
Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries

Sandra Isabelle Schmid* and Jörg Evers†

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
�Received 14 September 2007; published 23 January 2008�

In two nearby atoms, the dipole-dipole interaction can couple transitions with orthogonal dipole moments.
This orthogonal coupling accounts for a number of interesting effects, but strongly depends on the geometry of
the setup. Here, we discuss several setups of interest where the geometry is not fixed, such as particles in a trap
or gases, by averaging over different sets of geometries. Two averaging methods are compared. In the first
method, it is assumed that the internal electronic evolution is much faster than the change of geometry, whereas
in the second, it is vice versa. We find that the orthogonal coupling typically survives even extensive averaging
over different geometries, albeit with qualitatively different results for the two averaging methods. Typically,
one- and two-dimensional averaging ranges modeling, e.g., low-dimensional gases, turn out to be the most
promising model systems.
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I. INTRODUCTION

Two nearby atoms can interact in an energy-transfer pro-
cess via the vacuum where one of the atoms is deexcited
whereas the other atom is excited �1–4�. This dipole-dipole
interaction has been studied in great detail, albeit mostly for
the case of two-level atoms with parallel transition dipole
moments �5–18�. It is known to modify the collective system
dynamics and thus virtually all observables considerably, as
was also shown in a number of related experiments �19–25�.
Recently, it was found that a new class of effects arises from
the dipole-dipole coupling between transitions with orthogo-
nal dipole moments �14–17�. This coupling is somewhat sur-
prising since for single-atom systems, only near-degenerate
nonorthogonal transitions can be coupled via the vacuum �3�;
but in real atoms, e.g., transitions from one state to different
Zeeman sublevels of a different electronic state typically
have orthogonal transition dipole moments. Therefore the
vacuum coupling of such transitions in single atoms usually
does not occur, which is unfortunate, since the corresponding
couplings are known to give rise to many fascinating
applications �3�.

In contrast, orthogonal transition dipole moments in dif-
ferent atoms do interact via the vacuum with coupling coef-
ficients dependent on the relative alignment of the atoms, see
Fig. 1. It was shown in �14� that this interaction creates co-
herences involving excited states that are not driven by any
laser fields. This observation can be generalized by studying
the two-particle master equation under rotations of the inter-
atomic distance vector �16�. It was found that because of the
orthogonal couplings, typically complete Zeeman manifolds
have to be considered in modeling the dipole-dipole interac-
tion of two atoms, such that the usual few-level approxima-
tion is no longer possible. The orthogonal couplings crucially
influence the system dynamics. For example, the long-time
dynamics of a two-atom system can strongly depend on the
relative orientation of the two atoms �15�. For a suitable laser

and detector setup, undampened periodic oscillations in the
fluorescence intensity are observed for some relative orien-
tations of the two atoms, whereas the system evolves into a
stationary steady state for other relative orientations. The
reason for this geometry dependence is the structure of the
dipole-dipole constants. If the coupling of orthogonal transi-
tion dipole moments vanishes, then also the oscillations in
the long-time limit vanish.

In many situations of interest, however, the geometry is
not fixed. For example, in a linear trap, the interatomic dis-
tance usually can be described classically as a sinusoidal
oscillation around a mean distance. In this case, a depen-
dence of the dynamics on the orientation of the dipole mo-
ments relative to the oscillation direction can be expected. A
gas of atoms corresponds to a setup where both the orienta-
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FIG. 1. �Color online� �a� In this subfigure the geometry of our
system is shown. The interatomic distance vector r12 is param-
etrized by the angles � and � and the length r12. Atom A is located
in the origin and atom B at r12. Each atom is a three-level system in
� configuration �b�. The two lower states have an energy separation
�. �1 ��2� is the Rabi frequency of the driving laser field coupling
to transition 1↔3 �2↔3� and the spontaneous decay rates are �1

and �2.

