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We develop a random-matrix model of two-dimensional dielectric resonators which combines internal wave
chaos with the deterministic Fresnel laws for reflection and refraction at the interfaces. The model is used to
investigate the statistics of the laser threshold and linewidth �lifetime and Petermann factor of the resonances�
when the resonator is filled with an active medium. The laser threshold decreases for increasing refractive
index n and is smaller for TM polarization than for TE polarization, but is almost independent of the number
of out-coupling modes N. The Petermann factor in the linewidth of the longest-living resonance also decreases
for increasing n and scales as �N, but is less sensitive to polarization. For resonances of intermediate lifetime,
the Petermann factor scales linearly with N. These qualitative parametric dependencies are consistent with the
random-matrix theory of resonators with small openings. However, for a small refractive index where the
resonators are very open, the details of the statistics become nonuniversal. This is demonstrated by comparison
with a particular dynamical model.
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I. INTRODUCTION

Two-dimensional dielectric microresonators attract con-
siderable attention because of their prospective application as
microlasers and single-photon cavities, as well as sensors in
chemical and biological systems �1–6�. These systems also
allow the study of generic properties of partially confined
waves in a clean setting, and hence provide a route to acquire
knowledge which can be transferred, e.g., to mesoscopic
electronic devices �7�. The analogy is most complete when
comparing noninteracting electrons in cooled, patterned two-
dimensional semiconductor devices �which usually leak
through quantum-point contacts� with passive optical �or mi-
crowave� resonators equipped with small openings. For such
geometries, semiclassical methods and random-matrix theory
have provided a deep theoretical understanding of the spec-
tral and transport properties, which have been found to agree
with numerous experiments and numerical computations
�8–13�. In particular, it is now well established that the pre-
dictions of random-matrix theory, designed for wave-chaotic
systems with strong mode mixing, are of universal applica-
bility when the width of the openings W is much less than
the linear system size L, implying a long mean lifetime in the
system. For two-dimensional ballistic geometries, this re-
quirement can be quantified by comparing the numbers N
�Wk of outcoupled channels at wave number k to the num-
ber of channels M �Lk which are mixed by the scattering at
the boundaries. Standard random-matrix universality then re-
quires M�N.

Dielectric microresonators, however, leak everywhere
around the interface and are far more open than the resona-
tors considered in standard random-matrix theory. The pho-
tonic confinement relies on internal reflection, which only
becomes perfect for angles of incidence above a critical
value. As a consequence, the effective “openness” increases
with the system size, resulting in N�M. Universality is no
longer guaranteed, and a more detailed modeling is required.

This modeling also has to account for the possible presence
of an active medium, essential for microlasers, which have
been manufactured in many forms and materials �4,14–27�.

In this paper we develop a quantum-dynamical descrip-
tion of two-dimensional dielectric microresonators which
combines wave-chaotic propagation of photons inside the
resonator with the Fresnel laws for reflection and refraction
at the interface. The general construction is based on a vari-
ant of the quantum surface-of-section method �28–33�. The
propagation inside the resonator is expressed in terms of an
internal scattering matrix, which we specify by either using
random-matrix theory �10,34� or a quantum-dynamical para-
digm of chaotic wave propagation, the quantum kicked rota-
tor �35�. Similar models have recently been developed for
mesoscopic electronic and hybrid-superconducting devices
�36–40�, which require different boundary conditions to
open up the system and do not allow for amplification.

