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We present a full quantum mechanical three-dimensional theory describing an electromagnetic field inter-
acting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments
on light-matter quantum interfaces, where the quantum fluctuations of light are mapped onto the atoms and
back onto light. We show that the interaction of the light with the atoms may be separated into a mean effect
of the ensemble and a deviation from the mean. The mean effect of the interaction effectively gives rise to an
index of refraction of the gas. We formally change to a dressed state picture, where the light modes are
solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations
are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we
show how the quantum fluctuations are mapped between atoms and light while the random positioning of the
atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three-
dimensional theory reduces to the one-dimensional theory typically used to describe the interaction.
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I. INTRODUCTION

For several applications in quantum information science,
such as long-distance quantum communication [1], it is es-
sential to create an interface linking the photonic states used
for transmitting quantum information to a material state suit-
able for storing and processing the information. The genera-
tion of the required strong coherent coupling of light to a
single emitter has proven difficult to achieve in practice, al-
though substantial progress has been made [2-6]. In recent
years optically dense atomic ensembles has emerged as a
promising alternative [7-22]. In this approach one can for
instance use classical laser pulses to engineer a suitable in-
teraction such that an incoming light field is reversibly stored
into the coherence between, e.g., two stable ground states in
the atoms [9].

Some experiments on atomic ensembles uses atoms that
are enclosed inside a cavity to enhance the coupling [18]. In
this situation the cavity defines a unique mode of the light
field and the theoretical description consists of describing a
single optical mode coupled to the atomic ensembles. Most
experiments are, however, performed with atoms in free
space not enclosed in a cavity, and in this situation the the-
oretical description is more complicated. Typically this situ-
ation is described in a one-dimensional approximation,
where one only considers a single transverse mode and
solves a one-dimensional propagation equation for this mode
[7,12,13].

In this paper we explore the range of validity of the one-
dimensional approximation by making a full three-
dimensional description of the interaction between light and
an atomic ensemble. Our calculations directly apply to an
experimental situations similar to the ones described in Refs.
[8—11], where the light is detuned far from the atomic tran-
sition, but we expect the general features of our results to be
valid for a much broader class of problems.

Some justification for the one-dimensional description
may be found in the literature on superfluorescence, e.g.,
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Refs. [23-25]. In this context it was found that the one-
dimensional description is valid provided that the Fresnel
number is of order unity F=A/AL= 1, where A is the trans-
verse beam area, \ is the wavelength of the light, and L is the
length of the ensemble. Based on this work it has been ar-
gued that it is also necessary to have a Fresnel number of
order unity in order for the one-dimensional approximation
to be applicable to the quantum interfaces between light and
atomic ensembles [7,12,13]. It is, however, essential to real-
ize that the physical situations are very different in the two
cases. The work on superfluorescence typically concerns the
temporal distribution of the output light measured by im-
pinging the outgoing light on a photodetector. Because the
photodetector just measures the incoming flux I, this is es-
sentially a multimode measurement

1o X ald,, (1.1)

where the sum is over all modes m hitting the detector, and
each of these modes are described by the photon creation
(annihilation) operators @' (d,,). In particular the sum here
includes all transverse modes. This is in contrast to the quan-
tum interface work, where one is interested in the outgoing
state of a single light mode, e.g., in Refs. [8-11] the mea-
surement is essentially a homodyne measurement of a single
mode, defined by the field of the strong classical laser. In
other experiments the outgoing light is sent through a single
mode optical fiber, which filters out everything except a
single transverse mode. Furthermore, the superfluorescence
work applies to a nonperturbative situation with a large op-
tical gain, whereas the quantum interfaces typically operate
in the few excitations regime. The previous analysis is thus
not applicable to the present situation and it is therefore not
to be expected that the condition F~ 1 is the correct condi-
tion for the validity of the one-dimensional approximation.
In fact, the experiments in Refs. [8-10] are performed with
F~10% and still give very good agreement with the one-
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dimensional description. Here we make a full three-
dimensional description of the experiments in Refs. [8-10],
and we find that it reduces to the one-dimensional descrip-
tion in the paraxial approximation provided that F>>1.

In a related work a three-dimensional description was also
presented in Ref. [26]. Whereas our procedure assumes non-
moving atoms, i.e., cold atoms, that work considered the
opposite limit, where the motion of the atoms wash out any
spatial structure of the atomic spin state. Unlike the situation
in Ref. [26], where the motion of the atoms always lead to
certain inefficiencies, the fact that we consider stationary at-
oms, allows us to identify certain limits, where we exactly
reproduce the simple result of the one-dimensional theory as
discussed in Sec. VI B.

Our theory is developed as a perturbative expansion of the
interaction between light and the atomic ensembles. It is,
however, essential to be very careful about the way this per-
turbative expansion is performed. Below we shall present
results up to second order in the interaction between the light
and the atoms. We shall use an effective Hamiltonian, where
the excited atomic state has been eliminated, i.e., a Hamil-
tonian of the form

H~ 2 2 gin(ruy (r)a) dy, (1.2)

kk' ¢

where gy i i a coupling constant for the two modes k, and
K’ described by photon creation (annihilation) operators df(
(dy) with mode functions uy, and r; is the position of the ith
atom. If we take the mode functions to be simple plane
waves with an input field in a certain mode Kk, and calculate
the intensity in a certain direction described by k;, we find
the intensity

] x

E oAk

l

(1.3)

2 iAK-(r—r;
=E elAk (r; r_/)’
i

where Ak=Kk, —K,. The standard way to proceed from here is
to say that the exponential varies rapidly when i+ and
therefore neglect all terms except i=j so that one is left with
something proportional to the number of atoms N4, which is
known as spontaneous emission. For the problem we are
interested in here, we are, however, mainly concerned with
the properties of the light in the forward direction, where
Ak =0. In this case it seems unjustified to neglect the cross
terms which give rise to collective scattering scaling as N?.
Since N is typically a very large number, the presence of
such large N? contributions may limit the applicability of
perturbation theory.

In order to avoid the problems associated with this collec-
tive scattering, we use a different basis for our perturbative
expansion: instead of starting from the eigenmodes of the
propagation equation in vacuum, we use the solutions to the
classical diffraction problem in the presence of the medium,
i.e., we take into account that the atoms give rise to an index
of refraction of the gas, which changes the propagation of the
light. Specifically, we write the Hamiltonian as
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H: <H>atoms + 5H’ (1 '4)
where (H)4oms 18 the quantum mechanical expectation value
of the Hamiltonian with respect to the atomic spin state av-
eraged over the random positions of the atoms. This aver-
aged Hamiltonian gives rise to a continuous quadratic
Hamiltonian in the light field operators similar to a Hamil-
tonian describing the interaction with a dielectric medium.
When we formally change to the interaction picture with
respect to this averaged Hamiltonian, we obtain a new set of
basis modes. Doing perturbation theory on these modes, the
only effect on the light comes from the quantum mechanical
fluctuations and the fluctuations caused by the random posi-
tion of the atoms. These fluctuations are described by the
Hamiltonian SH=H—-(H)oms When we average the first-
order term in the perturbative expansion with respect to the
position of the atoms the resultant expression describe that
the quantum fluctuations of the atoms are mapped onto the
light in analogy with the results derived in a one-dimensional
theory in Ref. [7].

If we go to second order in the interaction, our expression
will give terms quadratic in 6H. In order to take the spatial
average of such terms we need to know the density-density
correlation function of the atoms. Inserting the density-
density correlation function for an ideal gas we no longer
find the collective scattering terms described above, i.e., the
collective scattering is essentially the classical diffraction of
the light, which is explicitly taken into account by our aver-
age Hamiltonian, and therefore it does not appear in our
perturbation theory. The spatial average of the second-order
term does, however, produce a new term associated with the
point particle nature of the atoms and their random positions.
This term is equivalent to the results obtained by just keep-
ing the i=j terms in Eq. (1.3), and represents the effect of
spontaneous emission.

Unlike most approaches to the interaction between atoms
and light, which derive coupled equations for the atomic
states and the electric field, our approach considers the elec-
tric displacement field D instead of the electric field. The
reason we chose to use the displacement field is that it is
convenient to work with a purely transverse field, which is
the case for the displacement field due to the macroscopic
Maxwell equation V-D=0, whereas this is not necessarily
the case for the electric field in a medium. Formally the two
approaches are equivalent and may be related through a uni-
tary transformation [27].

The full theory is quite involved. Readers who are mainly
interested in the consequences of our theory for experimental
implementations are therefore advised to skip to Sec. VI,
where we discuss such consequences. The sections prior to
this mainly focus on building the theoretical frame using a
first-principles strategy. The paper is organized as follows: In
Sec. IT we give the details of the model used to describe the
interaction. In Sec. III we derive a set of equations of motion
describing the system of atoms and light, using Heisenberg’s
equation of motion. The wave equation describing the light is
expressed in a form that ideally suits a perturbative treat-
ment. In Sec. IV we express the general solution to the wave
equation in terms of Green’s functions and derive the pertur-
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FIG. 1. Example of an atomic level structure. The atoms have a
single ground level with spin F and one or more exited levels. The
fields have a large detuning A so that the exited states may be
adiabatically eliminated and we obtain an effective ground-state
Hamiltonian equation (2.3).

bative expansion of the solution to the wave equations as
well as the equation describing the atoms. This is represented
in terms of Feynman diagrams. In addition we develop the
appropriate theoretical tools to describe point particle effects
such as density correlations, and derive a formal expression
for the Green’s function. In Sec. V we present our results
where we discuss higher order effects such as spin decay and
light scattering. We define operators that describe photon
measurements, and demonstrate how these are calculated in
the theory. In Sec. VI we discuss various limits where the
general three-dimensional theory reduces to the usually em-
ployed one-dimensional model [7]. We also describe how a
detailed understanding of the spatial modes can be used to
achieve storage and retrieval of information in several trans-
verse modes of light and atoms simultaneously. In Sec. VII
we conclude the work, and in the appendixes we give several
details omitted from the main text.

II. MODEL

The model we consider describes the interaction between
an ensemble of atoms and an incoming light field. The
atomic ensemble is considered to be an ideal gas of identical
atoms. The atoms are described as nonmoving randomly dis-
tributed point particles and the interaction with the light field
is described within the dipole approximation. Each atom is
assumed to have a ground level of total spin F. In addition
we assume that the atoms have no other stable ground states
to which they can decay (see Fig. 1). We shall assume that
the electric fields are sufficiently far detuned that we may
adiabatically eliminate the exited states, and work with an
effective Hamiltonian involving only the ground states. In
the following we first discuss the interaction between light
and a single atom, and then move on to discuss the interac-
tion with an ensemble of atoms.

A. Interaction with single atoms

The aim of this work is to describe the interaction be-
tween an electromagnetic field and an ensemble of identical
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atoms. The problem is therefore both to deal with the micro-
scopic behavior of a single atom, and also the collective
effect of many atoms. We choose here to work in the so-
called length gauge, where the basic interaction is given as
the product of the displaced electric field and the polarization
of the media [27,28]

Atoms
Hiw=— 2 —D(r;0)-P(r;0). (2.1)
i €o

Our gauge choice ensures V-D(r,7)=0. We will assume that
the fields have a large detuning and do not saturate the
atomic transition, so that the exited levels may be adiabati-
cally eliminated. This procedure is described in Appendix A.
The polarization of the atomic ensemble then depends lin-
early on the displaced electric field, that is P(r,?)

=‘7[j]D(r,t). We introduce here the argument J to indicate

that the interaction matrix \:/[j | depends on the spin of the
atoms. Next we write the displaced electric field as a sum of
a positively oscillating part and a negatively oscillating part,

D(r,/) =D™(r,7) + D(r,1). (2.2)

In Appendix A we show that the effective interaction Hamil-
tonian, assuming such linear dependence of the polarization
on the displaced electric field, reads as

Atoms

1 = - - .
Hiw== 7 2 [(VIIID) - DY+ D - (VILID})],
0
(2.3)

where we have also employed the rotating-wave approxima-
tion. Here the superscript ¢ denotes matrix transposition.

Since the Hamiltonian must be rotationally invariant it
can only contain irreducible tensors of at most rank 2. In the
vector representation the interaction may thus in general be
written as

VI 1= Bled? —ic d; X +e; X J)-(J; % ). (2.4)
The meaning of the notation is that when inserted into the

Hamiltonian the result of, e.g., the last term on the right-hand
side of Eq. (2.4) is

Atoms

Ber 2 D) X J1-[1;xDW (0l (2.5)

Note that we have here chosen a description which has a
simple analytical representation, but this means the ¢, term is
not a pure rank-2 irreducible tensor, but consist of a combi-
nation of tensors of rank O, rank 1, and rank 2. In matrix
form the interaction may be written as
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(co— Cz)j2 + Czj;zc
V=8| —ic .+ J,
icljy + Czjx}z

In general the atoms may have several exited levels as shown
in Fig. 1. The effect of several exited levels can be included
in the coefficients ¢y, ¢y, and ¢, that will then depend on the
detuning. For atoms with F =% or for an alkali atom, where
the fields are detuned by more than the hyperfine structure of
the exited state, the ¢, term disappears [29] and the interac-
tion matrix is given by

‘z/[j,] = B(Cojjz' - iC1jj>< ).