PHYSICAL REVIEW A 77, 013822 �2008�

1050-2947/2008/77�1�/013822�10� ©2008 The American Physical Society013822-1

http://dx.doi.org/10.1103/PhysRevA.77.013822


tion and the distance of any given pair changes with time.
Thus the question arises of whether the geometry-dependent
effects of the dipole-dipole interaction of orthogonal transi-
tion dipole moments survive an averaging over different
geometries.

Therefore, here we discuss the fluorescence intensity
emitted by a pair of three-level �-type atoms when averaged
over sets of different geometries of interest, see Fig. 1. Our
primary interest is the question of whether the dipole-dipole
couplings of orthogonal transition dipole moments survive
an averaging over different geometries and thus also is of
relevance if the two atoms are not fixed in space. Since the
modulations in the fluorescence intensity are a direct conse-
quence of these couplings, they are a convenient indicator
and allow for a quantitative analysis. The second major ques-
tion involves the way the averaging should be treated theo-
retically. For comparison, we discuss two different Ansätze.
First, one can assume that the internal electronic dynamics is
much faster than the change of the geometrical setup. On the
other hand, we consider the case where the change in geom-
etry is fast enough such that the atoms essentially see an
averaged interaction potential. The latter approach, for ex-
ample, is used in the context of ultracold quantum gases to
derive the 1 /r long-range potential from the dipole-dipole
coupling of parallel dipole moments by averaging over all
possible orientations of the interatomic distance vectors �2�.

We find that in general the orthogonal couplings can sur-
vive an extensive averaging over different geometries as long
as the interparticle distance remains small. The magnitude of
the effects in the averaged signal, however, strongly depends
on the averaging range, and also on the averaging method.
Typically, one- or two-dimensional systems can be expected
to show larger effects of the dipole-dipole coupling. We also
show that the two averaging methods considered can give
very different results when averaged over the same set of
geometries. In most situations, however, the case where the
change in geometry is slow as compared to the internal
dynamics is more favorable.

The paper is organized as follows: In Sec. II A, we
present the model system, derive the equations of motion,
and discuss our main observable, the time-dependent fluores-
cence intensity. In Sec. II B, the two averaging methods are
presented and discussed. Section III presents the results from
the averaging for various different situations of interest. Fi-
nally, our findings are discussed and summarized in Sec. IV.

II. THEORY

A. Model system

We consider a system consisting of two identical three-
level atoms in � configuration, see Fig. 1. The atomic states
have energies ��i �i� �1,2 ,3��. The transition dipole mo-
ments of each individual atom are assumed perpendicular, as
is common for near-degenerate electronic states in atomic
systems such as Zeeman sublevels. For simplicity, both tran-
sition dipole moments are assumed to be real; the one of the
1↔3 transition d1= �d1 ,0 ,0�T is orientated along the x direc-
tion and that of the 2↔3 transition d2= �0,d2 ,0�T along the y
direction. A comparison with the case of complex dipole mo-

ments coupling to circularly polarized light was given in
�14�. It should be noted that it was found in �16� that in
general all Zeeman sublevels of two nearby dipole-dipole
interacting multilevel atoms have to be considered in order to
correctly account for the different dipole-dipole couplings
occurring in the system. Couplings to certain Zeeman sub-
levels can be eliminated, however, in special geometries, or
via a detuning between the different transition frequencies,
thus recovering the well-known few-level systems. In the
following, we are interested in arbitrary geometries, and are
thus restricted to an elimination via detunings. A �-type
level scheme could be realized, for example, in a four-level
J=1 /2↔J=1 /2 scheme �26� subject to a static magnetic
field, such that the energy spacing between the upper states is
sufficiently large to neglect dipole-dipole coupling to one of
the upper states in the four-level scheme. The frequency dif-
ference between the two lower states is denoted by �. Atom
A is located in the origin of our coordinate system
r1= �0,0 ,0�T and atom B at

r2 = r12 = r12�sin � cos �,sin � sin �,cos ��T,

where the distance vector between the two atoms is r12. The
driving laser fields propagate in the z direction. For this sys-
tem the Hamiltonian reads

H = Ha + Hf + Hvac + HL, �1�

with

Ha = �
	=1

2

�
j=1

3

�� jSjj
�	�, �2a�

Hf = �
k


��k
ak

† ak
, �2b�

Hvac = − �
	=1

2

��d1S31
�	� + d2S32

�	�� · E�r	� + H.c.� , �2c�

HL = − ��
	=1

2

��1�r	�e−i�1tS31
�	� + �2�r	�e−i�2tS32

�	� + H.c.� .

