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A scheme is proposed for the deterministic generation of three-dimensional entanglement of two distant
atoms separately trapped in two optical cavities connected by an optical fiber. Employing adiabatic passage
along dark states, the atoms are always in ground states, in particular, the fiber mode remains in the vacuum
state due to the quantum destructive interference, and the population of the cavities being excited can be
negligible under certain conditions. In this sense, our scheme constructs an effective way to avoid the atomic
spontaneous emission and the decays of fiber and cavities.
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Entanglement, one of the most interesting features in
quantum mechanics, plays a significant role in quantum me-
chanics, as it not only holds the power for demonstration of
the quantum nonlocality against local hidden variable theory
�1�, but also provides promising and wide applications in
quantum information processing, such as quantum cryptog-
raphy �2�, teleportation �3�, and dense coding �4�. Thus in-
tense theoretical efforts have been devoted to the generation
of entangled states, and remarkable improvements have been
made in experiments in two-state systems, for example, such
entanglements have been demonstrated in cavity QED �5�
and ion traps �6�.

Recently, high-dimensional entangled states have received
a broad interest, since it has been demonstrated that the vio-
lations of local realism and the security of quantum cryptog-
raphy can be enhanced by high-dimensional entanglement
�7�. For photons, such entangled states have been experimen-
tally demonstrated �8�. For atoms, schemes have been pro-
posed in the context of cavity QED. For instance, Zou et al.
�9� have proposed a scheme for the entanglement generation
of two three-level atoms via cavity-assisted collisions, which
is insensitive to the cavity decay, but requires individual ad-
dressing of the two identical atoms in a cavity and thus is
experimentally problematic. Zheng �10� also has proposed a
scheme for generating entangled many multilevel atoms in a
thermal cavity, which does not require individual addressing
of atoms in a cavity and even is insensitive to both cavity
decay and thermal field. However, the scheme requires the
atoms simultaneously interacting with a cavity mode and a
strong classical field, which has not been experimentally
demonstrated yet. Recently, Zheng �11� has proposed a
scheme for entanglement generation of multiple three-level
atoms by sending atoms one by one through a two-mode
cavity with the resonant interaction with two field modes
sequentially. In the above-mentioned schemes, the atoms all
have to interact with the same cavity.

Since entanglement between two separate subsystems is
very useful for quantum communication, in particular, Zheng

�12� first proposed a scheme for the generation of two three-
dimensional entangled atoms trapped in two spatially sepa-
rated cavities. However, it is a probabilistic scheme as it
depends on the detection of the photons decaying from two
leaking cavities and thus high efficient photon detectors are
required. The ideal success probability is only 1 /3. Inspired
by Ref. �13�, which employs an optical fiber to deterministi-
cally realize quantum gates between two separated atoms, in
this Brief Report we present a scheme for deterministically
producing three-dimensional entanglement for two atoms
separately trapped in two optical cavities. Based on adiabatic
passage along dark states, our scheme has the following ad-
vances: �i� the field mode remains in vacuum state, and in a
certain range the coupling strengths between the fiber and
cavities only have slight effects on the fidelity; �ii� all the
atoms are always in ground states; �iii� the cavities’ modes
being excited can be negligible under the condition that all
the laser Rabi frequencies are much smaller than the cavity
Rabi frequency; and �iv� it goes beyond the Lamb-Dicke
limit, and is robust against the small fluctuations of experi-
mental parameters.

First, we introduce the atom-cavity-fiber system. As
shown in Fig. 1�a�, two identical atoms A and B are sepa-
rately trapped in two optical cavities 1 and 2 coupled by an
optical fiber. Each atom has three ground states �e�, �f�, and
�g�, which are, respectively, coupled to one excited state �r�
by pulsed laser fields with coupling strengths �e

�k��t� and
� f

�k��t�, and a cavity mode with coupling strength g�k�

�k=1,2�, as shown in Fig. 1�b�. An additional ground state
�a� will be used. The interaction Hamiltonian for the optical
fiber coupled to the modes of the two cavities can be mod-
eled as �14�

HIF = �
j=1

�

� j�bj�a1
† + �− 1� jei�a2

†� + H.c.	 , �1�

where a1
† and a2

† are the creation operators for the cavities’
modes, bj is the annihilation operator for the mode j of the
fiber, � j is the coupling strength between the modes of cavi-
ties and the fiber mode j, and the phase � is caused by the
propagation of the field through the fiber of length l:
�=2�wl /c �15�, where w is the frequency of the cavities.
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Let �̄ be the decay rate of the cavities’ fields into a con-
tinuum of fiber modes. In the short fiber limit �l�̄� / �2�c�
�1, only one resonant mode of the fiber will interact with
the cavity modes �13�. This reduces the Hamiltonian HIF to
�16�

HIF = ��b�a1
† + a2

†� + H.c.� , �2�

where b is the annihilation operator of resonant mode of the
fiber. We use laser fields with Rabi frequency �l

�1��t� and
�m

�2��t� �l, m=e or f� in cavities 1 and 2, respectively. In the
interaction picture, the Hamiltonian for the total atom-cavity-
fiber system under consideration is

HIN = ��l
�1��t��r�A
l�A + g�1�a1�r�A
g�A + �m

�2��t��r�B
m�B
+ g�2�a2�r�B
g�B + H.c.� + HIF. �3�

For simplicity, we assume g�1�=g�2�=g in the following. For
an initial state �l�A�g�B�000� f, the state evolution remains in
the subspace spanned by the basis state vectors
��g�A�m�B�000� f, �g�A�r�B�000� f, �g�A�g�B�010� f, �g�A�g�B�001� f,
�g�A�g�B�100� f, �r�A�g�B�000� f, �l�A�g�B�000� f	. Here, the num-
bers n1, n2, and nf in the state �n1n2nf� f denote the photon
numbers in the modes of cavity 1, cavity 2, and fiber, respec-
tively. There is an interesting dark state with null eigenvalue

���dark � g�m
�2��t��l�A�g�B�000� f − �l

�1��t��m
�2��t��g�A�g�B

	��100� f − �010� f� − g�l
�1��t��g�A�m�B�000� f . �4�

We note that if the system remains in the dark state, the
two atoms are always in ground states. Most notably, the
fiber links two spatially separate QED subsystems but the
fiber mode is in vacuum state. Indeed, such phenomenon
seems incredible. However, essentially, it can be interpreted
as the result of quantum destructive interference. Here,
the two states �g�A�g�B�100� f and �g�A�g�B�010� f are mediated
by the intermediate state �g�A�g�B�001� f. Since the
two transition paths �g�A�g�B�100� f → �g�A�g�B�001� f and
�g�A�g�B�010� f → �g�A�g�B�001� f interfere destructively, the fi-
ber mode remains in vacuum state. In other words, the fiber
plays an important role as a mediate to connect two sepa-
rated subsystems. How the coupling strength � between the
fiber and cavity influences the fidelity of our scheme will be
discussed later in this Brief Report. Moreover, to make the
population of the cavity modes in excited states negligible,
we can assume that the condition g
�l

�k��t�, �m
�k��t� is al-

ways satisfied during the whole procedure in our scheme.
Now we show how to generate three-dimensional

entanglement of the atoms A and B. First, atom A is
prepared in the state �e�A, atom B in the superposition state
��2�g�B+ �a�B� /�3, and all the field modes in vacuum state.
Then, the state �e�A�g�B�000� f is adiabatically transferred into
−�g�A�f�B�000� f along dark states by using the lasers
�e

�1��t� and � f
�2��t�, while the state �e�A�a�B�000� f remains un-

changed. Here, we analyze the adiabatic evolution in detail.
For the initial state �e�A�g�B�000� f, according to Eq. �4�, the
dark state is

���dark
�1� � g� f

�2��t��e�A�g�B�000� f − �e
�1��t�� f

�2��t��g�A�g�B

	��100� f − �010� f� − g�e
�1��t��g�A�f�B�000� f . �5�

Initially, we assume that �e
�1��0��� f

�2��0�, and �e
�1��0�,

� f
�2��0��g. In this case, the dark state is approximately

�e�A�g�B�000� f. To adiabatically transfer the state
�e�A�g�B�000� f into −�g�A�f�B�000� f, we slowly increase
�e

�1��t� and decrease � f
�2��t� so that �e

�1� /� f
�2�
1 at the time

t1 �17�. Meanwhile, for the initial state �e�A�a�B�000� f, the
state evolution remains in the subspace spanned by the basis
state vectors ��e�A�a�B�000� f, �r�A�a�B�000� f, �g�A�a�B�100� f,
�g�A�a�B�001� f, �g�A�a�B�010� f	. The corresponding dark state
is

���dark
�2� � g�e�A�a�B�000� f − �e

�1��t��g�A�a�B��100� f − �010� f� .

�6�

Similar to the previous dark state ���dark, here for the
dark state ���dark

�2� the fiber mode is in vacuum state as well
due to the quantum destructive interference. Remember
that the condition g
�l

�k��t�, �m
�k��t� �k=1,2� is always

fulfilled in our scheme, and thus the state �e�A�a�B�000� f
remains unchanged under the adiabatic condition. Therefore
the atomic state adiabatically evolves into �
�t1��A+B

= �−�2�g�A�f�B+ �e�A�a�B� /�3, leaving all the field modes in
vacuum state under the condition g
�e

�1��t�, � f
�2��t�.