Here ¢, and ¢, are constants which depend on the atomic
structure as well as the detuning. The coupling constant 83 in
Eq. (2.7) is given by

(2.7)

-
T 2AK

B (2.8)

where 1 is the linewidth of the exited level, A the detuning
of the laser field with respect to the atomic transition, and k;
is the wave vector. With this choice of S the coefficients ¢,
¢y, and ¢, will be of order unity or less. Throughout this
paper we shall only consider the simple interaction in (2.7).
A discussion of the effect of the ¢, term is given in Refs.
[21,22] in a one-dimensional description.

We will consider a perturbative regime, where the product
of the atomic density p and B is small Bp< 1, and make a
perturbative expansion in B. Note, however, that this condi-
tion does not imply that the total effect of the interaction is
small. On the contrary, we are most interested in situations,
where the integrated effect of the interaction significantly
alters the light beam as it passes through the sample. To take
into account these collective effects we explicitly include,
e.g., the diffraction of the light caused by the propagation
through a medium. To describe these effects we discuss in
the following section how to quantize the field in a medium.

B. Mode expansion

To quantize the electromagnetic fields we could (i) im-
pose the canonical commutation relations on the vector po-
tential and displaced electric field or (ii) expand the electro-
magnetic fields on an orthonormal set of spatial mode
functions {f,} conveniently chosen to diagonalize the Hamil-
tonian (in vacuum this is the set of plane waves), and then
quantizing the mode amplitudes. Here we will use the latter.
The Hamiltonian describing the electromagnetic field in a
medium is given by [27]

1 D2 (VXA)?
e 2 TXA7

(2.9)
2 € Mo

) + Hint’

where H;,, is given in Eq. (2.3). A careful analysis of how to
quantize the electromagnetic field in a medium, is given in

iClJz + CszJx
2 ~
(CO - C2)J + C2Jy

—ici S+, (co— c)J* + czlg
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- icl‘]v+ C2Jz‘lx

icljx+ czjzjy (2.6)

Ref. [30], and here we shall only go through the steps briefly.
By introducing the spin field

Atoms
Jen= 2 Jor-r), (2.10)
J

the Hamiltonian may be set in an all-integral form. The main
idea in our approach is to divide the full Hamiltonian into a
spatially averaged part, and a point particle part, describing
the fluctuations from the average caused by the atoms being
point particles. For now we only consider the spatially aver-
aged part of the theory. We will use calligraphic font to de-
note that we have made a spatial average. We thus write the
spatially averaged interaction from Eq. (2.7) as

WJI1= Bp(r)leed® - ic I (r) X ]. (2.11)
Here a bar denotes a single-atom operator, that is J(r) is the
spin operator of a single atom at position r. We use the bar to
distinguish between the spatially averaged single-atom spin
operator, and the general spin field in Eq. (2.10). The two
may be related by (J(r,7))., =p(r)J(r,1), where (---),, de-
notes spatial average. The function p(r) denotes the average
atomic density, which in this model is a continuous scalar
field.

In the following we will define a mean Hamiltonian,
where we have taken into account the quantum mechanical
average of the spatially averaged interaction. We then write
the Hamiltonian as a sum of the average Hamiltonian and a
point particle Hamiltonian

H=Ho+ Hyp, (2.12)
where
1 D(MD) + MDY)  (V x A)?
HO = _f d3}” + ’
2 € Mo
(2.13)
o= 31 [ D GO LTI, 2.14)
0
and
mlJ1=VI§1-VJ]. (2.16)

Here we simply write J (without the hat) to denote that this
is now a classical field describing the classical expectation of
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the spin of the atoms. In analogy with Ref. [30] we introduce
the mode functions {f,} defined by

V XV X Mi(r) = 24, (r), (2.17a)
C

V£, (r)=0. (2.17b)

We also define the appropriate inner product on the space
spanned by these mode functions:

(p(r)|ih(r)) = f Bre(r)* - Myar). (2.18)

We will assume that the average interaction term V[ J] does
not evolve in time, and our appropriate mode functions are
therefore time independent vector fields. One can show that
the functions f), span a complete orthonormal basis for the
space in which we work. To diagonalize the Hamiltonian we
expand the vector potential and the displaced electric field in
these mode functions

D(r.0) = — > Ve (DEL(r), (2.19a)
k
A1) = Vo) (1 = VIDf(X).  (2.19b)
k

The minus sign in Eq. (2.19a) is conventional and stems
from the relation between the displaced electric field and the
canonical conjugate field given in terms of the vector
potential.

The reality condition on the displaced electric field
{[D(r,t)]'=D(r,#)} allows us to write the following:

(1.0 == 3 2UpLOR) + O (2.20)
k

Using the results in Eq. (2.18) and the expansion in Egs.
(2.19), the Hamiltonian attains the desired diagonal form

- ¥ 2
Ho:%f d3r<1)(1 AIDD (¥ A) )

€ Mo

= Slon0 id0a0]l. 21
k

The mode functions {f} are thus the spatial basis diagonal-
izing the spatially averaged Hamiltonian, and as we shall see
the proper basis describing the diffraction problem.

The splitting in Eq. (2.12) allows us to consider the prob-
lem as comprised of two types of properties. The effect of
single atoms, and the spatially averaged Hamiltonian. The
effect of the spatially averaged Hamiltonian is well under-
stood in terms of the mode functions defined in Eq. (2.17).
The point particle effect we will discuss in greater detail
when considering the equations of motion for the full sys-
tem. Before deriving these equations of motion we, however,
briefly need to discuss the commutation relations describing
the system.

PHYSICAL REVIEW A 77, 013826 (2008)

C. Quantization and commutation relations

Above we expanded the fields in convenient spatial
modes. The coordinates py(7) and g () are canonically con-
jugate variables, and we can thus quantize our theory by
imposing the commutation relations

[gx(0).p ()] = iR S -

It will however be convenient to have the commutation rela-
tions for the fields which we may derive from the mode-
amplitude commutation relations. It will also be convenient
to separate the displaced electric field into a positively and a
negatively oscillating part D=D®+D®), where D) is in
accordance with convention chosen so that it only contains
terms oscillating like e/, Our choice of gauge is reflected
in the transversality of the mode functions defined in Eq.
(2.17). We expect this transversality condition to be repre-
sented in the commutation relations as well. With the quan-
tization procedure above one finds the following expression
for the negative frequency part of the relevant fields:

(2.22)

POr, z)——ZE 2€o 4t R (r),

)(r ) = EC / ,U«OAT Iwkt —ﬁJ])IﬁZ(r)
k

(2.23b)

(2.23a)

The positive frequency part may be found by Hermitian con-
jugation. The above result is found from Eq. (2.20) along
with the definitions of creation and annihilation operators
given by

qk(t) - V (ak(t) + 2 Ukk,ak,(t)) (2243)

hay s
D) =i\ @) = 2 Unedie (D), (2.24b)
kl

where the matrix Uy, is defined as

Upr = f ErMfy(r) - i (r). (2.25)
A detailed discussion of this procedure is found in Ref. [30].

From these definitions and the commutation relations
(2.22) we obtain

[ (0, ()] = - (2.26)
Going to the field operators we obtain
(DY (r,0),AD(r',1)]=0, (2.27)
5D(p ). AC) i =
[D™(r,1),A (r’,t)]=55 (r.r'), (2.28)

where
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&(r,r') = 2 () [ ME ()], (2.29)
k

Here &'(r,r') is a generalized transverse & function [30].
This may be seen by considering its action on some trans-
verse vector field [V-¢(r,1)=0]. Since {f,} is a complete
basis on the set of transverse fields, we may expand ¥(r,?)
as

W(r,0) = >, Cu(D)f(r). (2.30)
k

If we calculate the effect of the transverse 6 function on a
transverse field we find

fd3r’ S (r,r') - g’ ,1)

= f &Pr' Y, GO (r)

kk'

XMt () - B0 i (1) S = 9r.0),

kk’
(2.31)

where we have used the orthonormality condition of the ba-
sis functions.
We shall also need the equal-space commutation relations

[D%(r,0,0(r,)].
A formal expression of this commutation relation can be
found from Eq. (2.23a) to be

[DP(r,), D (r,1')] = ?”F)(r,t,t'), (2.32)

where

7, 0,t") = ) i (r)f(r)e ekt (2.33)
k

In vacuum 7(r,?,t') is simple to evaluate, but for complex
systems it is nontrivial to gain knowledge of the basis func-
tions {f,}. In Appendix B we calculate 7 using the rotating-
wave approximation and the local density approximation,
where we assume that p(r) varies slowly with respect to r.

III. EQUATIONS OF MOTION

In this section we derive the equations of motion for the
system, and consider their general properties. In the preced-
ing section we discussed that the theory could be divided
into an average part and a part representing the deviation
from the average. To derive the equations of motion we will,
however, work with the full Hamiltonian and later make the
splitting into the average part and the deviations from it. The
strategy we will use is to first derive the quantum mechanical
Maxwell equations, and then to combine them into an effec-
tive wave equation for the field.

We will now, as an example, derive one of the quantum
mechanical Maxwell equations from Heisenberg’s equation
of motion,

PHYSICAL REVIEW A 77, 013826 (2008)

i
2h g

() = <7 D(r)]= f PV X A)P.D()
3 i
- 2huo

f Er{[V XV xAr)] [AX),D()]

+[A@).D@)]-[VXVXAE)]. (3.1)

Here we have used the Hamiltonian given in Eq. (2.9), and
the boundary condition that the physical fields vanish at in-
finity. To shorten the notation we have suppressed the ex-
plicit time dependence. The commutation relation may be
found from (2.27) and (2.28) to be

[AG),D(r)] = - ind (r,r"). (3.2)
Since the field V X A is transverse by definition, this gives us
the first quantum mechanical Maxwell equation

1ﬁ(r)=iv X B(r), (3.3)
dt Mo
where
B(r)=V X A(r). (3.4)

Similarly we may derive the Maxwell equation VX E
=—¢9,]§, where E=—dA/dr=D-P. The remaining Maxwell
equations V-B=0 and V-D=0 follow immediately from the

definition of B in Eq. (3.4) and from the transversality of D.

Because of the nature of the interaction part of the Hamil-
tonian, it is convenient to consider the two frequency com-
ponents of the displaced electric field separately. The quan-
tum mechanical Maxwell equations may be combined into a
single wave equation

d .
(E +2V XV X )D(_)(r,t)

= czf Prv X Vx &er') - V[JIDOw 1), (3.5)
where the positive frequency part can be found by Hermitian
conjugation. Similarly we may derive equations for the spin

of the atoms, and for the simple interactions given in Eq.
(2.7), one finds

ij(r,t) = wﬁj(r,z) X [D(r,1) X DD(r,n]. (3.6)
dt ﬁfo

In the remainder of this paper we will solve these coupled
partial differential equations.

The expression in Eq. (3.5) is a second-order differential
equation in time. The solution of this equation will in general
not only depend on the initial value D(r,z=¢,), but also the
time derivative &,D(r,t)|,=,0. In deriving our interaction we
have, however, already used the rotating-wave approxima-
tion, where we ignore the dynamics on a time scale similar to
the inverse of the optical frequency. Similarly we shall here
make a slowly varying envelope approximation and write the
displaced electric field as
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D(r,7) = DO (r,1)e’' + DW(r,1)e 1!, (3.7)

where D) are slowly varying in time. If we ignore the
second derivative of the slowly varying operators ((fﬁ(i)
X(r,t)=0), then Eq. (3.5) reduces to a first-order differen-
tial equation in time.

Since we are heading toward a perturbation theory in the
point particle part of the Hamiltonian (2.12), we will add and
subtract the average part of the source term in Eq. (3.5). That
is we write

VI =V -V + VI =m[J1+VI].  (3.8)

The idea in this separation is that now ﬁ[J] represents the
average effect of the ensemble, which may have a big effect,

whereas n=1[j ] represents the fluctuations around this average.
To take advantage of this we first consider the average term

j Brv XV X &lr,r) VIDOw',). (3.9

This term is continuous and we may use partial integration 2
times. Using the expression for the general transverse & func-
tion one finds

fd3rV XV X &l(r,r') - VID ' ,1)

=V X VX VJID(r,0). (3.10)

We move this term to the left-hand side of Eq. (3.5), and we
are left with a diffusion equation involving only the fluctua-
tions as a source term on the right-hand side,

d =\~
<2iwLE - wi+ *V XV X M’)D(_)(r,t)

=c2f &rv XV x ST(r,r’) m[JIDO(x 7).

(3.11)

If we set the right-hand side of this equation to zero, i.e.,
ignore the fluctuations, this equation describes the propaga-
tion and diffraction of the field in a medium. For instance if
we take the simplest case where the medium is isotropic so
that the matrix V[J] is just a scalar, this equation describes
the propagation through a medium with an index of refrac-
tion given by n=1/\1-M[J], see Ref. [30].

IV. GENERAL SOLUTION AND FEYNMAN DIAGRAMS

In this section we discuss the solution of Eq. (3.11) in
terms of its Green’s function. Let us for convenience define
the differential operator

d =
D=2ide—t—w§+c2v X V X M'(r). (4.1)

We then define the Green’s function by
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DGO 1,1|rg,10) = 8 (x,10) St — 1,).

