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In this paper, we introduce a transformation operator expression to give a criterion for faithful teleportation
of an arbitrary two-qubit state via a four-qubit entangled state. The general relation between the transformation
operator and the SLOCC invariant of quantum channel is obtained and its applicability is illuminated by some
known examples for the measurement in the Bell basis.
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Quantum teleportation is a prime example of a quantum-
information processing task, where an unknown state can be
perfectly transported from one place to another by using pre-
viously shared entanglement and classical communication
between the sender and the receiver. Since the introduction
of quantum teleportation protocol by Bennett �1�, research on
quantum teleportation has been attracting much attention
both in theoretical and experimental aspects in recent years
due to its significant applications in quantum calculation and
quantum communication. A number of experimental imple-
mentations �2–4� of teleportation have been reported and
some schemes of quantum teleportation have also been pre-
sented �5–8�. Up to now, most complete sets of measure-
ments are of Bell state and the states of entangled channel
are reducible to a pair of Bell state. In Ref. �7� a class of
four-qubit entanglement channels �which are not reducible to
a tensor product of two Bell states� was proposed to teleport
a two-qubit state. In Ref. �8� the general form of the genuine
multipartite entanglement channels was also proposed for
faithful teleportation of an N-qubit state.

On the other hand, the entanglement is generally consid-
ered as a key resource in quantum information and compu-
tation such as teleportation, in which it is crucial to find ways
to classify and quantify the entanglement properties of quan-
tum states. Central to doing this is to know if the local in-
variant quantities can be employed to characterize the en-
tanglement. Numerous researchers have investigated the
equivalent classes of three-qubit states specified by SLOCC
�stochastic local operations and classical communication�
�9–14�, but the relation of the SLOCC invariant and the
quantum channel in teleportation has not been represented.
One of the most important practical features of entanglement
is the teleportation capability. We propose in this paper a
criterion for faithful teleportation of an arbitrary two-qubit
state via the transformation operator �15,16� and analyze the
relation between the determinant of transformation operators
and the SLOCC transformation invariant.

Suppose that the sender Alice has two particles 1 and 2 in
an unknown state:

���12 = �x0�00� + x1�01� + x2�10� + x3�11��12, �1�

where x0, x1, x2, and x3 are arbitrary complex numbers, and it
is assumed that the wave function satisfies the normalization

condition �i=0
3 �xi�2=1. The entanglement channel between

Alice and Bob is a four-qubit entangled state ���3456. The
particle pairs �1, 2� and �3, 4� are in Alice’s possession, and
the other two particles �5, 6� are in Bob’s possession. The
system state of the six particles can be expressed as

���123456 = ���12 � ���3456. �2�

It is well known that a quantum state can be transferred
perfectly through a swap operator defined by �17�

P�ij� = �ji� , �3�

where

P =
1

2
�I + �� · �� � . �4�

���123456 can then be represented in the following form �17�:

���123456 = ���12 � ���3456 = P15P26���56 � ���3412

= P15P26���3412 � ���56. �5�

On the other hand, we have

���123456 = ���12 � ���3456 =
1

4�
i=1

4

�
j=1

4

�13
i �24

j �56
ij ���56, �6�

where �13
i , �24

j are Bell states, and

�mn
1 =

1
	2

��00� + �11��mn,

�mn
2 =

1
	2

��00� − �11��mn,

�mn
3 =

1
	2

��01� + �10��mn, mn = 13,24,

�mn
4 =

1
	2

��01� − �10��mn, �7�

���56 = �x0�00� + x1�01� + x2�10� + x3�11��56. �8�
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From Eqs. �5� and �6�, we obtain