The random-matrix and quantum kicked rotator variants
of the model are explored to investigate the threshold and the
quantum-limited linewidth of wave-chaotic dielectric micro-
lasers. The laser threshold is related to the decay rate � of the
longest living resonances, and can be read off from the
imaginary part of the frequency �which is complex for the
non-Hermitian operator describing an open system�. For a
good, conventional laser resonator �with almost-perfect mir-
rors�, the linewidth �full width at half maximum of the
Lorentzian line shape� is given by the Shawlow-Townes for-
mula �41�

��ST =
1

2

�2

I
, �1�

where I is the total output intensity. In an open resonator, the
linewidth is enhanced with respect to this prediction by the
so-called Petermann factor K,

�� = K��ST, �2�
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which can be related to the mutual nonorthogonality of the
resonance modes obtained from the non-Hermitian operator
�42–47�, and has been studied extensively in a wide range of
quantum-optical frameworks �48–59�. We investigate how �
and K depend on the refractive index n and the size of the
resonator �quantified by N and M�, and also discriminate
between the two possible polarizations TE and TM �where
the electric or magnetic field lies inside the resonator plane,
respectively�. The results are contrasted with predictions of
random-matrix theory for resonators with small openings
�12,44–46,60,61�.

We start this paper in Sec. II with a brief summary of the
basic concepts involved in the description of two-
dimensional dielectric microresonators. The quantum-
dynamical models are formulated in Sec. III. In Sec. IV we
present the statistics of decay rates � �determining the laser
threshold� and Petermann factors K �determining the line-
width�. These results are obtained by numerical sampling of
the random-matrix ensemble and the parameter space of the
quantum-kicked rotator. A summary of the results and con-
clusions is presented in Sec. V.

II. TWO-DIMENSIONAL DIELECTRIC RESONATORS

We consider planar dielectric microresonators of a small
width �z whose material properties are characterized by a
refractive index n���, which may depend on the angular fre-
quency �. Amplification is modeled within an effective me-
dium approach, so that the refractive index is complex, with
−Im n�0 proportional to the amplification rate. The refrac-
tive index is taken as homogeneous within the resonator and
unity in the surrounding medium. The geometry of the reso-
nator is specified by a region D in the �x ,y� plane.

We assume that only the lowest-lying transverse mode is
excited, which provides the best confinement at the planar
interfaces and hence results in the longest-living resonances.
For small wavelengths ��=c /��L, where c is the velocity
of light and L is the linear dimension of the resonator in the
plane�, the radiation outside the resonator is mostly confined
to the resonator plane. Throughout this plane, the electro-
magnetic field can then be described by a scalar wave func-
tion ��r�, r= �x ,y�, which represents the electric or magnetic
field component parallel to the z axis �TM or TE polariza-
tion, respectively�.

The wave function ��x ,y� obeys the Helmholtz equation

�c2�2 + n2�r��2���r� = 0. �3�

At the interfaces the wave function � and its normal deriva-
tive ��� are continuous for TM polarization, while for TE
polarization these continuity requirements are fulfilled by �
and n−2���.

For interfaces with no curvature, these boundary condi-
tions result in Snell’s law

sin � = n sin 	 , �4�

which relates the angle of incidence � from a wave ap-
proaching the interface to the angle of refraction 	 of the
wave within the refractive medium. The reflection probabili-

ties for both polarizations are given by the Fresnel laws
�62,63�

RTM =
sin2�	 − ��
sin2�	 + ��

, RTE =
tan2�	 − ��
tan2�	 + ��

. �5�

From within the medium, total reflection occurs for angles of
incidence 	�	c larger than the critical angle, which is de-
termined by the condition sin 	c=1 /n.

For the more complicated interface geometry of a mi-
croresonator, the radiative properties are encoded in the scat-
tering matrix S���, which relates the incoming and outgoing
amplitudes �i

�out�=� jSij� j
�in� in a suitably chosen, flux-

normalized basis of scattering states. The poles of the scat-
tering matrix are defined by the condition S��m�=
. For �
=�m, the Helmholtz equation �3� permits solutions �m�r�
with purely outgoing boundary conditions, � j

�in�=0. For a
real refractive index, these poles lie in the lower part of the
complex plane Im �m�−�m /2�0, where �m is the cold-
cavity decay rate of the mode. Amplification shifts the poles
towards the real axis. Within this effective-medium ap-
proach, the laser threshold is reached when the first pole
crosses the real axis, so that the purely outgoing wave field
of the laser can be realized at physical, real frequencies �
=�m �64,65�.

