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Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate exci-
tation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schrödinger equation
is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a
newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coor-
dinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agree-
ment for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For
extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions,
the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its
lattice.

DOI: 10.1103/PhysRevA.77.014701 PACS number�s�: 34.50.Fa

I. INTRODUCTION

An accurate treatment of ion-atom collisions remains a
computational challenge. From the theoretical point of view,
an exact treatment of an ion-atom collision is given through
a full solution of the time-dependent Schrödinger equation.
Since basis set expansions have their limitations, it has be-
come useful to directly represent the electronic wave func-
tion on a numerical lattice. To date such time-dependent lat-
tice methods have been applied to the one electron processes
of excitation, ionization, and charge transfer found in p+H
�1–6�, p+He �7�, p+Li �8–10�, �+H �11�, and Be4++H �12�
collisions. All these recent applications are based on repre-
senting the electronic wave function on a three-dimensional
�3D� Cartesian coordinate lattice.

The application of time-dependent lattice methods to the
study of two-electron processes in ion-atom collisions has
proved to be a major computational challenge. Recently, a
time-dependent multichannel method on a spherical coordi-
nate two-dimensional �2D� lattice was applied to study
double ionization processes in �+He collisions �13�. How-
ever, the method is limited to high projectile energies at
which all charge-transfer processes are negligible. For inter-
mediate projectile energies at which charge-transfer pro-
cesses must be included, the application of a six-dimensional
�6D� Cartesian coordinate time-dependent lattice has yet to
be attempted due to its computational size.

In this paper, we reexamine the use of a cylindrical coor-
dinate time-dependent lattice method to study the one-
electron process of excitation in p+H collisions. Our formu-
lation of the cylindrical coordinate time-dependent lattice
method is based on solution in a target frame of reference, as
opposed to earlier pioneering work �14� based on solution in
a center of mass frame of reference. For identical grid size
and spacing, we compare Cartesian and cylindrical coordi-
nate time-dependent lattice calculations for excitation prob-
abilities and cross sections in p+H collisions at 40 keV in-

cident energy. Our main goal is to check whether the
cylindrical coordinate time-dependent 2D lattice calculations
with a small number of coupled channels are in reasonable
agreement with the Cartesian coordinate 3D lattice calcula-
tions. Reasonable agreement would give promise for the for-
mulation and application of a cylindrical coordinate method
on a coupled four-dimensional �4D� lattice to address the full
range of two-electron processes in ion-atom collisions. The
time-dependent lattice methods are presented in Sec. II, the
results for excitation from the 1s ground state to the 2s, 2p,
3s, 3p, and 3d excited states in p+H collisions are presented
and discussed in Sec. III, and a brief summary is found in
Sec. IV. Atomic units are used throughout unless otherwise
indicated.

II. THEORY

The time-dependent Schrödinger equation for a bare ion
projectile colliding with a hydrogenic target atom is given by

i
���r�e,t�

�t
= �−

1

2
�2 −

Zt

�r�e�
−

Zp

�r�e − r�p�t�����r�e,t� , �1�

where Zt is the target atom nuclear charge, r�e is the target
electron position vector, Zp is the projectile ion nuclear
charge, and r�p�t� is the projectile ion position vector.

The total electronic wave function may be directly ex-
pressed in Cartesian coordinates as follows:

��r�e,t� = P�x,y,z,t� . �2�

The resulting time-dependent single-channel equation is
given by �1�

i
�P�x,y,z,t�

�t
= T�x,y,z�P�x,y,z,t� + V�x,y,z,t�P�x,y,z,t� ,

�3�

where
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T�x,y,z� = K�x,y,z� −
Zt

�x2 + y2 + z2
, �4�

K�x ,y ,z� is the kinetic energy operator, and

V�x,y,z,t� = −
Zp

��x − b�2 + y2 + �z − �z0 + vt��2
. �5�

The projectile follows a straight-line trajectory given by

r�p�t� = �b,0,z0 + vt� , �6�

where b is the impact parameter, z0�0 is the starting posi-
tion, and v is the velocity.