�56
ij = 413��

i�24��
j�P15P26���3412. �9�

The operator �56
ij is called the “transformation operator.” The

criterion for faithfully teleporting an arbitrary two-qubit state
can be given in terms of the “transformation operator.” If �56

ij

is a unitary operator, Alice can inform Bob of two Bell state
measurement outcomes via a classical channel. According to
the outcomes received, Bob can determine the state of par-
ticles 5, 6 exactly by the inverse of the transformation opera-
tor ��56

ij �−1. Consequently, the unknown two-particle en-
tangled state is teleported perfectly, and the successful
possibilities and the fidelities both reach unity. Otherwise, if
�56

ij is not a unitary operator and the transformation operator
is reversible, Bob can introduce an auxiliary two-state par-
ticle a with the initial state �0�a and perform a collective
unitary transformation on particles 5, 6, and a as presented in
Ref. �16�. Then Bob measures the state of particle a. If the
measurement result is �0�a, the teleportation will be success-
fully realized. In contrast, the teleportation will fail if the
measured result is �1�a. Hence the probability of successful
teleportation is less than unity. If the transformation operator
is not reversible, the unknown two-particle arbitrary en-
tangled state cannot be teleported.

We assume that Alice and Bob share an arbitrary en-
tangled channel:

���3456 = �a0�0000� + a1�0001� + a2�0010� + a3�0011�

+ a4�0100� + a5�0101� + a6�0110� + a7�0111�

+ a8�1000� + a9�1001� + a10�1010� + a11�1011�

+ a12�1100� + a13�1101� + a14�1110�

+ a15�1111��3456. �10�

According to Eq. �10�,

�56
ij = 413��

i�24��
j�P15P26���3412 = 13��

i�24��
j��I + �1x�5x

+ �1y�5y + �1z�5z��I + �2x�6x + �2y�6y + �2z�6z����3412.

By using Eqs. �5� and �6�, the transformation operator �̂56
11 is

obtained:

�56
11 =

1

2
�a0�I5 + �5z��I6 + �6z� + a1�I5 + �5z���6x + �6y�

+ a2��5x + �5y��I6 + �6z� + a3��5x + �5y���6x + �6y�

+ a4��5x − �5y��I6 + �6z� + a5��5x − �5y���6x + �6y�

+ a6�I5 − �5z��I6 + �6z� + a7�I5 − �5z���6x + �6y�

+ a8�I5 + �5z���6x − �6y� + a9�I5 + �5z��I6 − �6z�

+ a10��5x + �5y���6x − �6y� + a11��5x + �5y��I6 − �6z�

+ a12��5x − �5y���6x − �6y� + a13��5x − �5y��I6 − �6z�

+ a14�I5 − �5z���6x − �6y� + a15�I5 − �5z��I6 − �6z�� ,

�11�

which can be written in matrix form:

�56
11 = 2


a0 a8 a4 a12

a1 a9 a5 a13

a2 a10 a6 a14

a3 a11 a7 a15

� . �12�

Other transformation operators �̂56
ij are given by

�̂56
ij = �̂56

11��5
i

� �6
j � , �13�

where �̂m
k = Im ,�mz ,�mx ,−i�my, m=5,6, Im is the two-

dimensional identity, and �mz ,�mx ,�my are the Pauli matri-
ces. Apparently, if �̂56

11 is a unitary operator, �̂56
ij are also

unitary operators.
Moreover, the invariant L of SLOCC can be expressed as

follows �12�:

L = �
a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

� �14�

or

L = �a0a5 − a1a4��a10a15 − a11a14�

− �a0a9 − a1a8��a6a15 − a7a14�

+ �a0a13 − a1a12��a6a11 − a7a10�

+ �a4a9 − a5a8��a2a15 − a3a14�

− �a4a13 − a5a12��a2a11 − a3a10�

+ �a8a13 − a9a12��a2a7 − a3a6� .

From Eq. �11� or �12� and Eq. �14�, the relation between the
determinant of transformation operator �56

11 and the SLOCC
invariant L could be acquired.

In reality, the determinant of transformation operator �56
11

is found just equal to the SLOCC invariant L�=16L. There-
fore, if transformation operator �̂56

ij are unitary operators, the
normal of SLOCC invariant �L��=1. If transformation opera-
tor �̂56

ij are not unitary operators. the normal of SLOCC in-
variant �L���1.