(4.2)

The right-hand side of this equation describes an identity
functional on the inner product space we are working in. We
want the Green’s function to describe an evolution of the
system forward in time. We therefore define a cutoff on the
Green’s function in time

G:(‘)( r,t

ro,to) =0 for < 1. (43)

The general solution to Eq. (3.11) in terms of Green’s func-
tions is discussed in detail in Appendix C, and reads as

D(r,7) = 2iwa d3r’/\=/l'(r’)G=(‘)( r,t

I _
+ CZJ f &r'dt’ M'(r")
1o

r’,t’)-fd3r”V' XV’

r', 1) - ﬁ(‘)(r’,to)

X(z}(‘)( r,t

x &(x',r") - m[JIDO",1"). (4.4)
The upper limit is understood to be r*=lim,_,(¢+ €). Before
continuing a few comments are in order. Here we have used
the boundary conditions, that all fields vanish at infinity, i.e.,
we imagine that at time r=0 we have generated an optical
pulse inside the volume we are describing, which travels
toward the atomic medium. Alternatively we could have de-
scribed the incoming field by a boundary term. The positive
frequency part may be found by Hermitian conjugation.

Let us now consider the last term of Eq. (4.4). We notice
that the involved fields are all continuous and differentiable
with respect to the primed spatial coordinates. Using partial
integration 2 times and introducing the propagator defined by

PO(r e’ 1) =V X V' X M(x")GO(r,1r' 1)
(4.5)
the last term of Eq. (4.4) may be written as
! =
of [ var [ aosoresees
lo
() - w1 ). (4.6)

Due to the cross product in Eq. (4.5) the propagator is trans-
verse with respect to primed coordinates and the transverse &
function in (4.6) may be integrated out, giving

[ —
cZJJ d3r'dt’f_’(_)(r,t
I

We denote the first term on the right-hand side of Eq.
(4.4) as D (r, 1),

v’ t) - m[JIDOC ). (4.7)

013826-7



MARTIN W. SORENSEN AND ANDERS S. SORENSEN

r', 1) - ﬁ(‘)(r’,to).

ﬁ(()_)(r,t) = 2iwLJ d3r’1\71’(r’)G=(‘)( r,t
(4.8)

If there were no deviation from the mean, i.e., m[J]=0, the
solution would simply be ﬁ(')(r,t)=ﬁf)')(r,t). ﬁg_)(r,t) thus
denotes the solution to the diffraction problem, where the
atomic medium is treated as a continuous medium with a

diffraction matrix M.

A. Perturbative expansion

Below we shall develop a perturbative expansion in the
deviation from the mean due to quantum fluctuations and
from the fact that the medium is not continuous but consists
of a large number of point particles. The starting point for the
perturbative expansion will be the field equation

t
ﬁ(_)(r,t) — ﬁg)_)(I‘,t) + CZJ f d3rrdtr
lo

XPO (e’ 1) - m[JTDO 1),

(4.9)

In addition to this we shall also need the solution to the

RARAPRARAS

and the spin equation is represented as

=#.:

The orientation of the diagram is such that time is going
from left to right, and the evaluation at time ¢ is marked by a
dot. Spin propagation is represented by a line with an arrow
pointing in the positive-time direction. A wiggly line repre-
sents propagation of the displaced electric field. The arrow
denotes whether the line represents the photon-generating

part of the field, ﬁ(‘)(r,t), where the arrow points forward in
time, or the photon-annihilating part of the field, where the
arrow points backward in time. The full solution to the spin

j (¢) is denoted with a double straight line, and the full solu-
tion to the displaced electric field is denoted with a double
wiggly line.

The field equation and the spin equation can be repre-
sented as a perturbation series, and in the following we shall
discuss the effect of the terms in this perturbation series. An
important feature of our system is the random distribution of
the atoms in the ensemble. The equations that we have de-
rived so far apply to each realization of the atomic distribu-

= ANANBEBANNL +
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equations of motion for the spin (3.6), which may be for-
mally solved to give the spin equation

. t
Je,0)=J(r,1) + fif ar'J(r,t")
1

€ o

X [DO(r,t') X DP(r,1)]. (4.10)

These are the equations we wish to treat using the Born
approximation, where we make an expansion in the interac-
tion parameter B. [In Eq. (4.9) the interaction m[J]' is pro-
portional to the expansion parameter 3.]

In terms of notation this expansion gets extremely cum-
bersome. It is therefore convenient to introduce Feynman
diagrams to represent the various terms of the expansion. We
will be dealing with two types of interactions: the one given
in Eq. (4.9) which we will represent with a shaded circle, and
the one given in Eq. (4.10) which we will represent with a
shaded triangle. We diagrammatically represent the field
equation as

(4.11)

(4.12)

tion {r,,r,,...,ry}. However, since we have no control of
the position of the atoms we must make a spatial average of
our equations, that is of the terms in the perturbation series.
To do this we need to know the density correlations of the
gas.

B. Density correlations

We assume that we are dealing with an ideal gas, i.e., we
assume that the distribution of the atoms is completely ran-
dom but has a distribution given by the possible spatially
varying density p(r), and we assume that there are no corre-
lations between the positions of different atoms. The corre-
lation function for the density distribution p(r)=%,8(r-r,) is
thus
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(p(r)p(r))sa = <E Ar—r;)dr' - rz)>
jl

s.a.

= 2 (S -1)8r' - 1)),

Jj#l

+ 2 3 —r')(8r = 1)),
J

= <p(r)>s.a.<p(r,)>s.a. + 5(1‘ - r,)<p(r)>s.a.'
(4.13)

Here (---),, denotes spatial averaging. In the last step we
used that the distribution is independent for different atoms,
and we ignored the small difference between N; and
N,(N,—1), where N, is the number of atoms. We have also
neglected the effect that two different atoms cannot be found
at the same point in space. While this may seem insignificant
for a low density gas, we show in Appendix D that including
this effect to all orders in the perturbation series gives the
Lorentz-Lorenz correction to the index of refraction.

Below we shall also use the correlation functions for the
spin. Similar to the calculation above we find

(T (000 = p(0)p(r") T, ()], (x")

+ p(r) 5(1' - r,)jn(r)jm(r) ) (4 14)

where the index n,m refer to the spatial components of the
operators. To shorten notation we have written p(r) instead
of {p(r)) . As discussed previously, the bar denotes a single
atom operator. We will preserve the quantum mechanical be-
havior of the operators by not taking the quantum mechani-
cal mean. The first term on the right-hand side of Eq. (4.14)
arises from the contribution from different atoms (signified
by the prime on the second spin operator). In the second
term, on the other hand, the two operators refer to the same
atom, and the operator product should be evaluated for a
single atom. For example, for a spin-% system, we have the
following relation between products of spin operators on
single atoms:

i

Tu(0)J,,(r) = Eenmljl(r)' (4.15)

The generalization to even higher order density correlations
is straightforward.

These considerations become important when we calcu-
late the spatial average of the second-order terms of the per-
turbation series. Let us, as an example, consider the second-
order term of the spin equation representing a photon first
interacting with one atom and then later with the atom in
consideration,

PHYSICAL REVIEW A 77, 013826 (2008)

(4.16)
When taking spatial average, this term generates two terms
in the perturbative expansion as indicated with the arrow in
Eq. (4.16). The first term involving the spin of two different
atoms is referred to as a coherent interaction, which we will
discuss later. The second term involving the J function cor-
responds to the incoherent interaction (for reasons which will
become clear below). We include this situation in the dia-
grammatic notation by introducing a hatched star and a loop
signifying the infinitely short propagation stemming from the
S-function term of the correlation function equation (4.14),
ie.,

f d3rf=’i( rAr’,t) - (r',t)o(r-r')

:};i(r,t

r,t') - (r,t').

The loop is placed on the top of the star when it comes from

(4.17)

the positively oscillating propagator I§<‘), and in the bottom
of the star when we refer to the negatively oscillating propa-

gator P, A star scales with the expansion coefficient B8
squared since it involves two interactions. In the next section
we will calculate the infinitely short propagator appearing in
these expressions in the local density approximation.

C. Green’s function and propagator

In this section we first derive a formal expression for the
Green’s function. Within our inner product space the Green’s
function is defined by (4.1) and (4.2). Expanding our Green’s
function in the basis f,(r) we find the representation

Gz(‘)( r,t

r'.1') = 2 () r).  (4.18)
k

We have here expanded on the complex conjugated set fy(r)
to match the expansion of the displaced electric field in Eq.
(2.23a). The transverse & function has the representation

(r.r') = 2 f(Ofi (), (4.19)
k

where we are now working in the inner-product space with
inner product defined in Eq. (2.18). The scalar function
g:(_)(t,t’) is defined by

d
(2;@5 —w wi)gfj(t,;') =8t-1t), (4.20)

along with the condition that the function g, (7,7") vanish for
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t<<t'. We will consider the following form of the scalar func-
tion, where we explicitly write this cutoff in terms of a step
function

g(0,t') = Cen Ot - 1"). (4.21)

The coefficients 7y, and C is found by inserting this result
into Eq. (4.20).

2 2
o= L~ o~y (4.22a)
2(1)L
_ (4.22b)
- ZwL ' '
The Green’s function is thus given by
_ . ei(wk—wL)(t—r’)
G(r,tr 1) == i, £ (0)f (r) O(t-1').
k WL
(4.23)

Next we will look at the infinitely short propagator in Eq.
(4.17). Using the Green’s function given in Eq. (4.23) along
with definition (2.17a) and (4.5) the propagator may be writ-
ten as

E ity (0 (r)el o=,

(4.24)

where we have omitted the step function since it automati-
cally gives unity for the integration limits we are using here.
We will now relate this infinitely short propagator to some
already known parameter. If we go back and consider the
general result for the equal-space commutator, this may in
terms of the basis functions {f,} be written as

~ ~ h , ; ,
B0, D9(r,11)] = = Z2S, a0 r)el o))
k

(4.25)

Comparing with (4.24) we immediately get a formal relation-
ship between this commutator and the infinitely short propa-
gator

(% - iwL)[5(‘)(r,t);ﬁ(+)(r,t’)] =

(4.26)

Using Eq. (2.32) this relation can also be written as

1 (d -
P (rdr,t') = <d - iwL) 7' (r,t,t').  (4.27)
To illustrate how the indefinitely short propagator enters
into the equations we will again consider the second-order
term in the spin equation represented in Eq. (4.16). The term
prior to spatial average is given as
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ey f dr'J x (ff dt"d*r'[PO(x,t'|r' 1)
ﬁEO 17

. Iﬁ[j]lﬁg_)(r’,t")] % ﬁg+)(r’[/)).

0

(4.28)

After spatial average we get two terms, representing the co-
herent and the incoherent interaction. The incoherent inter-
action may then be written as

lﬂclf dr' f dl‘”J(r) % |:< le)[’)]H(l'[ trl)vt[J]

XD (r,1")] X ﬁf{“)(r,t’)] : (4.29)
To simplify notation, we have signified spatial averaging
with calligraphic letters, e.g., {D(r,?)),, =D(r,t). This con-
vention will be used in the remainder of this paper.

We have now developed all the necessary theoretical tools
to describe the system. In the next section we shall use these
tools to discuss a perturbative expansion of the evolution of
the system.

V. TIME EVOLUTION

This section is divided into three parts. In the first part we
examine the general behavior of the atomic spin in the pres-
ence of a light field. The aim is to understand the effect of
the loops introduced in the Feynman diagrams. In the second
part we consider the light field and we show how the theory
introduce a decay of the field strength of the light as it inter-
acts with the atoms. Again this is connected to the loops
introduced in the Feynman diagrams. Finally we will intro-
duce and discuss Stokes operators, which are the appropriate
operators for describing the experiments in Refs. [8—10].