We solve the time-dependent single-channel equation in
Cartesian coordinates using lattice techniques to obtain a dis-
crete representation of the wave function P�x ,y ,z , t� and all
associated operators on a three-dimensional uniform grid
�xi ,yi ,zk� �1�. The lowest order finite difference representa-
tion of the kinetic energy operator is given by
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�7�

The total electronic wave function may also be expressed
in cylindrical coordinates and expanded in rotational func-
tions as follows:

��r�e,t� = 	
m

Pm��,z,t�
��

�m��� , �8�

where �m���= eim�

�2�
. The resulting time-dependent multichan-

nel equation is given by
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K�� ,z� is the kinetic energy operator, and

Vm,m���,z,t� = − Zp	
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For the straight-line trajectory of Eq. �6�, re=��2+z2,

cos��e�= z
re

, rp=�b2+ �z0+vt�2, cos��p�=
�z0+vt�

rp
, and

P	
�q��cos���� is an associated Legendre function.

We solve the time-dependent multichannel equations in
cylindrical coordinates using lattice techniques to obtain a

discrete representation of the wave functions Pm�� ,z , t� and
all associated operators on a two-dimensional uniform grid.
The lowest order finite difference representation of the ki-
netic energy operator is given by

Ki,jPi,j�t� = −
1

2
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where ci
+=

�i+�1/2�

��i�i+1
and ci

−=
�i−�1/2�

��i�i−1
.

For both the Cartesian and cylindrical coordinate meth-
ods, a complete set of bound and continuum states for the
hydrogenic target atom may be obtained by diagonalizing the
Hamiltonian: either T�x ,y ,z� or Tm�� ,z� for each m. Alterna-
tively, the lowest energy bound states for the hydrogenic
target atom may be found by relaxation of the time-
dependent Schrödinger equation for the atom in imaginary
time. Schmidt orthogonalization at every time step prevents
collapse of excited bound states to lower energy states of the
same symmetry.

With the initial condition

P�x,y,z,t = 0� = P1s0�x,y,z� , �13�

or

Pm��,z,t = 0� = P1s0��,z��0���m,0, �14�

the time-dependent equations are propagated forward in time
using an explicit algorithm given by

P�t + �t� = − 2i�tH�t�P�t� + P�t − �t� , �15�

where H�t� is the full time-dependent Hamiltonian. Follow-
ing the time propagation of the projectile past the target,
excitation probabilities for a given projectile velocity and
impact parameter are given by

Pnlm�v,b� = 
� dr�e�nlm
* �r�e���r�e,t → ��
2

, �16�

while excitation cross sections for a given projectile velocity
are given by

�nlm�v� = 2��
0

�

bdbPnlm�v,b� . �17�

III. RESULTS

The Cartesian coordinate single-channel calculations for
proton-impact excitation of hydrogen employ a �nx=320,
ny =160,nz=320� point lattice. The x and z coordinates from
−32.0 to +32.0 are spanned by a uniform mesh spacing of
�x=�z=0.2 and the y coordinate from 0.0 to 32.0 is spanned
by a uniform mesh spacing of �y=0.2. Each coordinate
mesh is partitioned over Nc parallel processors. After each
time step the wave function at the initial and final points of
the partitioned coordinate mesh is passed to its nearest neigh-
bor processor so that the second derivative in the kinetic
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energy may be calculated. In addition, each time-dependent
calculation is further partitioned over each impact parameter
needed to calculate the cross section. Thus, the total number
of parallel processors needed for a given incident energy is
Nc

3Nb, where Nb is the number of impact parameters.
The proton projectile begins its journey towards the

hydrogen atom in its ground state at an initial position of
z0=−16.0. The time-dependent single-channel equation
�Eq. �3�� is propagated so that the projectile reaches a final
position of z= +47.5. Spurious wave reflection at the lattice
boundary is eliminated through the use of exponential
masking. For an incident energy of 40 keV, the 1s→2p and
1s→3d excitation probabilities as a function of impact pa-
rameter b are shown as the solid lines in Figs. 1 and 2.
Excitation cross sections from the 1s ground state to the
2s, 2p, 3s, 3p, and 3d excited states are presented in row 6 of
Table I. The Cartesian coordinate single-channel excitation
cross sections at 40 keV incident energy found in Table I
agree reasonably well with previous single center—atomic

orbital close coupling �SC-AOCC� �15�, two center—atomic
orbital close coupling �TC-AOCC� �16�, lattice time-
dependent Schrödinger equation—finite difference �LTDSE-
FD� �1�, lattice time-dependent Schrödinger equation—
Fourier collocation �LTDSE-FC� �3�, and two center
momentum space discretization �TCMSD� �17� results.