The active medium within the resonator emits radiation
due to the spontaneous emission of photons and their subse-
quent amplification. Assuming total population inversion of
the active transition within the medium, the frequency-
resolved output intensity is given by �66,67�

I��� =
1

2�
tr�S†���S��� − 1� . �6�

This expression vanishes for a passive medium �with a real
refractive index�, for which the scattering matrix is unitary.

Close to the laser threshold, the radiation is dominated by
a Lorentzian peak around �=Re �m. The width of the peak
can be associated to the spontaneous emission processes,
which perturb the amplitude and phase of the emitted radia-
tion. The Shawlow-Townes formula �1� arises when the reso-
nance in the intensity �6� is calculated within Breit-Wigner
perturbation theory, which is based on the mutually orthogo-
nal modes of the closed resonator. Equation �2� including the
Petermann factor accounts for the nonorthogonality of the
modes in the open resonator. For �L�c, the Petermann fac-
tor can be expressed in terms of the resonance wave function
as �43,68�

Km =

�	
D

dr
�m�r�
2�2

�	
D

dr�m�r�2�2 . �7�

Above the laser threshold, the resonator becomes un-
stable, since the gain in the medium outweighs the losses
through the interfaces. The steady-state intensity is limited
by pumping and saturation of the medium, which requires
study of the nonlinear regime as done, e.g., in Refs.
�51,56,69�. The feedback with the medium stabilizes the am-
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plitude of the laser, but not the phase, whose dynamics gives
rise to a finite laser linewidth. The resulting width is half the
width obtained from the cold-cavity calculation, which also
includes the amplitude fluctuations �48�. Equations �1� and
�2� include this reduction factor of one-half.

III. QUANTUM-DYNAMICAL MODEL

A. Construction

In order to set up the quantum-dynamical model of a di-
electric microresonator we separate the motion within the
cavity, which is assumed to be wave chaotic, from the reflec-
tion and refraction processes at the resonator interfaces,
which is assumed to be governed by the Snell and Fresnel
laws �4� and �5�, respectively.

The construction follows a variant of the quantum
surface-of-section method �28–32� which we adapt to the
specifics of wave propagation in a microresonator, and bares
similarities to the methods used in an efficient numerical
scheme for specific cavities �33�. For motivation let us first
consider the classical ray dynamics in the system. The suc-
cessive internal reflections of these rays at the interfaces are
conveniently represented in terms of Birkhoff’s canonical
coordinates, given by the length along the boundary, q, and
the sine of the angle of incidence, p=sin 	. The internal ray
dynamics is then reduced to a sequence of points �qn , pn�,
which are generated by an area-preserving map M:
�qn , pn�→ �qn+1 , pn+1�. At each encounter with the interface, a
ray is split into a refracted part, which escapes to the exterior,
and a reflected part which remains inside the resonator. The
relative amount of reflection is measured by the reflection
coefficients �5�, which in Birkhoff coordinates are written

RTM�p� = ��1 − p2 − �n−2 − p2

�1 − p2 + �n−2 − p2�2

, �8a�

RTE�p� = ��1 − p2 − n�1 − n2p2

�1 − p2 + n�1 − n2p2�2

, �8b�

for 
p 
 �1 /n, while R=1 for 
p 
 �1 /n.
In wave optics, a similar separation of the internal dynam-

ics and the encounters with the interface can be carried out
for kL�1. In this limit, the internal wave function ��int�

=��int,in�+��int,out� can be separated into the component
��int,in� which propagates away from the interfaces, towards
the interior of the resonator, and the component ��int,out�

which propagates towards the interfaces. Because the sepa-
ration relies on the propagation direction it is best carried out
in momentum space, corresponding to states with a well de-
fined canonical coordinate p. The geometry of the collision
with the interface is encoded in the internal scattering matrix
F���, which relates the components of the internal wave
function,

��int,out� = F�����int,in�. �9�

This is equivalent to Bogomolny’s transfer operator �29�,
originally introduced for closed systems. The matrix F��� is
unitary and symmetric, the latter property arising from the

time-reversal symmetry in a dielectric medium. The dimen-
sion M  Int�Cn� /�c� of F��� depends on the perimeter C
of the interface, which is proportional to the system size, C
�L.