To show the applicability of this criterion we examine the
probability of transportation for some known examples. We
take the first example of the quantum channel given in Ref.
�7�:

���3456 =
1

2	2
��0000� − �0011� − �0101� + �0110� + �1001�

+ �1010� + �1100� + �1111��3456, �15�

i.e.,

a0 = a6 = a9 = a10 = a12 = a15 =
1

2	2
, a3 = a5 = −

1

2	2
.
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The transformation operator can then be calculated easily by

�56
11 =


1
	2

0 0
1
	2

0
1
	2

−
1
	2

0

0
1
	2

1
	2

0

−
1
	2

0 0
1
	2

� . �16�

Then L�=−1 and �L��=1. So, for this quantum channel, the
teleportation can be perfectly realized.

A cluster state is used as a quantum channel between Al-
ice and Bob, which is in the following state �18�:

���3456 =
1

2
��0000� + �0110� + �1001� − �1111��3456,

i.e.,

a0 = a6 = a9 =
1

2
, a15 = −

1

2
,

and we obtain

�56
11 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
� .

Then we easily find that L�=1. So, for this quantum channel,
the teleportation can also be perfectly realized.

If Alice and Bob share a quantum channel in the form of
the following partly pure entangled four-particle state �19�,

���3456 = �B1�00� + C1�11��35�B2�00� + C2�11��46

= �B1B2�0000� + B1C2�0101� + C1B2�1010�

+ C1C2�1111��3456,

then, without loss of generality, it is assumed that
�C1�� �B1�, �C2�� �B2�, i.e.,

a0 = B1B2, a5 = B1C2, a10 = C1B2, a15 = C1C2,

and we obtain

�56
11 = 2


B1B2 0 0 0

0 0 B1C2 0

0 C1B2 0 0

0 0 0 C1C2

�
and the SLOCC invariant L�=16B1

2B2
2C1

2C2
2. Therefore, the

transformation operator is reversible and is not a unitary op-
erator. Then, Bob needs to introduce an auxiliary particle a
with initial state �0�a and perform a collective unitary trans-

formation on particles 5, 6, and a. The probability of suc-
cessful teleportation is 4�C1�2�C2�2�1.

For the known quantum channel Greenberger-Horne-
Zeilinger �GHZ� state, i.e., ���3456= �1 /2���0000�
+ �1111��3456, the transformation operator is

�56
11 =


	2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 	2
� �17�

and the normal of SLOCC invariant �L��=0. Therefore, the
transportation cannot be realized.

We consider another quantum channel in W state de-
scribed by

���3456 =
1

2
��0001� + �0010� + �0100� + �1000��3456,

whose transformation operator is then given by

�56
11 =


0 1 1 0

1 0 0 0

1 0 0 0

0 0 0 0
� . �18�

We find �L��=0. From Eqs. �17� and �18�, all the transforma-
tion operators are not inversible. Accordingly, the GHZ state
and the W state cannot be employed to deterministically tele-
port arbitrary two qubits.

In this paper we have introduced a transportation operator
and shown that there exists a relation between the determi-
nant of transformation operator and the SLOCC invariant for
Bell basis measurement. It could be affirmed that if the
SLOCC invariant L of quantum channel is not zero, the un-
known two-particle entangled state can be teleported suc-
cessfully. If it is equal to zero, the teleportation of the un-
known two-particle entangled state will by no means be
realized. In addition, if the normal of SLOCC invariant L� of
quantum channel is equal to 1, the unknown two-particle
entangled state can be teleported perfectly. We believe for
Bell basis measurement the relation between the determinant
of the transformation operator and the SLOCC invariant can
be expanded to the multipartite entangled state.

However, we know that the property of the transformation
operator depends on both the channel and the measuring ba-
sis entanglement, but only the case of the Bell basis measure-
ment has been discussed in this paper. The general relation of
transformation operator with quantum channel and measur-
ing basis and the relation between the probability of success
with the SLOCC invariant need further investigation. The
optimal match of measuring basis and quantum channel is
also to be studied.
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