�2d�

Ha represents the free energy of the atomic states. The free
energy of the vacuum field is described by Hf. Hvac is the
interaction Hamiltonian of the vacuum field, and HL is the
term describing the interaction with the laser fields in
rotating-wave approximation �RWA�. The laser fields have
amplitudes Ei, frequencies �i, and polarization unit vectors
�̂i �i� �1,2��, respectively. �i�r�=�i exp�iki ·r� with �i

= �di · �̂i�Ei /� are the corresponding Rabi frequencies. E�r�
represents the quantized vacuum field modes. Furthermore,
�k
 is the frequency of a vacuum field mode with creation
and annihilation operators ak


† and ak
, respectively. The en-
ergy of the atomic state �i	 is ��i. We define atomic operators
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Sij
�k� = �i	kk
j� �i, j � �1,2,3� and k � �1,2�� , �3�

where �i	k denotes the ith electronic state of atom k. For i= j, Eq. �3� corresponds to a population, whereas for i� j it is a
transition operator.

Choosing a suitable interaction picture it is possible to describe the system by the master equation for the atomic density
operator � given by �15�

��

�t
= − i�

	=1

2

�
j=1

2

� jSjj
�	�,�� + i�

	=1

2

�
j=1

2

�„S3j
�	�� j�r	� + H.c.…, �� − �

	=1

2

�
j=1

2

�� j�S33
�	�� − 2Sj3

�	��S3j
�	� + �S33

�	�� + � j
dd�S3j

�	�Sj3
�¬	��

− 2Sj3
�¬	��S3j

�	� + �S3j
�	�Sj3

�¬	��� + �
j=1

2

�i� j
dd�S3j

�1�Sj3
�2�,�� + H.c.� − �

	=1

2

��vc
dd�S32

�	�S13
�¬	�� − 2S13

�¬	��S32
�	���+ �S32

�	�S13
�¬	��eit + H.c.�

+ �
	=1

2

�i�vc
dd�S32

�	�S13
�¬	�,��eit + H.c.� . �4�

Here, the RWA and the Born-Markov approximation were
used. The first term, which contains the detunings
i=�i− ��3−�i� of the driving laser fields, appears because
of the chosen interaction picture. The interaction with the
laser fields is expressed by the second summand with the
Rabi frequencies � j�r	�. The contribution containing � j rep-
resents the individual spontaneous decay of each transition in
the two atoms. In our case the spontaneous decay rate on
transition 3↔ j is denoted as 2� j. The term with � j

dd contains
the dipole-dipole coupling between a dipole of one atom and
the corresponding parallel dipole of the other atom. The con-
tribution proportional to � j

dd represents the corresponding
dipole-dipole energy shift. The interaction between a dipole
moment of one atom and the perpendicular one of the other
atom is described by the expression containing the cross cou-
pling constants �vc

dd and �vc
dd. The symbol ¬	 denotes the

other atom than 	, e.g., for 	=2 one has ¬	=1. Note that
the interaction picture in Eq. �4� is chosen such that the re-
sidual explicit time dependence exp��it� which cannot be
transformed away is attributed to the terms that describe
dipole-dipole coupling of orthogonal transition dipole
moments. This choice is motivated by the physical origin of
this time dependence, which arises from these orthogonal
couplings �15�. The frequency  is determined by
=�+2−1=�2−�1.

