indicate convergence of theory
to experimental data. However, our 3D MOT model breaks
down for G�1 and the convergence disappears.

FIG. 1. Atomic temperature kBT /�� as a function of detuning
�� � /� at saturation parameter G=1. The 3D case �solid line� is
calculated to third order in G; the 1D case is exact �dashed line�.

FIG. 2. Experimental dependence of atomic temperature on de-
tuning �Ref. �9�� at G=0.64 compared with 3D theoretical curves in
zero order �dotted line�, to first order �dashed line�, to second order
�dotted-dashed line�, and to third order �solid line� in G.

FIG. 3. Experimental dependence of atomic temperature on
saturation parameter G �Ref. �8�� at detuning �=−2.5� compared
with 3D theoretical curves in zero order �dotted line�, to first order
�dashed line�, to second order �dotted-dashed line�, and to third
order �solid line� in G.
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V. CONCLUSION

We have developed a 3D model of the MOT for the sim-
plest case of �1�3�-level atoms and compared its predictions
with experimental observations. The model applies a pertur-
bation series expansion with respect to the saturation param-
eter G to solve a Fokker-Planck equation. The analytical
treatment takes into account the dipole interaction of the at-
oms with a 3D field, hence includes multiphoton processes
responsible for coherences between the upper-state sublev-
els. In the limit of small G, the friction force and the diffu-
sion tensor are essentially the same as those obtained from
the 1D Doppler theory for two-level atoms. But as G in-
creases, new terms due to numerous multiphoton processes

contribute to the upper-state coherences which affect the fric-
tion force, the diffusion coefficients, and thus increase the
atomic temperature.
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