In the classical limit �L /c�M→
, F��� corresponds to
the map M. When �L /c�1, the momentum p is quasicon-
tinuous,

pl 
2l − M − 1

2M
, l = 1, . . . ,M . �10�

At the interfaces the internal wave function is coupled to
the external wave field, which can be decomposed in the
conventional scattering states ��ext�=��ext,in�+��ext,out�. The
coupling is of the general form

��int,in� = R��int,out� + T��ext,in�, �11a�

��ext,out� = − R��ext,in� + T��int,out�, �11b�

where R is the reflection matrix and T is the transmission
matrix, constrained by R†R+T†T=1. The linear equations
�9� and �11� can be solved to arrive at the scattering matrix

S��� = − R + TF���
1

1 − RF���
T . �12�

This general form of the scattering matrix has also been en-
countered in recent investigations of electronic transport and
superconducting hybrid structures with small ballistic open-
ings �36–40�.

Our construction of the quantum-dynamical model is
completed by concrete specifications of the matrices R and
F���. For kL�1, Snell’s law dictates that the matrices R
and T in Eq. �11� become diagonal between states which
conserve np, while the Fresnel laws �8� deliver the values of
the diagonal elements,

Rlm = lm
�R�pl�, Tlm = lm

�1 − R�pl� , �13�

with pl given by Eq. �10�.
Concerning the internal dynamics encoded in F���, we

now follow two routes—we either employ random-matrix
theory or a generic wave-chaotic quantum map, the quantum
kicked rotator.

1. Random-matrix model

It is commonly accepted that statistical properties of wave
systems with chaotic ray dynamics are well described by
random-matrix theory. In the present case of a dielectric sys-
tem, which preserves time-reversal symmetry, this approach
amounts to assuming that F at fixed real � can be repre-
sented by a unitary symmetric matrix randomly drawn from
the circular orthogonal ensemble �COE� �34�. This substitu-
tion should best capture the statistical features of the longest-
living resonances, since in a realistic resonator ray chaos is
only established after a few internal reflections.

In general, the frequency dependence of F��� is compli-
cated. In the subsequent analysis we will only require the
local dependence around the poles of the scattering matrix,
and employ as a simple approximation
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F��� = exp�in�L̄/c�U, U from COE�M�, fixed, �14�

where L̄ is the mean propagation distance between two re-
flections. Sabine’s law of room acoustics delivers the univer-

sal expression L̄=�A /C, where A is the area of the resonator
and C is its perimeter. Our approximation entails

�2��−1 Im tr F† dF
d� =MnL̄ /2c�An� /2�c. This reproduces

the correct expression for the mean density of states, while a
more elaborate modeling of the � dependence would also
describe fluctuations around this value.

The random-matrix model of two-dimensional wave-
chaotic microresonators is obtained by combining Eqs. �12�,
�13�, and �24�. In order to simplify the notation we introduce
the quasienergy

� = n�L̄/c . �15�

This delivers the scattering matrix

S = − R + TU
1

exp�− i�� − RU
T , �16�

where U is an M �M matrix from the COE, while the diag-
onal matrix R is given in Eq. �13�.