The spontaneous decay rates are given by

�i =
1

4��0

2�di�2�3i
3

3�c3 , �5�

and the dipole-dipole coupling constants can be calculated
from �14�

�i
dd =

1

�
�di · Im��J� · di

�� , �6a�

�i
dd =

1

�
�di · Re��J � · di

�� , �6b�

�vc
dd =

1

�
�d2 · Im��J � · d1

�� , �6c�

�vc
dd =

1

�
�d2 · Re��J � · d1

�� . �6d�

In evaluating these coupling constants we have approximated
�31��32��0. Re and Im denote the real and imaginary
parts of the tensor �J whose components are given by

�	��r1,r2� =
1

4��0
��	� k0

2

r12
+

ik0

r12
2 −

1

r12
3 �

−
�r12�	�r12��

r12
2  k0

2

r12
+

3ik0

r12
2 −

3

r12
3 ��eik0r12.

�7�

�	� is the Kronecker delta symbol. For our choice of the
atomic system, the coupling constants between orthogonal
dipole moments evaluate to ��=k0r12�

�vc
dd = −

3

4
��1�2 sin�2��sin2 �� sin �

�
+ 3 cos �

�2 −
sin �

�3 �� ,

�8a�

�vc
dd = −

3

4
��1�2 sin�2��sin2 �� cos �

�
− 3 sin �

�2 +
cos �

�3 �� .

�8b�

Our main observable is the total time-dependent fluorescence
intensity emitted by the two atoms. It is assumed to be mea-

sured by a detector placed on the y axis at the point R=RR̂
with R̂= �0,1 ,0�T. This intensity is proportional to the nor-
mally ordered one-time correlation function

I = 
:E�−��R,t�E�+��R,t�:	 , �9�

where E����x , t� are the positive and negative frequency parts
of the vacuum field E�x , t�=E�−��x , t�+E�+��x , t�. For our ar-
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rangement of the detector, the atoms, and the laser fields the
fluorescence intensity reduces to �15�

Iy = w1
2 �

	,�=1

2


S31
�	�S13

���	eik1R̂·r	�, �10�

where w1= ��31
2 d1� / �4��0c2R� is a prefactor that we neglect

in the following.

B. Averaging over different geometries

The master equation Eq. �4� contains an explicit time de-
pendence which is determined by the two driving laser field
frequencies. Thus, in general, it cannot be expected that the
system reaches a stationary steady state. This was demon-
strated in �15�, where it was shown that for �0 in general
it depends on the relative alignment of the two atoms
whether the system reaches a stationary state or not. For
some geometries, the long-time limit is constant, whereas for
other geometries a periodic oscillation in the fluorescence
intensity is predicted. Since the relative positions of nearby
atoms in many experimental situations of relevance are not
fixed, the question arises of whether any time dependence
survives when averaging over a set of geometries. The most
obvious example for this is a three-dimensional volume of
gas, where arbitrary relative orientations and distances can
be observed; but also other sets of geometries may be con-
sidered. For example, in �24�, an essentially one-dimensional
ultracold quantum gas was studied. In this case, an external
static field can be used to vary the relative alignment of
dipoles and the trap axis.

In the following, we discuss two different approaches for
calculating the averaged total fluorescence intensity, which is
our main observable.

1. Adiabatic case method

In general, we have to average over the angles � ,� as
well as over the distance r12. We discretize the respective
interval of each geometric parameter in Ni equal steps of size
i, respectively, where i� �r ,� ,��. This gives rise to
NrN�N� different geometries. For each of these geometries,
we evaluate the coupling constants and numerically integrate
the master equation �4�. From this, we obtain the time-
dependent fluorescence intensity �Iy�t��nr,n�,n�

for this par-
ticular geometry �ni� �1, . . . ,Ni��. Finally, we average over
all time evolutions of the different geometries using the ex-
pression

�Iy��t� =
1

Q �
nr=1

Nr

�
n�=1

N�

�
n�=1

N�

Vr,�,��Iy�t��nr,n�,n�
, �11a�

Q = �
nr=1

Nr

�
n�=1

N�

�
n�=1

N�

Vr,�,�, �11b�

Vr,�,� = VrV��nr�V��nr,n�� . �11c�

Q is a normalization constant. We work in a spherical coor-
dinate system and do not only consider uniform motions of

the atoms. Thus an appropriate volume element Vr,�,� has to
be considered. In the discretized form, the contributions from
the different coordinates are given by

Vr = r, �12a�

V��nr� = rnr
�, �12b�

V��nr,n�� = rnr
sin��n�

��. �12c�

When we average over one or two parameters only we omit
the other summation�s� and volume element�s�.

