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Using Nelson’s stochastic mechanics, quantum motion of electrons in the double-slit experiment is studied
numerically. It is found that not only the distribution of arrival positions but also that of arrival times at the
screen forms an interference pattern. It is demonstrated that the presence time and arrival time are well
interpreted in terms of stochastic mechanics.
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There is no doubt that position and time are the most
fundamental quantities for describing the motion of an ob-
ject. In classical mechanics, the equation of motion deter-
mines the position of an object as a function of time, x�t�.
Then it is straightforward to calculate the time of arrival of
the object moving from a position xi to another x f.

In quantum mechanics, however, the time of arrival can-
not be obtained within the standard procedure of calculating
an expectation value because, so far, a general time operator
has not been established �1�. It is worthwhile to mention that
Pauli pointed out that there is no self-adjoint time operator
conjugate to a Hamiltonian bounded from below �1,2�.

From an experimental point of view, it is evident that the
time of arrival can be measured, in principle, by means of the
time-of-flight technique. Therefore, a complete theory must
be able to predict the time of arrival. In this sense, the lack of
an established method of obtaining the time of arrival may
be regarded as a point of imperfection in quantum mechan-
ics. Therefore, despite the fundamental difficulties mentioned
above, considerable efforts have been put into solving the
problem of the time of arrival �1,3–8�.

An alternative way of calculating the time of arrival is to
employ Nelson’s stochastic mechanics �9,10�. Since stochas-
tic mechanics gives a set of trajectories �sample paths�, the
time of arrival for each trajectory is obtained in the same
way of classical mechanics. A few recent works showed that
stochastic mechanics is indeed a powerful tool of calculating
the tunneling time �11,12�.

In this Brief Report, we consider the time of arrival in the
double-slit experiment. Since the establishment of quantum
mechanics the double-slit experiment by electrons has been
one of the most famous gedanken experiments for demon-
strating the fundamental concept of quantum mechanics. The
realization of such double-slit experiments has been reported
in recent years �13,14�. The double-slit experiment per-
formed by Tonomura et al. recorded arrival positions of elec-
trons one by one and confirmed that the accumulated arrival
positions on the screen reproduce the interference pattern
�14�.

So far, the formation of a double-slit interference pattern
has been studied based on the wave function in the stationary
states. However, as shown by Tonomura et al. �14�, the in-
terference pattern is composed of the arrival positions of in-
dividual electrons. In this case the quantum motion of each
electron should be described by a time-dependent wave
packet rather than a stationary wave. Then the time of arrival
of electrons at the screen becomes a fundamental subject as

well as the position of arrival. Experimentally, it is possible
to obtain a time of arrival distribution by measuring the time
of arrival for each electron. The purpose of our present report
is to predict the time of arrival distribution numerically by
using stochastic mechanics.

In stochastic mechanics, a possible trajectory of an elec-
tron is expressed as a sample path calculated by the Ito sto-
chastic differential equation given by �9,10�

dx�t� = b„x�t�,t…dt + dw�t� , �1�

where dw�t� represents the Brownian motion defined by

�dwi�t�� = 0,�dwi�t�dwj�t�� =
�

m
�ijdt �i = x,y� , �2�

� is the Planck constant divided by 2�, and m the mass of an
electron. b�x , t� represents the drift velocity given by

b�x,t� =
�

m
�Re + Im� � ln ��x,t� , �3�

where ��x , t� is the solution of the Schrödinger equation.
Using Eqs. �1�–�3� we calculate trajectories �sample

paths� of electrons for a simple double-slit experiment. We
assume that electrons moving along the y axis pass through a
double slit placed at y=0 and then reach a screen placed at
y=Y. For simplicity, we further assume that the wave func-
tion passing through the double-slit is approximated by a
couple of two-dimensional Gaussian wave packets �15,16�:

��x,y,t� = �1�x,y,t� + �2�x,y,t� , �4�

where

� j�x,y,t� =
1

2��a�1 + i�t�
exp�− 	 1

2a

�x − sj�2 + y2

1 + i�t



+ i� k0y + �0t

1 + i�t
�
 �j = 1,2� , �5�

2s the distance between two slits, s1=−s, s2=s, �0, ±s� the
coordinates of the slits, �=� / �ma�, a the dispersion at t=0,
and �0=�k0