The cylindrical coordinate multichannel calculations for
proton-impact excitation of hydrogen employ a �n�=160,
nz=320� point lattice. The � coordinate from 0.0 to 32.0 is
spanned by a uniform mesh spacing of ��=0.2 and the z
coordinate from −32.0 to +32.0 is spanned by a uniform
mesh spacing of �z=0. The calculations are again parti-
tioned over each coordinate and impact parameter. The total
number of parallel processors needed for a given incident
energy is Nc

2Nb.
The proton projectile is again propagated from z0=−16.0

to z= +47.5. For an incident energy of 40 keV, the 1s→2p
and 1s→3d excitation probabilities as a function of impact
parameter b are shown as the dashed lines in Figs. 1 and 2.
The short-dashed lines in Figs. 1 and 2 are from cylindrical
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FIG. 2. Proton-impact 1s→3d excitation of hydrogen at 40 keV
incident energy. Solid curve: Cartesian coordinate single-channel
method. Short-dashed curve: cylindrical coordinate single-channel
�	max=3� method. Long-dashed curve: cylindrical coordinate five-
channel �	max=3� method �impact parameter in atomic units�.
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FIG. 1. Proton-impact 1s→2p excitation of hydrogen at 40 keV
incident energy. Solid curve: Cartesian coordinate single-channel
method. Short-dashed curve: cylindrical coordinate single-channel
�	max=3� method. Long-dashed curve: cylindrical coordinate five-
channel �	max=3� method �impact parameter in atomic units�.

TABLE I. Proton-impact excitation of hydrogen at 40 keV incident energy. Cross sections in units of
1.0�10−18 cm2. �cc: coupled channels.�

Method 1s→2s 1s→2p 1s→3s 1s→3p 1s→3d

SC-AOCC �15� 17.7 68.7 3.9 10.9 3.3

TC-AOCC �16� 17.4 72.0 3.8 12.0 3.4

LTDSE-FD �1� 16.1 76.2 3.5 12.6 4.9

LTDSE-FC �3� 18.5 80.0 3.4 10.5 4.1

TCMSD �17� 15.7 62.7

Cartesian 16.3 72.4 3.8 12.2 4.5

Cylindrical 1 cc �	max=3� 20.2 28.2 6.9 4.2 1.0

Cylindrical 5 cc �	max=3� 18.0 72.6 5.3 16.1 4.6

Cylindrical 5 cc �	max=4� 16.4 70.8 4.7 15.4 4.6

Cylindrical 5 cc �	max=5� 16.0 70.5 4.6 15.4 4.7
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coordinate single-channel calculations with m=0 only in Eq.
�9�. The time-dependent interaction operator of Eq. �11� in-
cludes monopole, dipole, quadrupole, and octopole terms,
i.e., 	max=3. The long-dashed lines in Figs. 1 and 2 are from
cylindrical coordinate five-channel calculations with m
=0,1 ,−1 ,2 ,−2 in Eq. �9� and 	max=3 in Eq. �11�. The Car-
tesian coordinate single-channel and cylindrical coordinate
five-channel �	max=3� calculations are in good agreement for
all impact parameters, except those close to zero. Since the
cross sections are proportional to the impact parameter times
the probability in Eq. �17�, the discrepancies at small impact
parameters have a minimal effect on the agreement between
cross sections. Additional cylindrical coordinate five-channel
calculations with 	max=4 and 	max=5 were also carried out.
Excitation cross sections from the 1s ground state to the 2s,
2p, 3s, 3p, and 3d excited states are presented in rows 7–10
of Table I. The Cartesian coordinate single-channel and cy-
lindrical coordinate five-channel calculations are found to be
in reasonable agreement for all transitions.

IV. SUMMARY

Time-dependent lattice methods were applied to calculate
excitation cross sections for p+H collisions at 40 keV inci-

dent energy. The time-dependent Schrödinger equation was
solved using both a previously formulated Cartesian coordi-
nate 3D lattice method and a newly formulated cylindrical
coordinate coupled 2D lattice method. Calculations using
both methods were found to be in reasonable agreement for
excitation cross sections from the 1s ground state to the 2s,
2p, 3s, 3p, and 3d excited states.

Based on our excitation calculations, the cylindrical coor-
dinate method on a coupled 2D lattice appears promising for
accurately describing heavy particle collisions with atoms
involving other one-electron processes. Our next step is to
develop the computational tools needed to extract single
charge-transfer cross sections using the cylindrical coordi-
nate method. If all goes well, an extension of the cylindrical
coordinate method from a coupled 2D lattice to a coupled 4D
lattice could then be made for accurately describing heavy
particle collisions with atoms involving fully correlated two-
electron dynamics.
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