This method of averaging describes the experimentally
observable signal as long as the change of the geometric
setup is slow compared to the internal dynamics of the sys-
tem. Then, the internal dynamics adapts to its long-time evo-
lution on a time scale much faster than the change of the
geometry. In the following, we will call this way of averag-
ing the adiabatic case �AC� method because of the slow
change of the geometry.

2. Average potential method

In our second method of averaging, a different physical
situation is considered. Here, the change of the geometry is
considered fast compared to the internal dynamics. Then, the
time evolution of the atomic system according to the master
equation, Eq. �4�, is not governed by coupling constants cor-
responding to a particular fixed geometry. Rather, the atom
experiences an averaged coupling constant. Therefore, in this
case, we start by averaging all coupling constants, Eqs.
�6a�–�6d�, over the range of geometries considered. This can
be done analytically without a discretization of the averaging
range, but again taking into account an appropriate volume
element. Then the averaged coupling constants are given by

C̄ = �
0

2� �
0

� �
0

2�

C dVr dV� dV�, �13�

with C� ��i
dd ,�i

dd ,�vc
dd ,�vc

dd�. In order to average, e.g., over a
sinusoidally oscillating distance we parametrize r12=rm
+ra sin � by a mean distance rm and an oscillation amplitude
ra. In this case dVr=d�, dV�=r12d�, and dV�=r12 sin �d�.
Then, the master equation is solved and the fluorescence in-
tensity is calculated using these averaged coupling constants.
Finally, the time-dependent intensity is plugged into Eq.
�10�. Since the expression for the fluorescence intensity Eq.
�10� also depends on the orientation of the interatomic dis-
tance vector, we also average this expression over the same
set of geometries. In the following, this way of averaging
will be referred to as the averaged potential �AP� method.

III. RESULTS

We now turn to a numerical study of our system as out-
lined in the previous section. Different ranges of averaging
will be considered, according to different setups of interest.
In all cases, the two ways of averaging the fluorescence in-
tensity will be compared. We choose as initial condition that
both atoms are in state �3	 unless noted otherwise.
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A. Averaging over interparticle distance

In this section, the orientation of the interatomic distance
vector is fixed, while we assume a sinusoidal oscillation of
the distance r12 around a mean distance rm with amplitude ra,
i.e., r12���=rm+ra sin��� with �� �0,2��. This corresponds
to, e.g., atoms in a linear trap. In Fig. 2, we choose a mean
distance rm=0.25
 and orientation �=� /2, �=� /4. The dif-
ferent curves correspond to oscillation amplitudes 0.02
,
0.14
, and 0.2
, respectively. All curves in this figure were
obtained using the AC method. It can be seen that in the
averaged signal, the system does not reach a steady state in
the long-time limit for any of these oscillation amplitudes. To
analyze the oscillations in the long-time evolution in more
detail, we determine the maximum �minimum� fluorescence
intensity Imax �Imin� in the long-time limit where the intensity
undergoes periodic changes. We define an oscillation ampli-
tude of the intensity as I= Imax− Imin. From Fig. 2, it is clear
that I depends on the oscillation amplitude ra. This depen-
dence is depicted in Fig. 3 for small mean distances rm,
where it can be seen that I exhibits a resonance in the plot
versus the oscillation amplitude ra. This resonance can be
understood as follows. First, one has to note that as long as
the interatomic distance is not too small, typically the oscil-