2. Quantum kicked rotator model

The quantum kicked rotator �35� is a quantized version of
the classical standard map on the torus �q , p�� �0,1�2, which
consists of a combination of torsions p→p+q and nonlinear
“kicks” q→q+ f�p�, where f�p�= f�p+1�=−dv /dp is peri-
odic and can be represented as the derivative of a potential
v�p�. In order to break all symmetries apart from time-
reversal symmetry we employ a quantum kicked rotator cor-
responding to a torsion followed by a kick with

f�p� = K1 sin�2�p� + K2 sin�4�p + �� , �17�

v�p� =
K1

2�
cos�2�p� +

K2

4�
cos�4�p + �� , �18�

where the kicking strengths K1, K2 and the shift � are free
parameters. The classical dynamics is known to be chaotic
for K1, K2�8.

The propagator, or Floquet matrix, takes the form

Unm =
1

�iM
exp� i�

M
�m − n�2 −

iM

2
�v� n

M
� + v� m

M
��� .

�19�

The quantum kicked rotator model of a wave-chaotic mi-
croresonator follows when this matrix is introduced into the
scattering matrix �16�.

B. Resonances and the Petermann factor

We now explore the general structure of the scattering
matrix in the quantum-dynamical model and derive general
relations for the resonances and the Petermann factor.

The scattering matrix �12� diverges when the resonant de-
nominator 1−RF��� has a vanishing eigenvalue. The matrix

RF��� describes one round trip of a wave which propagates
through the cavity, and then is internally reflected at the in-
terface. This quantization condition is analogous to the
scattering-matrix quantization condition in a closed systems
�70,71�, which is recovered for R=1.

For the specific form �16� of the scattering matrix, the
quantization condition takes the form

RU�m = exp�− i�m��m, �20�

which is of the form of an eigenvalue equation with eigen-
value exp�−i�m�. The matrix RU can be interpreted as a
reduced round-trip operator. Since RU is subunitary,
RU�RU�†=RR†�1, all eigenvalues are submodular, 
exp�
−i�m� 
 �1; therefore the quasienergies �m have a negative
imaginary part, �m�−2 Im �m�0.

The subunitarity of RU furthermore implies that the right
eigenvectors �m defined by Eq. �20� are not mutually or-
thogonal. However, they form a biorthogonal set with the left
eigenvectors,

��l
�m� = lm, �21�

where the latter are defined by the adjoint eigenvalue prob-
lem

�m
† RU = �m

† exp�− i�m� . �22�

In the original variables, the eigenphases �m can be inter-
preted in two different ways: �1� They are poles �m

=n�mL̄ /c of the scattering matrix for fixed �possibly com-
plex� refractive index n but variable, generally complex �m;

�2� they deliver the threshold condition �m=nm�m� L̄ /c of a
given resonant state for real �m� and a refractive index nm
=n�+ inm� for which only the real part is fixed. For the scat-
tering matrix �16�, both problems are intimately related since
only the product n� enters the expressions. The cold-cavity
poles �m

�cold� are obtained for a real refractive index n=n�.
The threshold amplification is then given by

nm� = n� Im �m
�cold�/Re �m

�cold�. �23�

For realistic dielectric microresonators, this relation is in-
deed well established in the semiclassical limit L��
=Re � /c �72�. In such systems, it is moreover reasonable to
assume that the width of the amplification window of the
active medium is much less than the center of this window,
Re �m. Within the amplification window, the threshold val-
ues nm� then mainly depend on the imaginary part Im �m

�cold�

�−�m /2, where �m is the cold-cavity decay rate. The laser
threshold is hence determined by the longest-living reso-
nances of the cold cavity, which are characterized by a small
value of �m.