Next we change the state �
�t1��A+B to ��g�A�f�B

− �g�A�e�B+ �e�A�a�B� /�3 by performing the transformation
�f�B→ �−�f�B+ �e�B� /�2 on atom B in cavity 2. Then, similar
to the previous step, we apply pulses � f

�1��t� and �e
�2��t� to

make the transformation �g�A�e�B�000� f →−�f�A�g�B�000� f
adiabatically. This can be achieved by applying the pulse
� f

�1��t� on atom 1 preceding the pulse �e
�2��t� on atom 2,

leading from � f
�1� /�e

�2�
1 to � f
�1� /�e

�2��1 at the time t2. At
the same time, the states �g�A�f�B�000� f and �e�A�a�B�000� f un-
dergo no evolution and are unchanged during the stage.
Therefore after the procedure atoms A and B evolve to the
state

( ) ( )k
e t�

( ) ( )k
f t� ( )kg

r

f a g

e

FIG. 1. �Color online� �a� The experimental setup. �b� The level
configuration for each atom. The transitions �f�→ �r� and �e�→ �r�
are, respectively, driven by two pulsed laser fields with coupling
strength �e

�k��t� and � f
�k��t�, while the transition �g�→ �r� is coupled

to a cavity field with the constant strength g�k�.
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�
�A+B = ��g�A�f�B + �f�A�g�B + �e�A�a�B�/�3, �7�

leaving all the field modes in vacuum state. We note that
during the whole procedure, the condition g
� f

�k��t�,
�e

�k��t� should always be satisfied to make the population of
the cavity modes in excited states negligible. Performing the
following transformations, �f�B→ �g�B, �g�B→ �f�B, and
�a�B→ �e�B, through external classical fields, we obtain the
three-dimensional maximally entangled state of normal form

�
��A+B = ��g�A�g�B + �f�A�f�B + �e�A�e�B�/�3, �8�

where the quantum information is encoded in the three levels
�g�, �f�, and �e� for both atoms A and B. We note that, from
now on, the dynamics of the two atoms is restricted to such
levels: no other levels will be coupled to �g�, �f�, and �e�,
neither by coherent couplings nor through incoherent decays
�18�. Therefore the two atoms can rightly be considered as
effective three-dimensional systems, and the state �
��A+B is
maximally entangled.

Finally, we discuss the experimental feasibility of the
present scheme. For the atomic level structure, we can take
Cs as our choice. The states �f�, �a�, �g�, and �e� correspond to
the hyperfine levels �F=4, m=−1�, �F=4, m=0�, �F=4,
m=1�, and �F=3, m=−1� of 6S1/2, respectively, while the
state �r� corresponds to �F=4, m=0� of 6P3/2. The transitions
�f�→ �r� and �e�→ �r� are driven by right-circular polarized
laser pulses, while the transition �g�→ �r� is coupled to a
left-circular polarized cavity mode. All the transitions are
resonant. In the above analyses, we have assumed that the
atoms are trapped well in specific locations in cavities, but in
real experiments, it is very challenging to control atoms pre-
cisely to meet the Lamb-Dicke condition. Therefore to make
our scheme more robust against the randomness of the at-
oms’ positions, we here employ the idea of Ref. �19�: All the
applied laser pulses are incident from one mirror of their
corresponding cavities and collinear with their respective
cavities’ axes, and thus share the same spatial mode structure
with their respective cavities. As the adiabatic evolution in
our scheme only depends on the ratios �e

�k��r� , t� /g�r��,
� f

�k��r� , t� /g�r��, and �l
�k��r� , t� /�m

�k���r� , t� �k�k�; k, k�=1,2; l,
m=e, f�, which are all independent on the random atom po-
sition r�, our scheme is not restricted to the Lamb-Dicke con-
dition.

In the above discussion, the cavity modes are never ex-
cited as we have assumed that g
� f

�k��t�, �e
�k��t� are always

fulfilled throughout the whole procedure. However, if the
condition g
� f

�k��t�, �e
�k��t� is not ideally fulfilled, there is a

probability of the cavity modes being excited. Here we set
� f max

�k� =�e max
�k� =g /4 �in experiment, g more than four times

larger than �e,f max
�k� has been achieved �20�� to estimate such

probability. In this case, during the adiabatically transferring
procedure �e�A�g�B�000� f →−�g�A�f�B�000� f, according to the
Eqs. �5� and �6�, there is a probability of the states
�g�A�g�B��100� f − �010� f� /�2 and �g�A�a�B��100� f − �010� f� /�2
being populated. The average probability for the state
�g�A�g�B��100� f − �010� f� /�2 being populated during the trans-
ferring procedure can be estimated as