A. Evolution of the spin

In this section we will consider the spin equation in detail
for the simple interaction (4.10). We will begin our analysis
by considering the first-order term in the perturbative expan-
sion of the solution to the spin equation, formally given by
the diagram

(5.1)

This term gives no extra contributions when doing the
spatial averaging, and we readily write the expression de-
scribing this term,

ifcip(r)

t
. dt' J(r,10) X [DS)(r,1") x DS (r,1")].
€

(5.2)

We now continue with the second-order terms represented by
the following Feynman diagrams:
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e

When taking spatial average of these terms, we have argued
that the first two diagrams will give an additional set of
Feynman diagrams containing loops and stars. It still remains
to consider the last diagram of (5.3), representing two pho-
tons interacting with the same atom at time ¢ and ¢’. In this
diagram it is necessary to pay special attention to the case
where the two interactions happen at the same time r=t¢'.
The contribution of this term is proportional to
DOYDH (YDt YD™(¢') which is not normal ordered,
and it will be convenient to separate it into normal-ordered
terms. When commuting D(r,#’) and D™)(r,1’) we once
again get an infinitely short propagator, cf. (2.32). This extra
term will be denoted by a filled star with a loop. This com-
mutator term will produce an interaction which is linear in

The interpretation of the diagrams is given below.
To simplify the expression we will make the slowly vary-
ing envelope approximation which simplifies Eq. (4.27) to

—iog -, '
r,t') = r,.,t').
)= S i)

f’(‘)( r,t

(5.6)

Second, we shall evaluate 7 in a local density approximation,
where we assume that 7(r,z,7') is the same as if we were in
an infinite medium with a constant density p(r) and spin
density J(r). By doing this we ignore the reflection of the
field on the surface of the ensemble or other inhomogene-
ities. The infinitely short propagator which expresses the am-
plitude for the field to be found at the same position at some
later time, therefore becomes a & function in time. This ap-
proximation is valid provided that the diffraction matrix
M(r) varies slowly on the scale of the wavelength of the
light. Furthermore, 7(r,z,t') also contain the Lamb shift
which we ignore for simplicity. A detailed calculation of 7 is
presented in Appendix B, where we find

PHYSICAL REVIEW A 77, 013826 (2008)

(5.3)

the field intensity (involves DD™), whereas the normally
ordered term (DODEODHDH) will be quadratic in the in-
tensity. Ignoring for now this quadratic term as well as the
coherent interactions, the second-order diagrams for the spin
equation after spatial average reads as

(5.4)
which can also be written as
X ——e (5.5)
I
. or) 0 0
- —idt—t'
PO (rdr,t) = # 0 e.(r) —ier(r)
0 ior(r) o.(r)
—i8(t-1") =,
=—= A0, (5.7)

where the coefficients ¢, ¢, and @ may be found in Eq.
(B13). Here the result is given in a Euclidean basis, where J
is assumed to be along the x axis. The result may also be
expressed in a coordinate-independent form as

—io(t—1t'
r,t’):#

PO(r {lo () -ivr)jx ]

+[or) -, LG )} (5.8)

where j is a unit vector parallel to J. This infinitely short
propagator is inserted into the second-order terms in the spin
equation. The second-order incoherent interaction given in
Eq. (5.5) then reads
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2 [t _ _ _ =
e J dr' (clcojz[A(‘)Df)‘)(J DY) - DS - ADD)
€ Jy,

2
cT = _ =
+Hel+ JHADDPF - DY) - (D - DF)AT

~T{ADIDOT - DY) + DT - AODS) + H.c.]) ,
(5.9)

where we have suppressed the space and time dependencies.

In the simple case, where the matrix A s proportional
to the identity matrix (er~0, 0= @ =0), which is the case
to lowest order, the terms proportional to cc, cancels and
the expression reduces to

Bl [ O OV 4 T @)
- 5| i@ DI+ DT DY) + Hel.
0

To

(5.10)

This term scale with the power of the incident light, and
linearly polarized light, will affect the spin component par-
allel to the field with 2 times the rate than the perpendicular
spin components. To see this we may introduce a decay rate
I'p, and write expression (5.10) in a differential form, we
thus see that the term indeed describes a decay of the spin
components

dJ.=-2IpJ, (5.11a)
9d,=-TpJ,, (5.11b)
aJ.==Tpl,, (5.11c¢)

where
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220
o= 0400,
and where we have assumed that the light is linearly polar-
ized in the x direction.

Let us now turn to the coherent part of the interaction
represented by the Feynman diagrams in Eq. (5.3). The first
two terms containing a dot are by construction very small,
and will vanish when taking the quantum mechanical aver-
age, as discussed in Sec. IV B. The only important second-
order coherent interaction is therefore the following Feyn-
man diagram for normal-ordered fields:

(5.12)

Suppressing the spatial dependence of the displaced electric
field, this normal-ordered coherent interaction is given in
vector representation by

2 2 rt
- % di'{D§ (¢ [DG (1) - DE(¢)]Jo - DF(1)]
01
~[D§@) - DY ()T - DY 1D () + He.}.
(5.13)

In the case of linearly polarized light, say ﬁf)_)llex this term
vanishes, but this is in general not the case. In Sec. VI we
examine the term in some simplified system.

B. Evolution of the light

The treatment of the displaced electric field is similar to
the spin, but there are a few important differences. Let us
consider the negative-frequency part of the field, and write
the expansion of the displaced electric field ignoring for now
the evolution of the spin

TN LT,

When we take spatial average of diagrams such as these, we
introduce J-function correlations between vertex points. So
far we have treated the atoms in the ideal gas approximation,
where we ignore any correlation in the position of the atoms
but in reality we should include a short-range correlation
function describing that two different atoms cannot be at the

(5.14)

same position. In Appendix D we show that including this
leads to the Lorentz-Lorenz or Clausius-Mossotti relation. In
the following we will only discuss loops, where two con-
secutive vertex points are evaluated for the same atom. Since
we have subtracted the quantum mechanical average from
the vertex, no first-order vertex will give a contribution to the
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evolution of the light, and therefore these second-order loop
diagrams are the most important effects apart from the dif-
fraction effects included in the mode functions {fq}. Later in
Sec. VD we shall discuss the operator nature of the light
field and then we keep the first-order vertex in the calcula-
tions. In the current approximation, Eq. (5.14) reduces to

(5.15)

We have here introduced an interaction denoted by a hatched
pentagon which scales with 82pk L3 , and describes two 2
connected by the infinitely short propagator. Using the re-
sults for the infinitely short propagator, and taking quantum
mechanical average this interaction reads in matrix form as
follows:

Q = iﬂQp(I‘) 0 FJ_)l(r) sz(r) = i'/\jllt(r)’

0 —in(r) Fl72(r)
(5.16)
where the coefficients entering the matrix are given by

[y(r) =cgd*e +cie (2 +73), (5.17a)
T 1(0) = cgJ*o, +2coc,0rd% + el + @ L),
(5.17b)

T o(r)=cgdte, +2coci0rd?], + clleds + 0,77,
(5.17¢)

2
c
Ip(r) = Q¢26’1C0J2]x - QHEIJx + QF(CSJZ + C%szc)'

(5.17d)

We have here suppressed the spatial dependence to shorten
notation. The series in Eq. (5.15) can be included in the
differential equation describing the displaced electric field,

d - - _
(21'%5 —wj+2V XV X[M(r) + i/\/l”(r)])D(‘)(r,t)

= czf &Prv XV x &r,r')- m[JT DO 1),

(5.18)

where the perturbation is modified accordingly. Because of
the anti-Hermitian matrix, we see that these types of loop
diagrams correspond to a decay of the field, i.e., the differ-
ential operator on the left-hand side describes the propaga-
tion through a lossy medium. On the basis of this analysis
and the analysis in Sec. V A we thus link the loops in the
Feynman diagrams with the decay associated with spontane-
ous emission.
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It remains to discuss the effect of light interacting with an
atom that was previously subject to an interaction such that
the atomic spin state has been changed. In terms of Feynman
diagrams this is described as

(5.19)

We shall postpone the analysis of this term and discuss it in
connection with relating the fields to photon counting opera-
tors below.

C. Photon counting and Stokes operators

So far we have mainly been concerned with calculating

the field D(r,7). For experiments which eventually involve
counting photons we are more interested in quantities such as
photon flux, and in particular the flux in some particular
polarization state. We shall now discuss how to describe such
photon counting experiments within our theory.

The general idea in this section is that we shall assume
that we are able to measure the light flux in a certain spatial
mode by projecting the light field onto the mode and then
integrating the flux of the light field at some detector plane,
that we assume to be far away from the atomic ensemble. We
will formulate such a measuring process in terms of an inner
product,

{e(r,0)|ih(r,1))) = f dt J - d’r @' (r,1) - (r.1).

(5.20)

We assume that the fields in general have some axis of
propagation say r;. The spatial integral is then performed in
some plane perpendicular to this axis at some point r; on this
axis. This measuring process could be realized by, e.g., send-
ing the light field through a single mode optical fiber prior to
detection.

We are interested in the polarization of the field which is
conveniently described by the so-called Stokes operators de-
fined below. These operators can be derived from a Stokes
generator defined in a bra-ket notation by

S = DO, ))ND(r,1)

which we represent as the following diagram:

, (5.21)

(5.22)

Measuring certain light modes according to the inner product
in Eq. (5.20), correspond to picking out a certain matrix el-
ement of the Stokes generator. As an example we assume
that in some experiment we are able to measure the photon
flux of some linear polarization in some mode say fq,x(r,t)
after the interaction with the atoms. The time dependence is

here fq’x(r,t)=fq,x(r)e"'(“’qu“"L)’. The integrated photon flux
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measured at the detector plane, is then given by

27 = -

(gl S IEg.0).

5.23
heywy ( )

where we normalize the outcome to count the number of
photons. We have here taken a spatial average of the Stokes
generator as indicated by the calligraphic font.

Expanding this operator to second order, gives an addi-
tional term not covered by the analysis above. This extra
term describes a process where both the negative frequency
part and the positive frequency part of the displaced electric
field interacts with the same atom. This extra term comes
from the following contribution to the Stokes generator:

(5.24)
When taking the spatial average of this term we again gen-
erate a term representing that the interaction happens at the
same point. This particular term would not have been there if
we only considered the spatial average of the displaced elec-
tric field. The generated term we will illustrate as

s.a. +

(5.25)
We constructed the interaction represented in the Feynman

diagram as a gray circle, such that when taking the quantum
mechanical average the term vanishes. The new term gener-
ated when taking the spatial average, given as the lower
right-hand diagram of Eq. (5.25), describes the square of the
fluctuations which is not vanishing. This was also the case
for the terms containing the infinitely short propagator. The
new term however differs from the second-order terms con-
taining the infinitely short propagators because here we need
to use the full macroscopic propagator. To calculate the ef-
fect of this term in detail, we therefore need to have an
expression for the spatial modes describing the system. We
will consider this term for a simplified system in Sec. V D.

To describe the experiments in Ref. [10] it is convenient
to define a set of polarization-dependent photon counting
operators denoted as Stokes operators. These are defined in
accordance with Eq. (5.23) as

s ——<<<f*| SN - (@l SIE.  (5.268)

Rl ——(<<f |S [£0)+ (| S [E)).  (5.26b)
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= () S B~y S, (5:260)

where K= hE o . Using commutation relations for the creation
and anmhllatlon operators these Stokes operators are seen to
have the commutation relations for angular momentum op-
erators,

[Aqq q,q’] (5.27)

!
- 4.9
= 1€ymiS)

We will calculate and discuss these Stokes operators to sec-
ond order in the coupling coefficient B in the following.

D. Calculation of Stokes operators

In this section we shall calculate the Stokes operators to
second order. In the experiments in Refs. [8—10] the Stokes
operators are measured by sending the light onto polarizing
beam splitters followed by a measurement of the difference
in the intensity of the two outputs. For instance, if we take
the indices q and q’ to refer to the x and y polarizations of
the light, the operator §7” in Eq. (5.26) can be measured by
measuring the difference in the intensity of the x and y po-
larizations. The remaining operators §5” and §3” can, respec-
tively, be related to the difference intensity with the polariz-
ing beam splitter rotated by 45° and the difference intensity
between the two circular polarizations. For a general light
beam, however, diffraction will cause the polarization of the
light to depend on the spatial position and there is no well-
defined polarization. The simple measurement scheme is thus
only applicable in the paraxial approximation, where we can
separate out a position-independent polarization vector. Far
away from the ensemble we will therefore assume a paraxial

approximation. That is, the mode functions fq(r,t) and

fq,(r,t) describing the Stokes operators far away from the
atomic ensemble resemble plane waves with transverse pro-
files that change slowly compared to the wavelength. The
detector plane is placed far away from the atomic ensemble,
and at this plane we will assume that the general set of basis
functions {fg} can be approximated as

1 )
f,(r)= FUn(rl)eje'kz (5.28)
N2

We have here set the direction of propagation to be along the
z axis. The index q is now given as the set q=(k,n,j), where
k is some wave number, n is an index referring to the trans-
verse shape of the mode described by the scalar field U,(r),
and j describes the polarization of this mode, that can be
either x or y polarized. The completeness relation equation
(2.29), and orthonormality condition in this approximation
thus gives
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> Ui(r )U,(r")=8r, -r), (5.29a)

J dzrj_ U:(rJ_)Un’(rJ_) = 5}1}1” (529b)
and the dispersion relation equation (2.17a) at the detector
plane is w3=c2k2.

The paraxial approximation above is convenient for ex-
pressing the measured observable in terms of the polarization
of the field, but may not be sufficient to accurately describe
experiments, where tightly focused beams are used. We shall
therefore only assume this approximation to be applicable far
away from the sample, and not necessarily inside the en-
semble. Physically this could correspond to a situation,
where an initially paraxial beam is focused onto the en-
semble with a lens and converted back into a paraxial beam
after the interaction by another lens, as shown in Fig. 2. A
similar treatment was used in Ref. [31].

Inside the ensemble we make the much weaker approxi-
mation that the set of spatial mode functions U,,,(r) is inde-
pendent of the polarization of the field, so that the set fy(r) is
given by

fy(r) = %Unq(r)ej(r). (5.30)
N2

The mode U,,(r) now takes into account that the spatial
shape of the beam may change through the ensemble, and
likewise the polarization vector ej(r), which we shall assume
to be real valued. The index j will still be either x or y,
corresponding to the polarization of the mode far away from
the sample, but the vector e;(r) will not necessarily be par-
allel to the x or the y axis. A more general description of the
mode functions would include a dependence of the polariza-
tion vector e; on the polarization state U, (r), i.e., €,,(r).
The correction this generalization gives to the Stokes opera-
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FIG. 2. (Color online) Schematic setup. We assume that away
from the ensemble, the light-mode resembles a plane wave with
some transverse profile. A set of lenses focus the beam down into
the ensemble.

tors, is presented in Appendix H, in relation to Sec. VI C.
When we make the relevant calculations to describe the
Stokes operators defined in Eq. (5.26), we will choose to
consider modes corresponding to the index q=(k,m,x) and
q'=(k,m’,y). We note that the set {f,} defined in this way is
in general not complete, since, e.g., the assumption that the
polarization vector is independent of the transverse mode
number applies in the paraxial approximation but does not
apply in general. When calculating the effect on the forward
scattered field to first order we only get contributions from
the near paraxial modes in the forward direction. When we
go to second order there will, however, be effects of all the
transverse modes, and in this case a correct treatment re-
quires a more accurate treatment of the complete set of
modes. Above we have already employed such a more gen-
eral set of modes, when we discussed the effect of spontane-
ous emission, which involve all the transverse modes. In
addition to this, a more accurate set of modes is also required
for describing the effect of dipole-dipole interactions, which
also involves all of the transverse modes.