We now turn to the radiation emitted close to resonance,
brought about by steering the amplification close to the
threshold value �23�, n�=nm� +n, while keeping �
=Re �m

�cold�+� real. We combine both deviations into the
quasienergy deviation ���m+�. The scattering matrix �16�
can then be evaluated by only keeping the resonant term in
the denominator,
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S � TU�m
ei�m

e−i� − 1
�m

† T . �24�

The frequency-resolved output intensity, Eq. �6�, takes the
form

I��� �
1

2�c
K

4 sinh2�Im �m�

exp�i Re �� − exp�Im ��
2

, �25�

where

K = ��m
† �m���m

† �m� . �26�

We now can linearize in �, which produces the Lorentzian
line shape

I��� �
1

2�
K

4 sinh2�Im �m�
Re �2 + Im �2 . �27�

Since we are mainly concerned with long living resonances
in a large cavity, −Im �m=�m /2�Re �, we further linearize
the numerator and obtain in the frequency domain

I��� �
1

2�
K

�m
2

�� − Re �m
�cold��2 + ��2/4

, �28�

where the full width at half maximum is ��
=2n Re �m

�cold� /n�. The total intensity is given by

I =	 d�I��� = K
�m

2

��
. �29�

This recovers relation �2� �excluding the factor of 1/2 due to
the suppression of amplitude fluctuations by the nonlinear
feedback in the lasing regime�. Consequently, K defined in
Eq. �26� has to be identified with the Petermann factor.

Expression �26� assumes that the left and right eigenvec-
tors are normalized according to the biorthogonality condi-
tion �21�. When this condition is dropped, the Petermann
factor takes the more general form

K =
��m

† �m���m
† �m�


�m
† �m
2

. �30�

In the present, time-reversal-symmetric situation where
U=UT, the right and left eigenvectors defined by Eqs. �20�
and �22� can be chosen �via a suitable normalization� such
that �=U*�*. This relation can be further exploited by de-
composing U=VVT in terms of a unitary matrix V, which is
fixed up to transformations V→VO with an arbitrary or-
thogonal matrix O. This decomposition allows us to pass to
the symmetrized eigenvalue problem

VTRV�̃m = exp�− i�m��̃m, �31a�

�̃m
† VTRV = exp�− i�m��̃m

† , �31b�

which is solved by the right and left eigenvectors �̃=VT�

and �̃=VT�=�̃*, respectively. In terms of the symmetrized
eigenvectors, the Petermann factor �30� takes the form

K =

�̃m

† �̃m
2


�̃m
T �̃m
2

. �32�

This expression is formally analogous to expression �7� for
the Petermann factor in terms of the resonance wave function

inside the cavity, but involves the eigenvectors �̃m of the
symmetrized reduced round-trip operator VTRV. Further-
more, Eq. �32� is formally equivalent to the expression used
in earlier random-matrix theories for cavities with small
openings �44–46,61,73–76�.

IV. NUMERICAL RESULTS

We now employ the quantum-dynamical model with scat-
tering matrix �16� in order to investigate the statistical prop-
erties of wave-chaotic dielectric microlasers. For fixed values
of the refractive index n and polarization �TE or TM�, the
matrix U is either chosen as a random representative from
the COE or as the quantum kicked rotator �19�. The laser
threshold follows from Eq. �23�, while the Petermann factor
follows from Eq. �32�. In order to present the results for the
lifetimes and laser threshold we use the scaled imaginary

part �m=−2 Im �m=�mL̄ /c.
In the following we contrast the case of a relatively open

resonator with refractive index n=1.5 �close to the value of
glass� to a relatively closed resonator with n=3.6 �close to
the value of Ga�Al�As�. In the random-matrix model, the
computations are based on 105 realizations of U from the
COE with matrix dimension M =100 or M =200 �77�. In the
kicked-rotator model, the same number of matrices with
identical dimensions are obtained by varying the parameters
�, K1, and K2. We also present n-dependent averages, which
are based on 104 realizations of U in each of the models.