2 / �2m�. Setting � j =exp�Rj + iSj� �j=1,2� with

u j =
�

m
� Rj, v j =

�

m
� Sj �j = 1,2� , �6�
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we obtain the osmotic velocity u and the current velocity v
as �9�

u =
u1 + u2

2
+

sinh�R1 − R2��u1 − u2� − sin�S1 − S2��v1 − v2�
2�cosh�R1 − R2� + cos�S1 − S2��

,

�7�

v =
v1 + v2

2
+

sinh�R1 − R2��v1 − v2� + sin�S1 − S2��u1 − u2�
2�cosh�R1 − R2� + cos�S1 − S2��

.

�8�

From the relation b�x , t�=u+v we obtain the drift velocity as
follows:

bx�x,t� =
�

m
	 �t/m − a

a2 + ��t/m�2
x −
�

m
	 s��t/m − a�

a2 + ��t/m�2
 sinh�2asx/�a2 + ��t/m�2�� + sin�2��t/m�sx/�a2 + ��t/m�2��
cosh�2asx/�a2 + ��t/m�2�� + cos�2��t/m�sx/�a2 + ��t/m�2��

, �9�

by�x,t� =
�

m
	 �t/m − a

a2 + ��t/m�2
y +
p0

m
	 a�a + �t/m�

a2 + ��t/m�2
 . �10�

Using Eqs. �4�–�10� we have solved the stochastic differen-
tial equation �1� numerically. Examples of calculated sample
paths are shown in Fig. 1. From the figure one can see that
the interference pattern becomes clearer as the number of
sample paths increases.

Now, we consider the time of arrival. Before showing our
numerical results, let us introduce two expressions that have
been used for discussion of quantum mechanical time of ar-
rival �1�.

One is the presence time defined by

�T�X,Y
p = �

0

�

T�X,Y
p �T�dT �11�

with the presence time distribution

�X,Y
p �T�dT =

p�X,Y,T�dT

�
0

�

p�X,Y,T�dT

, �12�

where p�X ,Y ,T�= ���X ,Y ,T��2. �X,Y
p �T�dT is proportional to

the probability density of finding an electron at a detector

position �X ,Y� at a time interval T�T+dT. Although the
presence time seems to be a simple definition of quantum
mechanical time of arrival, Eq. �12� has not been derived
within the standard procedure of calculating an observable.

The other one is the arrival time defined by

�T�X,Y
a = �

0

�

T�X,Y
a �T�dT , �13�

with the arrival time distribution

�X,Y
a �T�dT =

�j�X,Y,T� · dS�dT

�
0

�

�j�X,Y,T� · dS�dT

, �14�

where j�X ,Y ,T� represents the current density and dS is the
surface element of a detector. The arrival time formula is
derived within Bohmian mechanics �1,17�.

In contrast to quantum mechanics, stochastic mechanics
has no fundamental difficulty in defining a time of arrival:
We can calculate classical mechanical-like time of arrival by
regarding sample paths as possible classical trajectories.
However, there are two schemes for defining the detection of
a particle at a fixed point �see Fig. 2� �18,19�. One is the
“first counting scheme.” This scheme assumes that a particle
is counted by a detector when its sample path traverses the
surface of the detector for the first time. Therefore, the time
of arrival in the first counting scheme for the sample path 1
in Fig. 2 is given by �T3+T4� /2, where T1 , . . . ,T5 represent
the arrival time at each point. Defining NX,Y

f �T�dT dX as the
number of sample paths traversing the detector within the
acceptance width X−dX /2�X+dX /2 in the time interval
T�T+dT, we introduce the “first counting arrival time dis-
tribution”:
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FIG. 1. Sample paths in the double-slit experiment. N denotes
the number of sample paths. Two slits are placed on the X axis.
Atomic units �a.u.� have been used.
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�X,Y
f dT =

NX,Y
f �T�dT

�
0

�

NX,Y
f �T�dT

. �15�

Using �X,Y
f the time of arrival in the first counting scheme is

given by

�T�X,Y
f = �

0

�

T�X,Y
f �T�dT . �16�

The other is the “multiple counting scheme.” This scheme
assumes that a particle is counted by a detector in a proba-
bilistic manner when a sample path enters the detector.
Therefore, the time of arrival in the multiple counting
scheme for the sample path 1 in Fig. 2 is given by �T1+T2