We will in the following calculate the Stokes operators in
the limit described above. Diagrams containing a loop, we
will not discuss, since these only lead to a decay of the light
which we have discussed earlier. After taking spatial average,
the diagrams in consideration are

ey {%}%@; -

Let us begin our discussion of this perturbation series by considering the first term on the right-hand side of Eq. (5.31). This

term is the zeroth-order term of the Stokes generator S©. In the far-field limit z— o the matrix element we need to calculate

is
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((,(x.0)| DS (1))

* 1 L
= J f dtderTUm(rL)ejelkZ_l(wk_wL)r
—o0 Nz

heyw .
RO 4 —igz—i(w,~wp)t AT
X, \| — L U(r | e 4 @ Qg
gnl

_ ﬁéOwL”
- 2 2 akmj’

and S© thus gives us

(5.32)

K, (0,01 SO I8, (0,0)) = @i - (5.33)
The zeroth-order Stokes operator s“l’q/ for q=(k,m,x) and
q'=(k,m',y) gives

§99 = (5.34a)

R
- (akmxakmx akm’yakm’y) .

The two remaining zeroth-order Stokes operators are found
accordingly,

!
amm

1 )
774 At
SZ = E(akm)cakm’y + akmryakmx) s (534b)

Al’l’l m

. A A
(akmxakm y akm'_\:akmx)~ (5340)

In the following we will calculate the first-order compo-
nents of the Stokes operators. We assume the quantum me-
chanical average of the atomic spin J to be parallel to the x
axis. The relevant interaction matrix can in this case be writ-
ten

O jz(r) - jy(r)

mJ=ic\B| -J.(xr) 0 0 |, (539
jy(r) 0 0
and after spatial averaging we simply write
0
D0 = MIT]==icyBp(r)| J(x) | X . (5.36)
T (r)

The second and the third term on the right-hand side of Eq.

(5.31) are the first-order terms of the Stokes generator, SO,
To calculate the contribution to the Stokes operators from
these terms we must evaluate the expression

(B (r t)|ch did

The initial time #;, we will set to —, and because we assume
our detector plane to be infinitely far away from the atomic
ensemble, we can take r— . Using the expression for the set

ATTIDS (1))

(5.37)
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{fy} given by Eq. (5.28) for the detector plane and Eq. (5.30)
inside the ensemble, Eq. (5.37) reduces to

% k
(_ \/TGO> Lclﬁf &r' Y px) O (x') df,,,
nl

(5.38)
where
[ o
O1"(r') = Up(x') Upo(r')ej(r) - | | Jy(x") [ X e(x")
| \J.(r")
[ o
= W) 8,8, — 8,0, ]| | () |- e(r') ],
| \J.(x")
(5.39)
with
W) = Uy (6 Up (). (5.40)

In the final equality we have introduced the local basis vector
e (r)=e,(r) Xe,(r). The effect of the first-order term of the

Stokes generator SW to the Stokes operators thus reads
K{(E (x| SV (B0 (r,0))
1 * A
= kLclﬁf dSrIE p(r,)§[® (I‘ ) aknlakm j’
nl

+ 07" (0 ) ] (5.41)

The remaining terms on the right-hand side of Eq. (5.31),
that is the second-order terms, can be calculated in a similar
way. The results may be found in Appendix E. The calcula-
tions given in Egs. (5.41), (E1), (E2), and (E5) is the starting
point for a discussion of the dynamics of the system subject
to a general light field of many modes.

The description that we have used here, where we define
the Stokes operators in terms of expectation value between
different orthogonal modes, is very convenient for a theoret-
ical description of the process. It does, however, not directly
correspond to the experimentally measured observables un-
less one, e.g., separates out particular modes with single
mode optical fibers. We shall therefore defer the discussion
of the consequences of these results to the next section,
where we use these results to calculate the evolution of ob-
servables more relevant to experiments.

We will now give the equation for the atomic spin. The
incoherent terms describing decay due to spontaneous emis-
sion have already been discussed. Here we will consider the
coherent interaction up to second order in the perturbation
series. Below we show the diagrammatic representation of
the coherent perturbation series for the atomic spin up to
second order,

013826-16



THREE-DIMENSIONAL THEORY FOR LIGHT-MATTER...

We will denote the first-order term in the expansion, Eq.
(5.42), as JV. Employing again the approximations done in
the previous calculations, that is, using the set of light modes
{fy} given in Eq. (5.30) and setting the initial time to — and
the final time to oo, the term can be written as

. 1
T == Berk, 2 W (0I() X e (0]

kmm'
X (@ ity = GG )
kmx%km'y kmy@km' x

=- BclkL E [j(l‘) X ez(r)]

kmm
X{Re[W™ (r)]52™ + Im[WI™ (r)]55"" ).
(5.43)

We notice that compared to the simple theory in Ref. [29]
there is an additional term proportional to the imaginary part
of the function ‘I”"m'(r). A similar correction can also be
found for the Stokes operators for the light. Also notice that
the dynamics of the spin to first order happens in a plane
orthogonal to the vector e (r). This is the reason why the
term in Eq. (E3) vanishes, since there we are considering the
effect of the dynamics of the atomic spin on an axis parallel
to the e_(r) vector. The calculation of the second-order terms
is presented in Appendix F. In the following section we will
examine the effect of these calculations under conditions at-
tainable in experiments.

VI. EXPERIMENTAL APPLICATION AND VALIDITY

In this section we shall consider different limits where we
can reduce our general theory to a theory resembling the
simple description obtained in one-dimensional theories
[7,29]. Furthermore, we discuss the validity of the approxi-
mations made to arrive at these simple limits as well as the
validity of our perturbative treatment of the interaction.

A. Measurement procedure

In the preceding section we discussed how our theory
could be used to calculate Stokes operators corresponding to
specific transverse modes of the field. While such a treatment
is appealing from a theoretical perspective, it is less desirable
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(5.42)

experimentally, since the isolation of single transverse modes
is complicated (although it could be done by passing the
light through single mode optical fibers). Here we shall
therefore express our result in terms of a simpler experimen-
tal procedure. Suppose that the detection is performed by
sending the light onto a polarizing beam splitter and record-
ing the intensity of the two output port with two cameras.
The difference between the intensities can now be used to
define position-dependent Stokes operators §,(r ), i.e.,
§1(r ) corresponds to the difference in intensity between x
and y polarization at position r, in the detector plane. Simi-
larly §,(r,) and §5(r,) can, respectively, be related to the
difference intensity with the polarizer rotated by 45° and the
difference intensity between the two circular polarizations.
These operators may in general be determined by

. e A
sl(rL): E E[Um(rL)altmxakm’xUm/(rL)

kmm'

- U;kn(rj_)d]imydkm’yUm’(rJ_)]v (613)

. |- A A
SZ(rJ_)= 2 E[Um(rJ_)altmxakm’yUm’(rJ_)

kmm'

+ Uy (X )i Uy (v )], (6.1b)

. Lo s
SS(FL): E _.[Um(rL)azl11xakm’yUm’(rl)

kmm'
- U;(rl.)aAZmyaAkm’xUm’ (rJ_ )] .

Below we shall derive expressions for the operators (6.1)
and discuss how to implement a light-matter quantum inter-
face based on these operators. In Sec. VI B we for simplicity
first consider an extreme paraxial limit, where we assume
that essentially no diffraction occurs during the propagation.
In this limit the dynamics becomes extremely simple. In Sec.
VIC we consider a more interesting limit, where we may
have multiple modes which may experience diffraction. Here
we show that measurement of the operators §;(r ) still al-
lows us to simplify the dynamics of the system. In a suitable
limit we find a simple two-mode transformation between
transverse modes of the light field and single modes of the
atomic ensembles.

(6.1¢)
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B. Extreme paraxial approximation

In the extreme paraxial approximation, we completely ig-
nore any dynamics transverse to the propagation direction of
the light modes and approximate the set of modes {fq} with
Eq. (5.28) throughout the ensemble. Since the typical dis-
tance for diffraction is given by [;,~A/\, the condition for
the validity of this approximation is L <, or expressed in
terms of the Fresnel number 7> 1.

The full expressions for the Stokes operators are quite
involved, and we therefore leave the incoherent part of the
evolution to Appendix G. Keeping only the coherent part of
the interaction, we find the Stokes operators to second order
in the interaction to be

§1,0ut(ri) = §1,in(ri) - kLclﬁJ dZ’p(Z’7ri)jz(zr’ri)§2,in(ri)

1
— E(kLIBCI)Zﬂl dZIdZ”p(ZI,I'J_)p(Z",I'J_)

ij(zl’ri)jz(zﬁ’ri)‘scl,in(rl)’ (623.)

§2,out(ri) = §2,in(ri) + kLCIBf dZ,p(Z’7ri)‘7z(zr’ri)§l,in(ri)

1
- E(kLIBCI)Zﬂ dz'dz"p(z',r | )p(z",r 1)

ij(z,’ri)jz(zll’ri)§2,in(rl)’ (62b)

$30u(r 1) = 8354(r ). (6.2¢)

In this limit we see that the Stokes operator §5 is decoupled
from the coherent dynamics of the system, and only evolves
due to spontaneous emission [derived in Eq. (G2)].

Similarly we may find the coherent dynamics of the
atomic spin. Leaving again the incoherent part to Appendix
G, we find

jx,out(r) = jx,in(r) - ﬁclkLE jy,in(r)§§,in(ri)
k

1 - "
- E(BclkL)zz Jx,in(r)sé,in(rL)sé,in(ri)’

kk'
(6.3a)
Ty oul0) = Ty 3n(r) + BclkLg Toin(®)85 ()
3B S Tl Dl
(6.3b)
jz,out(r) = jz,in(r)- (6.3¢)

Analogous to what we found for §5, we see that the operator
jz is decoupled from the coherent dynamics of the system.
This result can directly be associated to the conservation of
angular momentum along the z axis. In the extreme paraxial
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approximation this is true to all orders in the coherent inter-
action.

The results in Egs. (6.2) and (6.3) are essentially equiva-
lent to the simplified one-dimensional description of the sys-
tem given in Refs. [7,29]. The only difference is that the
expressions derived here now apply for each value of r |,
whereas the previous treatments assumed the system was
transversely homogeneous and only considered the variables
integrated over r | .

A further simplification of Eq. (6.3) can be obtained if we
introduce the rotation vector

Q= Beik, X §5,(r ) e.. (6.4)
k

With this definition we find that Eq. (6.3) describes nothing
but a rotation of the spin around the e, axis,

Tou=Tn+ Tn X Q4 %(Im XQ)XQ. (65

C. Multimode coupling

In the preceding section we basically ignored all of the
dynamics transverse to the propagation direction. Now we
turn to a more interesting situation, where we may describe
effects associated with diffraction of the light beams. Our
goal in this section is to find a set of conditions under which
we can have a simple dynamics, where the individual trans-
verse modes of the light field talks to a single mode of the
atomic ensemble. Such an interaction would enable the stor-
age of information from several light modes into spatial
modes of the ensemble, e.g., using the protocol in [9]. The
realization of this interaction would thus expand the informa-
tion storage capacity of the atomic ensembles. A similar
problem is considered in Ref. [32]. In related work such
storage of multimode memory has recently been achieved in
atomic ensembles using electromagnetically induced trans-
parency [33].

To achieve simple results in the end, we will here consider
a situation, where we have a strong classical beam polarized
in the x direction in a single transverse mode U,,(r) (denoted
by the index o). For the y polarization we, however, include
a complete set of modes, which may or may not include a
term identical to the mode of the x polarization. For the
strong mode we will approximate dz o =0kox=\N?>> 1, where
N? is the number of photons in this particular mode. Since
the Stokes operators are dominated by the terms involving
the classical component, the only important contributions in
the Stokes operator (6.1) are the terms containing the strong
classical mode. Equations (6.1) are thus approximated by

: 1
S0 ) = Ui, (e PN, (6.6a)
N2
A(in VAV s Sm
S(Z )(rl) = TE {Re[Uak(rJ_)Umk(rJ_)]XP
km
—Im[ U}y (r ) Uil )P}, (6.6b)
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/_
A(m (rJ_) _E {Re[ Uok(rj_) Umk(rj_)]P

2 km
+ Im[ Uy (0 ) Uy )IX3}, (6.6¢)
where

)27; = _/_(éITcmy + ﬁkmy)’ (6721)
V2

DM 1 A ~

PP = ._/_(akmv - akmy) . (67b)
N2 ;

In order to obtain a simple result in the measurement pro-
cess, let us assume that we can choose the mode functions
U,«(r) to be real in the detection plane. This could, e.g., be
achieved by sending the light through a lens which converts
the incoming modes into extreme paraxial beams as shown
in Fig. 2 (note that since we only make this assumption in the
detection plane, this assumption does not restrict the shape

inside the ensemble). Experimentally the operators X" and

P™ defined here can then be measured by simply integrating
the measured §;(r ) with a suitable weight function, e.g.,

U,(r,)

e .
N)OC Uo( ) ——5(r,)=Xp,

where we have used the expansion in (6.1) as well as the
orthogonality relation of the transverse mode functions
(5.29Db).