Figure 1 shows the probability distribution function P���
of scaled decay rates for both polarizations and the two rep-
resentative values of the refraction index. The results ob-
tained for matrices of dimension M =100 and 200 are very
close, suggesting a mild dependence of P��� on the wave-
length when the resonator size increases. For the relatively
closed resonator, n=3.6, the distributions found in both mod-
els are almost identical. For the relatively open resonator
with n=1.5, however, the limiting distribution in the random-
matrix model is distinctly different from the result in the
quantum kicked rotator model. This demonstrates that uni-
versality starts to break down as the system becomes more
open, due to the greater influence of short-time dynamics
�this breakdown has been studied in more detail for the spec-
trum and resonance wave functions of ballistic systems in
�40,78,79�, using semiclassical arguments�. On the other
hand, the characteristic qualitative features of the distribu-
tions display a robust parameter dependence. For both values
of the refractive index n and in both models, the TE polar-
ization leads to larger decay rates compared to TM. For a
given polarization, the decay rates decrease with increasing
n. Both trends are consistent with the general features of the
Fresnel laws �5�, which provide better confinement for TM
polarization, and for large refractive indices.

For each realization, the laser threshold is determined by
the extremal resonance with the smallest rescaled decay rate,
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which we denote by �0. Figure 2 shows the distribution
P��0� of the extremal decay rate for the same parameters as
used in Fig. 1. Again the results from both models coincide
for the relatively closed resonator, while for the relatively
open resonator the random-matrix model has a distinctively
more narrow distribution than the quantum kicked rotator
model. In all cases, TM polarization yields smaller decay

rates than TE polarization, which is inherited from the be-
havior of P��� in Fig. 1. The results also show a trend to
larger decay rates as the dimension M is increased. This
trend can be explained by the �hardly visible� sharpening of
the small-� flank in the distribution function P��� �Fig. 1�
when M is increased, which suppresses the tail with very
small decay rates. Such a sharpening has also been demon-
strated in the random-matrix theory of cavities with small
ballistic openings, where the distribution function eventually
becomes discontinuous �12,60,80,81�.

Figure 3 shows the average value ��0� of the extremal
decay rate as a function of the refractive index n. For this
quantity, the results from the random-matrix and kicked-
rotator models agree very well. As expected from the in-
creasing confinement, ��0� decreases with increasing refrac-
tive index n, and is smaller for TM polarization than for TE
polarization.

We now turn to the statistics of the Petermann factor.
Following the results from other variants of random-matrix
theory �44–46,61,73–76� it has to be expected that the Peter-
mann factor increases with increasing decay rate of a reso-
nance, and moreover increases with increasing number of
outcoupling channels. In the present class of systems this
number is simply proportional to M.

Anticipating these trends, we show in Fig. 4 the distribu-
tion P��� of rescaled Petermann factors �=K /M. The distri-
bution represents the Petermann factor of all resonances,
without discriminating them by width; parameters are the
same as in Fig. 1. The collapse of the curves demonstrates
clearly the linear scaling with M. Smaller Petermann factors
are observed for TM polarization and/or increasing refractive
index, which is consistent with the reduction of decay rates
�see Fig. 1�. In contrast to the distribution of decay rates, the
results from the random-matrix and kicked-rotator model
agree well for both refractive indices, indicating that the Pe-
termann factor has a more universal statistics.

Figure 5 shows the conditional probability distribution
P�� 
��, of Petermann factors with a given value of the res-
caled decay rate. We again find an approximate linear scaling
with M. The dependence on polarization and refractive index
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follows the same trends as in Fig. 4. Universality is also
present, since the results for both models are very similar.

The linewidth of the microlaser is determined by the Pe-
termann factor of the longest-living resonance, which we de-
note by K0 and refer to as the extremal Petermann factor.
�For a given realization, this is not necessarily the smallest
Petermann factor among all the resonances.� As shown in
Fig. 6, K0 does not scale linearly with M, but scales instead
with �M. This different parametric dependence can be traced
to the fact that the decay rate of the extremal resonance is not
fixed �Fig. 2�. The same parametric dependence, but as a
function of N, is also obtained in the random-matrix theory
of cavities with small ballistic openings, where N�M
�45,46�. According to Fig. 6, the details of the statistics for
the extremal Petermann factor are again nonuniversal for the
relatively open resonator with n=1.5—the distribution in the
random-matrix model is more narrowly peaked than in the
kicked-rotator model.