+T3+T4+T5� /5. It should be mentioned that the sample path
2 contributes to the time of arrival in the multiple counting
scheme but does not so in the first counting scheme. Defining
NX,Y

m �T�dXdYdT as the number of the sample paths entering
the detector area �X−dX /2,Y −dY /2���X+dX /2,Y +dY /2�
at the time T�T+dT, we introduce the “multiple counting
arrival time distribution”:

�X,Y
m dT =

NX,Y
m �T�dT

�
0

�

NX,Y
m �T�dT

. �17�

By its definition �NX,Y
m �T�dT gives a greater number than the

total number of the sample paths come into the detector. The
time of arrival in the multiple counting scheme is represented
by

�T�X,Y
m = �

0

�

T�X,Y
m �T�dT . �18�

screen

sample path 1

(X, Y )

dY

dX

sample path 2

dX

dY

(X, Y )

T1

T2

T3

T4

T5 T ′
1

T ′
2

FIG. 2. First counting scheme and the multiple counting
scheme. Detector’s width and area for the point �X ,Y� are dX and
dXdY, respectively. The traversing time in the first counting scheme
is �T3+T4� /2 for sample path 1 while the existing times in the
multiple counting scheme are �T1+T2+T3+T4+T5� /5 for the
sample path 1 and �T1�+T2�� /2 for the sample path 2.
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FIG. 3. �Color online� Number of electrons arrived at the screen
�upper figure� and the averaged time of arrival �lower figure�. The
multiple counting scheme �magenta, ��, first counting scheme
�green, +�, presence time �red solid line�, and arrival time �blue
broken line� are plotted. The window in the lower figure indicates
the region shown in Fig. 4.
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FIG. 4. �Color online� Time of arrival distributions at the screen
positions X=28, 29, 30, 31 �Y =600�. Distributions are calculated by
the multiple counting scheme �red, �� and the first counting scheme
�blue, +�. The solid vertical lines and broken lines represent �T�X,Y

m

and �T�X,Y
f , respectively.
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In Fig. 3, we show typical numerical results. Parameters
have been chosen as k0=8, Y =6	102, a=2, s=20, dt=0.3,
dX /2=0.5, dY /2=3 in atomic units. The total number of
sample paths is N=1.0	108. The upper figure shows the
distribution of electrons arrived at the screen, i.e., the inter-
ference pattern in the double-slit experiment.

It is found that the time of arrival in the first counting
scheme �T�X,Y

f coincides with the arrival time �T�X,Y
a calcu-

lated by the probability current density in the quantum me-
chanics. On the other hand, the time of arrival in the multiple
counting scheme �T�X,Y

m coincides with the presence time
�T�X,Y

p calculated by the probability density. The latter result
agrees with that of Aoki et al. �11�. It is also found that the
time of arrival changes most rapidly about the local minima
in the intensity distribution �upper figure�.

In Fig. 4, we show the time of arrival distributions calcu-
lated by both schemes at the screen positions X=28, 29, 30,
31. These positions are located within the vertical lines in
Fig. 3, i.e., one of the local minima in the intensity distribu-
tion. The time of arrival distributions about other minima
behave similarly. From the figure we observe that about the
local minima in the intensity distribution two tails of wave
packets contribute to the intensity distribution.

In this Brief Report, we have shown that the arrival time
of electrons in the double-slit experiment will have an oscil-
lating behavior, which is, in principle, observable in an ex-
periment. It is shown that the time of arrival is calculated
clearly by using stochastic mechanics though there are two
schemes for calculation: The first counting scheme and the
multiple counting scheme. The former agrees with the arrival
time based on Bohmian mechanics while the latter agrees
with the presence time derived by a naive consideration in
quantum mechanics. We have not succeeded in explaining
these agreements analytically but leave this problem for fur-
ther research.

It is worthwhile to mention that Szriftgiser et al. observed
time of arrival distribution by using “temporal slits” �20�.
Our result shows that even an ordinary double-slit in space
will form an interference pattern in time, suggesting the pos-
sibility to observe the quantum features of the time of arrival
in a simple manner.

This work is partially supported by the Ministry of Edu-
cation, Science, Sports and Culture, Grant-in-Aid for Scien-
tific Research �C�.
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