P1 =
2

�max
�

0

�max

sin2 �d� , �9�

where sin �=�e
�1�� f

�2� /�2��e
�1�� f

�2��2+g2���e
�1��2+ �� f

�2��2�.
When �e

�1�=� f
�2�=g /8, we have �=�max=arcsin�1 /�130�

and thus P1
0.005. The average probability for the state
�g�A�a�B��100� f − �010� f� /�2 being populated during the trans-
ferring procedure can be estimated as

P2 =
2

�max
�

0

�max

sin2 �d� , �10�

where sin �=�e
�1� /�2��e

�1��2+g2. When �e
�1�=g /4, we have

�=�max=arcsin�1 /�18� and thus P2
0.037. �At the end of
the procedure �at the time t1� the state �e�A�a�B�000� f evolves
to the superposition state �4�e�A�a�B�000� f − �g�A�a�B��100� f

− �010� f�� /�18 instead of remaining in the state
�e�A�a�B�000� f.� Thus due to the cavity decay, the states
�g�A�g�B��100� f − �010� f� /�2 and �g�A�a�B��100� f − �010� f� /�2
may evolve into the states �g�A�g�B�000� f and �g�A�a�B�000� f,
respectively, which will reduce the fidelity of our scheme. To
see to what extent of the cavity decay effects the fidelity,
we first estimate the time for the adiabatic transfer
�e�A�g�B�000� f →−�g�A�f�B�000� f. Here, the energy gap be-
tween the dark state ���dark

�1� and its most closest bright state is
denoted by �E1, and that between the dark state ���dark

�2�

and its most closest bright state is denoted by �E2. It is
interesting that as � goes from 10g to 100g, �E1 rises
slightly from 0.249g to 0.250g and similarly �E2 rises
slightly from 0.749g to 0.750g. Since to fulfill the adiabatic
condition the transferring time should be larger than the in-
verse of the minimum gap �21�, such phenomenon implies
that the variety in the coupling between the fiber and the
cavity �for � ranging from 10g to 100g� has slight effects on
the required operating time and thus only influences the fi-
delity of our scheme slightly. Set g=1 GHz �22� and
�=10g �23�, the adiabatic transferring time is t1
10 /0.2g
=50 ns, which means that the total time for the adiabatic
generation of a three-dimensional entangled state is about
2t1=100 ns. Set �=0.01g �24�, where � is the cavity decay
rate. Due to the cavity decay, the probability for the state
�e�A�g�B�000� f evolving to �g�A�g�B�000� f through the interme-
diate state �g�A�g�B��100� f − �010� f� /�2 is approximately �1


�t1P1=0.0025, and that for the state �e�A�a�B�000� f evolv-
ing to �g�A�a�B�000� f through the intermediate state
�g�A�a�B��100� f − �010� f� /�2 is approximately �2
�t1P2

=0.0185. Similarly, during the transferring procedure
�g�A�e�B�000� f →−�f�A�g�B�000� f, due to the cavity decay
the probability for the state �g�A�e�B�000� f evolving
to �g�A�g�B�000� f through the intermediate state
�g�A�g�B��100� f − �010� f� /�2 is approximately �1 as well.
Thus the final state can be approximately given by �25�

� = ���
�� +
�1�3 − �1�

3
�g�A�f�B
g�A
f �B

+
8�2 + 1

27
�g�A�e�B
g�A
e�B, �11�

where
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��� =
1
�3
��1 − �1�g�A�g�B + �1 − �1��f�A�f�B

+
4�1 − �2

�18
�e�A�e�B� . �12�

Thus under the condition � f max
�k� =�e max

�k� =g /4, the fidelity is

F = A+B
�
���
��A+B =
1

9
��1 − �1 + �1 − �1� +

4�1 − �2

�18
�2


 0.95. �13�

In conclusion, a scheme is presented for generating a
three-dimensional entangled state for two atoms separately

trapped in two optical cavities connected by an optical fiber.
It is based on the adiabatic passages by using a sequence of
pulsed laser fields, where the atoms are all in ground states
and the fiber mode remains in vacuum state and thus the
atomic spontaneous emission and the decay of optical fiber
can be greatly avoided. Under the condition that all the laser
Rabi frequencies are much smaller than the cavity Rabi fre-
quency, the scheme is insensitive to the decay of the optical
cavities. Furthermore, taking advantage of adiabatic passage,
it is insensitive to small fluctuations of experimental param-
eters �26,27�. We also show that it is not restricted to the
Lamb-Dicke limit and make an estimation on the fidelity
under the condition that the cavity Rabi frequency is only
four times the maximal laser Rabi frequencies.
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