In our equations of motion we for simplicity only keep
terms to first order in B and \N” and neglect all other terms.
The equations of motion for the Stokes operators give in this

limit
m m N; 3.1 '
X=X+ ky Bey Y &’r'p(r’)

(6.8)

X jy(r) e.(r)Re[W}“(r)], (6.9a)
J.(r)
Oul—P +kLBc1ff &r'p(r’)
0
X ( ) |- e.(r)Im[¥}(r)], (6.9b)
J.(r)

where W is defined in terms of the mode functions U,, in
Eq. (5.40). Employing the same set of approximations for the
spin equation we find
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_ - N? .
Jout(r) =~ Jin(r) + kL:BCl \/;E {Re[wzu(r)]Piﬂn

— Im[ W7 (r) X} Jia(r) X e(r)]. (6.10)

Note, that the expressions we have derived here, allow for a
general set of transverse modes which may experience dif-
fraction, and thus go beyond the extreme paraxial approxi-
mation made in the preceding section. In the expressions
above we do, however, still use the paraxial approximation in
Eq. (5.30), where we ignore the dependence of the polariza-
tion vector on the mode number. In Appendix H we relax this
approximation.

The expressions in Eq. (6.10) differ from the simple re-
sults of the preceding section because of the extra terms pro-
portional to Im['W}"°(r)]. These terms complicate the dynam-
ics and, e.g., means that one cannot use the protocol in Ref.
[9] to store information in the ensemble. There are, however,
certain limits where the extra terms in Eq. (6.10) disappear.
One situation is when the mode we are considering in the y
polarization is identical to the classical mode in the x polar-
ization (except from the different orientation of the polariza-
tion). This situation corresponds to the experimental situa-
tion, where the weight factor U,,/U, in Eq. (6.8) is unity,
such that the final result is obtained by integrating the inten-
sity over the transverse plane. This case therefore corre-
sponds the experimental situation where the light is detected
by photodetectors instead of cameras. In this case
Im[W}"’(r)] vanish identically and the evolution of the light
operators again resemble the result of the preceding section,
where, e.g., the §, component was conserved, which trans-

lates into P, =P". Note, however, that unlike the situation
considered below, the atomic operators in this situation gets
an admixture of several different input light modes, and will
not in general reduce to the dynamics considered in Ref. [9].

Let us now consider a different limit ideally suited for a
multimode memory. We assume that we are in the paraxial
approximation, where we can ignore the spatial dependence
of the polarization vectors. For simplicity we also assume
that the classical mode U, (r) has a uniform intensity and that
the density is constant over the region, where U,, is nonzero
in the atomic ensemble. We furthermore assume that the

macroscopic polarization is constant and along the x axis, J,,
and finally we assume that W™ is real (for a discussion of
the validity of this approximation we refer to the next sec-
tion). In the spin equation (6.10) we will only keep terms

proportional to the macroscopic spin component J,. In this
situation the relevant equations reads as

Pout_XPm+kLBCl N deV’J (r)U,,(r)e™*,

(6.11a)

pm - _ pm
PPout PP,in’

(6.11b)
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Tyin(r) + kp Be Uy = E U,(r)e ™ PrT o,

(6.11c)

‘7, V,Out(r) =

= jz,in(r) .

Here the factor exp(—ikz) comes from the classical field and
cancels the exp(ikz) dependence of the mode function U,
since U,, exp(—ikz) should be real according to the assump-
tion of ¥ being real. This set of equations can be symme-
trized and simplified by introducing a set of collective opera-

tors
Xy=q/2 f &ri(r)U, (0,
J.L e
p = ‘,JXLLJ &Erl(r)U,(r)e ™, (6.12b)

where L is the length of the ensemble. The coefficients here

T ou(1) (6.11d)

(6.12a)

are chosen such that the operators X7 and P fulfill the stan-
dard commutation relation for position and momentum

[XXI’I;Z; ] - l5mm (613)

With these definitions, Egs. (6.11) reduce to
Xr;} out — )ZnPl,in + Kﬁ;xn,in’ (6.14a)
PPoul_Prlglm’ (614b)
)?Xl,out = )?;Xn,in + Kﬁr}r?l,jn’ (6140)
leoul_PA in® (614d)

where
|N°pJ L

k =k Bc,U, xf; : (6.14e)

These equations describe a system where one transverse
light-mode couples to a single mode of the atomic ensemble,
which in turn couples back to the same light mode. This
two-mode mode dynamics is exactly identical to the dynam-
ics derived in Ref. [7] for a single transverse mode. The
dynamics can thus, e.g., be used to realize a multimode ver-
sion of the memory protocol implemented in Ref. [9]. In this

while at the
same time the atomic mode Pffyin is transferred to the light
mode X! pou as described by Eq. (6.14). After detection of

the light operator )A(fg’om one can then realize a quantum
memory by feeding back the measurement result to the at-
oms as it was shown in Ref. [9].

protocol P p.in 18 stored in the atomic mode Xa outs
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D. Validity
1. Validity of the simple multimode dynamics

In the preceding section we derived a simple multimode
dynamics useful for making a multimode light-matter quan-
tum interface. For experimental implementation of this idea
an important question is the validity of the approximations
leading to Eq. (6.14). First, we need that the imaginary part
of W(r) in Eq. (6.9) should vanish. Furthermore, in order
to define orthogonal spin-modes that do not couple different
transverse modes, we need |U,(r)| to be uniform. Taking the
classical mode to be given by U,(r)=U,e*, where U, is
real, we also need the quantum mode U,,(r) to be real valued
apart from the e** dependence. Let us now take the modes
U, (r) to be Hermite-Gaussian beams [34]. Such modes can
be represented by

Bw,
Umn(r) = ( 2—) (\,2_) il kz—(m+n+1)tanh z/z()]
w(z) )

(2) (2)
Xeik(x2+y2)/2R zZ e—(x +y2)/w2(z)’ (6 153)
where
/ 2,2
w(z) =woV1 +27/z5, (6.15b)
2
R(Z) =2+, (6.15¢)
z
2
™
zZ9=——" (6.15d)

Here wq is the minimum waist of the beam, k is the wave
number, \ is the wavelength, BE R is a normalization coef-
ficient, and H, is the set of Hermite polynomials. The con-
dition that U,,,(r) must be real valued gives the conditions

A+m+n)~| <1. (6.16)

20

AR(2) > w2 (2),

These are in fact equivalent conditions, and introducing the
Fresnel number F=w?(z)/\L we find the condition

F>1+m+n. (6.17)

2. Validity of perturbation theory

The theory we have developed in this paper is based on
perturbation theory in the interaction between light and at-
oms. In this section we discuss the limits of validity of this
perturbative treatment. We will be considering worst case
scenarios to find the limit, where our perturbation series
equations (5.31) and (5.42) converge. An important param-
eter for these estimates will be the effective coupling con-
stant for the collective operators « defined in Eq. (6.14). For
applications to light-matter quantum interfaces this param-
eter should be of order unity. As we shall see below, this is
still possible without violating the applicability of perturba-
tion theory. Another important parameter is the optical depth,
a, defined by o~ p\>L. The optical depth plays an important
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factor when describing the effect of the incoherent interac-
tion, e.g., the spontaneous emission.

Throughout this work, we have assumed that the atomic
ensemble is polarized along the x axis, so that the atomic

spin components p.7y, pjz only carries quantum noise. Also
we have assumed that the classical component of the light is
linearly polarized so that, e.g., circular components are gov-
erned by quantum noise. These assumptions will be impor-
tant for estimating the terms below.

We first consider the expansion of the light field (5.31),
and in particular the coherent part of the interaction. The
effective perturbation coefficient for the first-order term is
found to scale at most as (Bk;\VN,)/A~ k/\VNp [may be
found by estimating Eq. (5.41)]. Here A is the transverse area
of the atomic ensemble, and Np is the total number of pho-
tons in a pulse. Going to second order an important term is
described in Eq. (E3). Since we are not including the time
evolution of the macroscopic polarization in the average in-
teraction, this term has a potential scaling as large as x*>. We
showed, however, that in the paraxial approximation, the
term vanishes. Going beyond the paraxial approximation as
done in Appendix H, we find that for linearly polarized light
the scaling is %/ Np. The last contribution to Eq. (5.31) is
the incoherent interaction considered in Appendix G. The
scaling of this effect x*-(N,/Np)/ .

Now we consider the spin series (5.42) for a single atom.
The incoherent part of the evolution of the spin is described
in Eq. (5.9), and scales as «*/a, it can be ignored for suffi-
ciently large a. The first-order term scales as «/ VN, for lin-
early polarized light. To increase this coefficient we need
circularly polarized light, which makes it interesting to ex-
amine the second-order term describing the change of the
polarization due to the interactions with atoms. This process
is described in Eq. (F1), which represents the optically in-
duced dipole-dipole interaction. This particular term van-
ishes when we take quantum mechanical averages, because
we have subtracted the only nonvanishing component, but
we can still calculate the root-mean-square contribution. The
effect can then be separated into a short-range part and a
long-range contribution. The long-range contribution can be
estimated to give a contribution of order «?\d/(La), where d
is the smallest dimension of the setup, i.e., the smaller of the
length and the transverse sizes of the beam and the ensemble.
The short-range part actually diverges within our present ap-
proximations. If, however, we regularize the integral by ex-
cluding the volume, where the dipole-dipole interaction of an
excited and a ground-state atom V~ yA\3/7® is of the same
order as the detuning A, we find a contribution
K>VA/ yy\/(Le). The justification for this regularization is
that when we made the adiabatic elimination we assumed a
constant detuning A. This approximation breaks down when
two atoms are sufficiently close that the dipole-dipole inter-
action is the strongest effect in the problem, in which case it
is more appropriate to describe the atoms in terms of mo-
lecular states. Both the short- and long-range part of the in-
teraction are thus small for sufficiently large optical depth «
and for sufficiently long ensembles (large L). It should, how-
ever, be noted that here we have only performed a very
rough treatment of the dipole-dipole interaction, and it would
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be desirable to make a more accurate treatment of the effects
of these terms. Also it should be noted that the estimates we
have performed here apply to nonmoving atoms, i.e., cold
atoms. If we include the motion of the atoms, i.e., warm
atoms as in Refs. [8—10], there will be a reduction of these
terms because the sign of the interaction will change in time.

In summary, sufficient requirements for the convergence
of the series for the light fields are

2 2

K K K“Ny
<1, =<1, ——lI, (6.18)
\VNp \VNp a Np
and for the spin equation sufficient requirements are
K K« , [ d
—<l, —<1, \—<l,
VN, a La
A [ A
KZ\/:\/_<<1. (6.19)
v Vi«

By having many atoms and photons as well as a large optical
depth, it is thus possible to achieve xk~ 1 without violating
the applicability of perturbation theory.

The main idea in this work is to develop a perturbation
series, where we explicitly take into account the reshaping of
the light modes caused by the mean effect of the interaction.
Let us for comparison compare with the series, if the mean
effect of the interaction had not been subtracted. For the
Stokes operators the perturbative series is given in Eq.
(5.31). If we do not subtract the average effect of the inter-
action, the scalar part of the interaction [the ¢, component in
Eq. (2.4)] will give first-order corrections to the field of order
K\VN4/Np times the incoming field. With Ny~ Np as it is
suggested in Ref. [7], this term will give a factor of order
unity for k~ 1, and this therefore cannot be considered a
small term. For the calculation of the Stokes operators, how-
ever, the two large components in the first-order terms in Eq.
(5.31) cancel out. The calculation may thus yield a reason-
able result even without performing the more involved pro-
cedures described in this paper, but the validity of the proce-
dure would be questionable. (Some experiments actually use
N,>>N, [8], where this problem may be of minor concern.)
Furthermore, one of the major limiting factors identified
above, is the dipole-dipole interactions. The effect of this
term is much more complicated to evaluate if we had not
subtracted the average interaction, but the term certainly will
be larger, because the interactions in Eq. (F1) would include
a nonvanishing term, and not just the quantum fluctuations.
Again this term would thus seriously question the applicabil-
ity of perturbation theory. In contrast the present approach
allows us to rigorously apply perturbation theory in experi-
mentally relevant regimes.

VII. CONCLUSION

In quantum optics the propagation of light through an
atomic medium is often described in a one-dimensional ap-
proximation, where one completely ignores the transverse
structure of the beam and only considers the longitudinal
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propagation. In this paper we have investigated the validity
of this approximation by developing a full three-dimensional
theory describing the interaction. The challenge in this work
has been to develop a theory capable of describing the mi-
croscopic interaction with single atoms as well as macro-
scopic effects such as the diffraction of the laser beam
caused by the refractive index of the gas. In essence the
theory we have developed here includes both the micro-
scopic and macroscopic effect by separating the interaction
into an average part and the fluctuation from the average. In
this formulation macroscopic effects such as diffraction are
naturally associated with the average part whereas the micro-
scopic fluctuations describe processes such as the mapping
of quantum fluctuations between light and atoms. Further-
more, we have shown that spontaneous emission from the
atoms naturally appear as an effect caused by the fluctuations
associated with the point particle nature and the random po-
sitions of the atoms.