Similarly to what is observed in Fig. 4, the extremal Pe-
termann factor in Fig. 6 is reduced when increasing refrac-
tive index n. However, K0 displays a weaker polarization

dependence. These trends are further underlined in Fig. 7,
which shows the ensemble average ��̃0� of the scaled ex-
tremal Petermann factor �̃0=K0 /�M. This average is signifi-
cantly larger than the modal value, which is due to the long
tail in the distribution function. The average decreases with
increasing refractive index, similarly to the averaged ex-
tremal decay rate in Fig. 3. The results from the random-
matrix and kicked-rotator models converge for large refrac-
tive index.

In summary, Figs. 1–3 demonstrate that the laser thresh-
old of a wave-chaotic dielectric microresonator decreases for
increasing refractive index n and is smaller for TM polariza-
tion than for TE polarization. The threshold increases slowly
for increasing number of out-coupling modes. Figures 6 and
7 show that the Petermann factor of a wave-chaotic dielectric
microresonator decreases for increasing refractive index n
and scales as the square root of the number of out-coupling
modes, but is less sensitive to polarization. Figure 4 shows
that this behavior critically depends on the requirement to
determine the longest-living resonance, which first reaches
the laser threshold.
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For all quantities, details of the statistics are model depen-
dent for relatively open resonators, but become universal for
relatively closed resonators with a large refractive index
�for very closed resonators the results eventually converge
to the predictions of conventional random-matrix theory
�12,44–46,60,61��.

V. CONCLUSIONS

The quantum-dynamical model of dielectric microresona-
tors presented in this work addresses geometries which fa-
cilitate well-established wave chaos in the semiclassical limit
��L, where L is the typical resonator dimension and � is
the wavelength. We developed two variants of the model,
one being based on random matrix theory while the other is
based on the quantum-kicked rotator. In general, we found
that relatively closed resonators �with a large refractive in-
dex� display universal statistics while model dependence sets
in for relatively open resonators �with a small refractive in-
dex�. In the latter case the nonuniversal features even affect
long-living resonances, which classically correspond to rays
which enjoy many internal reflections at the dielectric inter-
faces.

The longest-living resonances determine the laser action
of the resonator. We concentrated most of our efforts on the
laser threshold and the quantum-limited linewidth, which
should be directly accessible in a suitable experiment. We
found that among the two competing polarizations, TM will
usually win the mode competition for the most stable reso-
nance. The threshold decreases with increasing refractive in-

dex. The Petermann factor in the linewidth also decreases
with increasing refractive index, and furthermore scales
��L /�.

Experimentally, Petermann factors of the laser mode have
been determined for various geometries in Refs. �57–59�.
Recent experimental progress �82� now makes it possible to
address the lifetime and Petermann factors of individual
resonances via direct means. These methods are not re-
stricted to the longest-living resonance, and do not require an
active medium �they, hence, also apply to passive or absorb-
ing resonators�. Such an experiment could serve to validate
the different scaling �L /� of Petermann factors for reso-
nances of a fixed decay rate.

Many microresonators of interest have a geometry which
facilitates ray chaos only in parts of the classical phase space
�4,14–23�. While random-matrix theory is not applicable to
these systems, the kicked-rotator model can readily account
for such situations when the kicking strengths are suitably
reduced. In general, Eq. �12� for the scattering matrix pro-
vides a vehicle to study a wide range of situations, including
integrable or disordered systems, by a suitable round-trip op-
erator RU. Equation �23� for the laser threshold and Eq. �32�
for the Petermann factor do not depend on the specific choice
of the round-trip operator and can serve as a starting point
for further analytical considerations.
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