Based on our separation into the average and the fluctua-
tions we have developed a perturbative expansion in the fluc-
tuations. The advantage of this procedure is that it has a
wider region of applicability than a direct perturbative treat-
ment. For instance, in an experimental setup, an index of
refraction of the gas just changes the beam profile which
often only has a minor effect on the experiment. On the other
hand, such trivial effects may have a large influence on the
theoretical calculation. If one considers perturbation theory
based on the vacuum solutions to the wave equation, the
perturbative expansion will include all of the terms respon-
sible for the reshaping of the beam, and this may break the
validity of perturbation theory. On the other hand, our theory
performs perturbation theory on modes which are solutions
to the wave equation including the index of refraction of the
gas. Our theory is thus applicable even for situations where
the beam is considerably distorted by the refractive index of
the gas.

A major motivation for this work has been to investigate
the validity of the one-dimensional approximation in the de-
scription of the experiments in Refs. [8—11]. In Sec. VI we
explicitly considered some situations where we could reduce
our general theory to a theory resembling the one used to
describe these experiments in the one-dimensional approxi-
mation [7,29]. To achieve a simple description resembling
the previous theories, an essential requirement is that we are
in the paraxial approximation. If we are not in this limit, the
polarization of the light changes as its propagates through the
ensemble, which complicates the interaction with the atoms.
Furthermore, for the particular interaction considered here,
we also find it to be desirable to be in a regime where the
Fresnel number is much larger than unity 7> 1. In these
limits our theory essentially reproduces the results of the
simple theory. The only difference is that instead of the
vacuum mode functions, the mode functions appearing in the
theory should represent the modes, which are solutions to the
diffraction problem including the index of refraction of the
gas.

In the present paper we have mainly focused on develop-
ing the theory and deriving how the usual approximations
arise from our more complicated approach. The theory is,
however, fully consistent and thus capable of including any
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higher order corrections not previously included in the theo-
retical description. In particular it could be interesting to
study the effect of light-induced dipole-dipole interactions.
While such processes may not be relevant for understanding
the current experiments, they may play an important role in
future experiments, e.g., with Bose-Einstein condensates,
where the density may be fairly high. Another interesting
extension of our theory could be to study different types of
interactions such as, for instance, electromagnetically in-
duced transparency [19].
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APPENDIX A: ADIABATIC ELIMINATION

In this appendix we derive an effective Hamiltonian in-
volving only the atomic ground state. The Hamiltonian (2.1)
can be expanded on the complete set of states describing the
atom. Let such a set be comprised of a set of exited states
{lep} and a set of ground states {|g,)} so that the Hamiltonian
reads as

H= 2 (w;+ wp)|e;)e;| + E wogi)gil + Hin. (A1)
J l

For convenience we have here set =1 and only consider a
single atom. The set of ground states are assumed to have the
same energy, wy, and w; is the transition frequency from the
ground state to the exited state |e ). The interaction Hamil-
tonian is given in Eq. (2.3), and when expanded on the set of
internal atomic states reads as

1 ” A
Hin == —2 D) - (g[Ple))g)e)l

€0 jj

+ <ej|f)|gi>|ej><gi| : ﬁ(+)(f),

where we have used the rotating-wave approximation as well

(A2)

as the fact that the matrix elements (ej|13|ejr> and (g,|P|g)
vanish. To shorten the notation we suppress the spatial de-
pendence. We will use that the displaced electric field prima-
rily oscillates at the laser frequency, and changes to the in-
teraction picture

D7) = efert, (A3)

Using Heisenberg’s equations of motion we may derive an
equation of motion for [g;)e;

>

d i A
E|gi><ej| =- iAj|gi><ej| - 6_()2 (<€j|P|gi>|€j'><€j|

J
- <ej|p|gi’>|gi><gi’|) 'ﬁm(l),

where D) is slowly varying. In the limit of weak driving

(A4)
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we may set %|gi><e 0, and obtain an approximate solution

1=

1 A .
|gi><ej| = E <ej|P|gi’>|gi><gi’| 'D(+)(f), (A5)
GOAJ' i

where we have neglected the exited state population. The
atomic part of the Hamiltonian can be written as

Ho= 2 Aj|ej><g0|g0><ej| + E wr|g){gil
j i

(A6)

+ E (wy - wL)(|ej><ej| +
ij

where |g,) is any ground state. By inserting expression (A5)
and the Hermitian conjugate into Eqs. (A2) and (A6) we find
the simple result

1/ 4 1 A
H=- _(D(_)(f)‘ _<gi|P|ej>>|gi>
€ o €4

J

X{gir|[{¢,|P|g;"} - D (1)] (A7)

(neglecting a zero-point energy term in the Hamiltonian). We
may now identify the matrix operator V[.J],

VIJ]= E—<g1|P|e><e|P|g, Mg gil -

jii' €4,

(A8)

and we immediately get the result stated in Eq. (2.3). The
notation “-” in this expression means usual vector product
with the vector to the right-hand side. Furthermore we may
also find the relation between the polarization and the dis-
placed electric field

ﬁ(_)(t) = 2 |ej><ej|ls|gi><gi|

1 3 A ~
=2 ——(e|PlgXgi[Pleplgi el - DY)
jii' €A,

= VIIIDOw).

We have here only written the positively oscillating compo-
nent, the negatively oscillating component is found by Her-
mitian conjugation, which from Eq. (A8) is the same as
transposition of the matrix.

(A9)

APPENDIX B: CALCULATION OF INFINITELY
SHORT PROPAGATOR

In this appendix we calculate the infinitely short propaga-
tor in the local density approximation. We will for simplicity
only consider the simple interaction given by

VI = Bp(r)[eod (1) = ic J(r) X 1. (B1)

We further shorten the notation by introducing the coeffi-
cients ay=1-Bp(r)cyJ(r)?> and a,=Bp(r)c,|J(r)].

If we Fourier transform Eq. (2.17), the equation we wish
to solve is

2
A A A [
K XKk X (ap+ia,j X )e=-—=% (B2a)

Ak
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k-€=0, (B2b)
where the vectors k and j are unit vectors representing, re-
spectively, the direction of the plane-wave solution and the
orientation of the atomic spin. The solution to the above
equations is the following set of polarization vectors,

& Nk(jxlé+,12><(jx12)
=N T = PR
<kl kX (GxK)

)ENﬁﬂiNﬁ

(B3)

where Vv, and ¥, are unit vectors given by the first and second
fraction, respectively. The normalization constant N'; is de-
termined by using the inner product in Eq. (2.18). In this way
we find the real space representation of the basis functions
fi(r),

1
V22m)ay * 0§ K)]

The dispersion relation is then derived from (B2a),

t(r) = (V) * i¥y)e™™. (B4)

=k ay * a,(j - K)]. (B5)

The infinitely short propagator can then be calculated to be
the following:

}z’(_)(r,t —1')

S| ko L] 2ok,

2wLC SEf+-}

(B6)

We introduce the matrix given by the following juxtaposi-
tion:

M(K,j,5) = (¥, — is9,) (¥, + is¥,). (B7)

Changing to spherical coordinates and making the substitu-
B ! o o s

tions x=cos 6 and k'=kv1-ay+sax, as well as using the
dispersion relations given in Eq. (B5), the integral reduces to

PO(r,—1)
~! dkf d f de K
X
2ch 3€{+ 3 2(2m)%(ag + sa,x)>?
% M(x, b.5) pict=t K >=k)/(2ky) (BS)

Neglecting the dependence of k' outside the exponential and
using that the difference k’z—ki for large k; runs from —o to
», the k" integral gives a & function in time. Including the ¢

integration in a matrix M we finally obtain
M(x,s)
(ao +sax)>?’

(B9)

szzS(t—t ) !
16772c E

se{+,-}

PO(rt—1)=

with the matrix M given by
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2(1-x%) 0 0
M(x,s) = 0
0 —2isx 1+x?

1+x> 2isx (B10)

The s sum is evaluated by substitution in the integral and the
final expression for the infinitely short propagator is
lkL5(t— 1) M(x,+)

X .
8rc? m(ay + ax)>?

(B11)

PO(r,i-1') =

Thise integral may be evaluated, and we will express the
infinitely short propagator as

0
= —io(t—1t
P“Kr,t—t’):# 0 o, —ior|. (B12)
¢
0 ior o,
The coefficients for ay—a; >0, are given by
-k [—4day+2 day+2
0= %( et = “1>, (B13a)
3mai\ Vag-a, Vag+ a;

1 1
Za(z) —3aga; + Ea% Za% +3apa;, + Ea%

_h
@,.= 3mal (ag—a;)*? (ag+a)? )
(B13b)
kz < 2a9-3a, 2ay+3a, )
or= - . (B13C)
r 6mai\(ag—a,)*?  (ag+a)*?

APPENDIX C: RECIPROCAL EQUATION FOR
GREEN’S FUNCTION

In this appendix we derive the reciprocal equation for the
Green’s function. Before doing so we will need some results
concerning the representation of the Green’s function. Let us
define the following inner product:

(ely) = f PrdtM(r)e(r,) - i (r,1). (C1)

We will generally work in the L? space equipped with this

inner product. Using that the matrix operator M is Hermit-
ian, one finds the differential operator D given in Eq. (4.1) to
be Hermitian in our inner product space

(@|D) = (D). (C2)
That D is Hermitian means that the eigenfunctions F to D,
DFk(rat) = )\ka(r»t)7 (C3)

define a complete basis of our inner product space {Fy}. A
representation of the identity functional given in Eq. (4.2)
may therefore be
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2 Fii(l‘,f)Fk(roJo)- (c4)
Kk

It can be checked that this is exactly a functional identity
representation in our inner product space by expanding any
function on the basis {F}.

To get a formal expression of the Green’s function defined
in Eq. (4.2) we expand the Green’s function in this basis, and
using Egs. (C3) and (C4) we find

to) = 2 Fkrt)Fk(rO,tO)

(C5)

Starting from Eq. (4.2) we make the substitution r— —t, £,
——t;, and ry—r; and we write the following:

DG, lr,— 17) = 18,1 1), (Cé)
In the next step we take the inner product with Eq. (4.2) and

G_(r,—t|r1,—t1) from the left-hand side with respect to

Lo, to) also
from the left-hand side with respect to unprimed coordinates.
The resulting two equations are then subtracted. The term
containing wi vanish trivially, and using rules for differenti-
ating a product, the resulting equation may be written as

2iwLﬂ d3rdt/\jl(r)§t[G:( r,—fr,, t0)]
CZﬂ LPd{ME)G(r,~1lr;,—1,)- VXV
to) = M(X)G( 1,1t g,10) - V X V
X M()G(r,~t|r,—1,)]
= G= ry,1|ro.to) - G( ro,— folry,— 1y). (C7)

Using the cutoff property of the Green’s function, the first
term on the left-hand side is seen to vanish. Using the ex-
plicit expression for the Green’s function (C5) along with the
Gauss theorem, one may show that the second term also
vanishes. The final result is therefore

G(ry.ti|ro.t0) = G(ro,— tolr )~ 1). (C8)
From Egs. (4.2) and (C8), and using the substitutions ¢
——t', ty—t, r—r’, and ry—r we end up with the recipro-
cal equation

J - -
(—ZiwL; - wi+c2V' X V' X M(r’))G( ,

=18(r,v")6(1,1").

In the following we derive the general solution to the
equation

(C9)
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J =
<2iwL(?_t - w§+ *V XV X M(r))zﬁ(r,t) =p(r,1),

(C10)

where ¢(r,r) is an unknown field, p(r,r) is a source term

effecting the solution, and M is some Hermitian matrix op-
erator, which may depend on position. We make an inner
product of Eq. (C10) with G(r,fr',t') from the left-hand
side and an inner product of Eq. (C9) with ¢(r,7) from the
right-hand side and subtract these two equations. In this cal-
culation we are integrating over the time interval ¢’ € ), '],
where we understand F=lim,_,(t+€). Again we find that
terms containing wi vanish. Similar to the above, we will use
rules for differentiation as a product, and we eventually end
up with

i+ _ _
tp(r,t)—fJ &r'dt’ M(r")G(r, ', t") - p(r',1")
lo

I _ J =
=— 2iwLJ f d3r'dt’./\/l(r')ﬁ—t[G( rfr’ t') - (r',1')]
0]

i+ _
+c2ff dr'dt’ M(c")[g(x' ') - V' X V'
o

X /\=/l(r’)G=( rir’,t") — Cz?( r,t
SV XV X (r',1)]. (C11)
Using the same boundary conditions as was done in the cal-
culation leading to the reciprocal equation we conclude that

the last term in Eq. (C11) vanishes. The right-hand side of
the equation thus reduces to

r',t")

- Ziwa &r' MEDGr. e’ 1) - g’ )]

l',,t()) . l/l’(r,,lo).
(C12)

= 2iwa d3r’/\=/l(r’)G=( r,t

Here we have used that the upper time limit vanishes due to
the cutoff in the Green’s function. Rearranging terms we
finally arrive at the general solution to the diffusion equation

Y(r,1) = ZiwLJ &r' M()G(rdr' 1) - ' 1)

! = =
+ff &r'di' M(x')G(r,dr' 1) - p(r' 1),
]

(C13)

APPENDIX D: LORENTZ-LORENZ RELATION

In the main text we consider lowest order corrections to
the index of refraction. To verify that our theory can also
correctly reproduce higher order corrections, we shall in this
appendix show how to derive the so-called Lorentz-Lorenz
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or Clausius-Mossotti relation for the electric permittivity
within our theoretical framework [37]. To lowest order the
permittivity is given by Eq. (3.11),

&) =1-VJ]. (D1)

To calculate the higher order correction it is convenient to
first Fourier transform the Dyson equation (4.9) describing
the light field with respect to time,

D(r,w) =D{)(r, ) + ¢ f &Er' POr,r,w) - m[J]

XD(r', w). (D2)

This equation is the starting point for the analysis. The Fou-
rier transformation is here defined as

flw)= f dte =M f(1), (D3)
0

where #7 is an infinitely small convergence factor.
From Eq. (4.24) we find the Fourier transformed propa-

gator P to read as

2 ok ’
PO )= =S — Oifi(f(r") (D4)

-0l + 20 (0+i7)

The real space representation of this propagator is in general
difficult to calculate, however, for a scalar interaction the
calculations simplify considerably. For w=0 which is rea-
sonable in our case, since we are dealing with slowly varying
operators, the propagator reads as

_ 3
ﬁ(‘)(n)=J dk 2 €€
c

2(277)35Lk
__ & e,-km[(“i L
) kyn (k;n)*) n®
1 2-
>1}+515(n),

where n=r-r’, n=|n|, and / is the identity matrix. We notice
that the propagator gives us the well-known result for the
radiated field of an oscillating dipole. In addition we have a
term describing a self-interaction. This propagator is also
discussed in Ref. [35]. In the following we shall only be
considering the self-interaction part of the propagator.

When considering the density correlation function to sec-
ond order {p(r,)p(r,)) we have so far used the ideal gas
approximation in Eq. (4.13), where there are no correlations
between different atoms. In reality we can never have two
atoms at the same position and this gives a small correction
to (p(r;)p(r,)), which must vanish for r,=r, (apart from the
& function, which represents the single atom contribution).
This can formally be described by introducing the so-called
irreducible correlation functions /4, such that

kZeikn

2
K> -k;

1
- (1 + kL_n - (kLn)2 (D5)
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(p(r1)p(ry)) = (p(r))Xp(rs)) + hy(ry,ry),  (D6)
where h, now takes care of the core repulsion of the atoms
(here we exclude the & function). For r;=r, we thus find that
hy(ry, 1) =—(p(r)>

The above can be used along with the real space repre-
sentation of the propagator to give the second-order correc-
tion to the permittivity. We will not consider terms that van-
ish when we take quantum mechanical mean. The relevant
part of the second-order term thus gives in shorthand nota-

tion —f I§<‘)(2/ 3)(13’[J])2ﬁ(‘). When we introduce this inter-
action to the differential equation (3.11) we find the permit-
tivity to second order,

= 1=V SO (D7)

The calculation can be continued to infinite order [36], and
the result reads as

) PR & %ﬁ’[J]
&)l =1- V- VIS (—3 f?’[J]) =
n=l 1+ gl}l[.]]

(D8)

This is the Lorenz-Lorenz relation, and we thus see that the
effect can be included in the theory by dressing the spatial
mode functions according to the result above.

APPENDIX E: CALCULATIONS OF SECOND-ORDER
STOKES GENERATOR

In this appendix we present detailed calculations of the
second-order terms of Eq. (5.31). We will denote the fourth

term on the right-hand side of Eq. (5.31) as S?) and one
finds

K(Ey (00| 32 [E,,., (e0)

2
- (5 e [ e S pterter

I'n’

X O () O (0l (E1)

The seventh term on the right-hand side of Eq. (5.31) plus

its complex conjugate is denoted as S’g). To calculate this
term we extend the limits of the time integration from minus
to plus infinity. This we can do by introducing a factor of 1/2,
and approximating the imaginary term if°, dr sin(wr) to be
zero. This corresponds to the usual treatment of such terms
in the Markov approximation to spontaneous emission when
one ignores the Lamb shift. We then find the following con-
tribution to the Stokes operators:
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K<<f;<kmj(r’t)| 5%2) |F;<m’j’(r’t)>>

1 3
= (5) (kLchﬂ Lrdr’ ZE p(r)p(r')

!
I'n

! N
X[O1"(x)* @) (x)*a}, g

+ @;75,"(1')@;’;,1 (r’)d,tmjékn,,,]. (E2)

One notices that the factors of 1/2 in Egs. (El) and (E2)
exactly add up to give one-half of the square of the first-
order term, as is shown in Eq. (6.2).

The sixth term on the right-hand side of Eq. (5.31), plus

its Hermitian conjugate, we will denote as 5(5) and we find

~

K<<Fl:mj(r7t)| §g) |fkm’j’(r’t)>>

1)}
'l
=(5> (kfer? | @ S pleCy (g
In
ql’'n’
n”l”
\I,n'n” oAt ~ AT A
X q (I‘ )aqn,l,aqnnlnaknlakmrjr
+ AT AT ~ ~ Cl'l"( /)\I,m/n( /)\I,n/n"( /)*]
akmjaqn,l,aqnnlnaknl i r k r q r R
(E3)

where we have introduced the coefficients

(1) = e(r) - ({(r) X [ep(r) X en(r)]} X e/(r)).
(E4)

This term can be shown to vanish by expanding the spin
operator J on the basis defined by the polarization vectors
e(r), e,(r), and e.(r) and using that the indices j, [, I, and
[" only run over x and y.

Finally we will calculate the effect of the fifth term on the
right-hand side of Eq. (5.31), which we will denote as S’g).
In this calculation it is important to remember that the term
will scale as sz, and reads as

K, 00| S [E,0 . (r.0))

1\2 .
= (5> (k.B)? J fm[z p(O) T ()W (r)

ror
I'n

X @}l ACTLI(X) - €(1) (8,8~ 5,6,)
X(é‘j’y@’x_ 5j’x51’y) +C§J(r)45j15jr]r}. (ES)

APPENDIX F: CALCULATION OF SECOND-ORDER
SPIN TERMS

In this section we calculate the second-order terms for the
atomic spin, represented as the third and fourth terms on the
right-hand side of Eq. (5.42). These terms are denoted as
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2)

"\ > and using the previous notation one finds

\7(2 —l(BCIkL> Efdz ’ E [J(l’) X e (I‘)]

m'm"

1

0
x| [ ()
Jr')
XX T ()W () = U )W ()],

. ez(r,) p(r’)d;m,]dkm//l

(F1)

We can examine this term by assuming that the only photon
carrying modes of the light are the two modes f;,, and f;,,
and neglect all other modes. In this case the term reduces to

m

(n.)€{(0.x),(0" )}

[J(r) X e(r)]

0
x| | Jy(r")
jz(r’)
(F2)

This term represents an atom at position r’ interacting with
the light field and emitting a photon into mode m, which
propagates to the position r, where it is absorbed by an atom
followed by stimulated emission into the classical beam.
This process is also known as optically induced dipole-
dipole interaction, and indeed the sum over all modes m can
be used to introduce the dipole propagator in (D5). Note,
however, that above we have written the term in the paraxial
approximation, where we ignore the dependence of the po-
larization vector on the mode number. Since the sum over m
involves all modes, and not just the paraxial modes, an ac-
curate treatment requires a more complicated expression in-
volving the polarization vectors along the lines of Appendix
H (we use this more complicated expression in our estimates
of the size of the effect).

The last term we will consider is the term describing an
atom interacting with the light field at two different times.
This term is represented as the fifth term on the right-hand
side of Eq. (5.42), and is given in vector component form in
Eq. (5.13). We will denote this term with \7532 ). A short cal-
culation gives

H=HELS S Sed e

kk" mm' jj

nn ! l

mn
X[q,k \P (akmlak'm ]ak”/ak’

- éijaA]Tc’m’jdknj’&k’n’l) + H'C‘]’ (F3)

where we have suppressed the spatial dependence to shorten
the notation. Doing the sum over j,j" and / we obtain

~e.(r") |p(r) ], g Im[ V7" ()W (x")].

PHYSICAL REVIEW A 77, 013826 (2008)

7= HELS S Fed e
kk" mm

nn'

mnygpm'n’ ~
X\P \I,k' (zakmxak’m yaknvak’n’x

’X&ktlydk’n’y) .
(F4)

At a4 A AT
- akmyak’m’yaknxak’n’x = Qg

The first-order term in Eq. (5.43) describes the first-order
effect of rotation of the spin around the e.(r) axis. The
second-order term in (F4) describes the second-order term of
this rotation. From the rotation frequency in the first-order
term ocs3 (assuming W to be real), one would thus expect this
term to scale as 3%(s;)> which is different from the term in
(F4). This difference arises because we have separated the
term into normal-ordered components such that the second-
order term in (F4) only contributes when at least two photons
are present. When we performed the normal ordering in the
diagram we introduced an additional term, which we de-
scribed by the third term in Eq. (5.4)

APPENDIX G: CALCULATION OF SPONTANEOUS
EMISSION

In this section we calculate the corrections to Egs. (6.2)
and (6.3), due to the incoherent interaction. To do this we
need a result for the infinitely short propagator. From the
definition of the propagator (4.24) and the calculation of it in
(5.8), we find the relation

2
2|0, = el (G1)
n L

where o(r l)=k2/ (167°) is the zeroth-order term of the ex-
pansion of g,(r) in B given in Eq. (B13). This result is im-
portant when calculating Sfiz) and for relating this term with
the incoherent interactions, responsible for spontaneous
emission. When including this term and the decay described
in Sec. V B, the incoherent interaction reduces to

’k
Srantrn) = - EHLED [ e - Py
Xl ) + {0 + )
+ 5@ 1n(r 1)), (G2a)

2
Spantes) = o= PR [ 4o piyiepier

+1[302(2") + J3(2) + Tz ) Han(r L),

(G2b)
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2
Spautrn) = - EHEED [t

+ T2 + T3 + T2 ) s nlr ).
(G2c¢)

where we have only kept terms that are nonvanishing after
taking quantum mechanical average of the atomic spin. The
operators g ;,(r ) measures the total photon flux, and is
given as

. Lt s
SO(rL): 2 E[Um(rl)a}:mxakm’xUm’(ri)

kmm'

+ Uj;l(rJ.)aAZmyaAkm’yUm’(rj_)]' (G3)

It is important to note that in a discussion of the various
contributions to decay one should include all terms in the
perturbative expansion, including the loop diagrams in Eq.
(5.15). If these are not included one finds the contribution
from the term in Eq. (E5) to increase the operator §;. Simi-
larly we find the effect of spontaneous emission on the spin
equation to read as

jx,out(z) == BZC%kLQ(rL)E |:‘7x,in(z)<§é,in(rL)
k

1. -
+ Eslf,in(rl)> + E‘Iy,in(z)sg,in(rl)] , (G4a)

Tyou(@) = -+ = Bk o(r ) [imz)(fé,m(ru
k

1. -
+ Eslf,in(ri)) + ij,in(z)sg,in(rl)} s (G4b)

jZ,Out(Z) == :82c%kLQ(rL)E jz,in(z)j:l(;,in(rl) .
k

(G4c)

The above result is derived from Eq. (5.9) by using the
paraxial approximation and only keeping terms of order 5.
A minor correction is introduced in Eq. (6.3) since we chose
a representation that was in fact not normal ordered.
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APPENDIX H: BEYOND PARAXIAL APPROXIMATION

In this section we will go slightly beyond the approxima-
tion made in Eq. (5.30), and consider the set

£,(r) = —— Uy (F)eyy(r).
a

H1)
V2 (

We will consider the correction this generalization makes to
the result given in Eq. (6.9), and therefore define spin com-
ponents in the local basis given by the set e,,,(r), e,,(r),
and e,,.(r),

0

‘_7emi(r) = ‘7y(r) : emi(r)
J.(r)

(H2)

for i€{x,y,z}. These vectors are defined by the fact that,
e.g., e,,(r) should be transverse and perpendicular to the
polarization vector arising from the mode function
U,(r)e,(r). e,, is then defined by e,,=e,, Xe,,. Similarly
for the quantum modes m, the definition of e, follows from
the fact that it should be perpendicular to the polarization
vector from the mode U, (r)e,,(r).
With these definitions, Eq. (6.9) gives

N A NS _
Xou = Xin + kBc1 1\ EX j &r'p(r")Re[ V(1) { T, (r)

X[ewf(r) : emx(r)] - \-_Teox(r)[eux(r) : emz(r)]}’ (H3a)

R . |N? -
P =P+ ki Bey Exf d3r’p(r’)Im[\Ifkm”(r)]{jeoz(r)

X[e,u(r) - €,,,(r)] = T, (r)e,,(r) - e,,.(r)]}. (H3b)

Similarly we find the correction to Eq. (6.10) to give
T T N; no DI
Jout(r) =~ Jin(r) + kLBCI ?2 {Re[\I’k (r)]Pin

— I[P () IXEHT (1) X [e,,(r) X e,,(r)]}.
(H4)
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