lation amplitude decreases with increasing particle distance
because the coupling constants between orthogonal dipole
moments decrease. Therefore small interatomic distances
lead to a larger oscillation amplitude. Only for very small
distances, the oscillation amplitude as well as the total fluo-
rescence signal is attenuated because the dipole-dipole en-
ergy shifts move the atomic transitions out of resonance with
the driving laser field, such that the upper state population is
decreased. This explains why the averaged oscillation ampli-
tude decreases from the resonance maximum toward smaller
oscillation amplitude ra. With smaller ra, only larger inter-
atomic distances are considered in the averaging, and thus
the average oscillation amplitude decreases. The decrease of
the oscillation amplitude I from the resonance toward
higher amplitudes is due to a different mechanism. In Fig. 3,
for both mean distances rm, this occurs if ra is large enough
such that interatomic distances below about 0.06
 are in-
cluded in the averaging. Some examples of unaveraged time-
dependent signals for different interatomic distances are
shown in Fig. 4. For distances larger than about 0.06
, the
relevant contributions oscillate approximately in phase, see
curves �a� and �b� in Fig. 4. For smaller distances, however,
the contributions move out of phase, as can be seen from
curves �c�–�e�. Curves �d� and �e� approximately have
maxima where curves �a� and �b� have minima, and vice
versa. Curve �c� is an intermediate case. Therefore the oscil-
lations with different phases cancel each other in the averag-
ing process if distances below about 0.06
 are included in
the averaging.

In Fig. 5 we show I in dependence of ra for a larger
mean distance rm=2.25
, and over a broader range of oscil-
lation amplitudes. An implementation for this setup could be
nearest-neighbor coupling in a chain of atoms in an optical
lattice or an ion trap. In their respective mean positions, the
particles are sufficiently separated such that dipole-dipole in-
teraction can be neglected. Throughout their oscillatory time
evolution, however, pairs of atoms come close enough to
interact via the dipole-dipole interaction as discussed below.
It can be seen that the curve exhibits a series of resonances
similar to the one shown in Fig. 3. These again occur due to
an alternating destructive and constructive superposition of
the different oscillations in the averaging process. The over-
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FIG. 2. �Color online� Time dependence of the fluorescence in-
tensity averaged over r12 by the AC method. rm=0.25
 and �a� ra

=0.02
, �b� ra=0.14
, and �c� ra=0.2
. The interatomic distance
vector is oriented such that �=� /4 and �=� /2. The laser param-
eters are �1=3�, �2=5�, 1=0, and 2=2�, and the two lower
states are assumed degenerate, �=0.
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FIG. 3. �Color online� Dependence of the amplitude of the os-
cillating fluorescence intensity on the oscillation amplitude r12 of
the atom for �a� rm=0.2
 and �b� rm=0.25
. The other parameters
are as in Fig. 2.
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FIG. 4. �Color online� Time-dependent fluorescence signal for
different fixed distances r12 without any averaging. �a� r12=0.10
,
�b� r12=0.08
, �c� r12=0.06
, �d� r12=0.05
, and �e� r12=0.04
.
The other parameters are as in Fig. 2. The vertical lines allow one to
easily judge the relative phase shifts of the different curves.
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all amplitude I, however, is small because of the overall
larger interatomic distances considered in this figure. In gen-
eral, increasing the interparticle distance, the different
dipole-dipole coupling constants after an initial drop at very
low distances remain oscillatory and become smaller on a
scale of several wavelengths. This together with the similar-
ity of the structure and the interpretation of the results in
Figs. 3 and 5 suggests that one can expect that the character-
istic features of our results remain similar at larger interpar-
ticle distances, while only the magnitude of the effects
becomes smaller.

Finally, we discuss the time-averaged intensity obtained
from the AP method of averaging. Some examples are shown
in Fig. 6. Curves �a� and �c� show our results from the AC
method and �b� and �d� those from the AP method. The os-
cillation amplitudes are ra=0.14
 and 0.2
, respectively. All
other parameters are as in Fig. 2. The left panel shows values
for 5��t�25 since the stationary oscillation is reached rap-
idly for these parameters. Also in the AP case, the fluores-
cence intensity undergoes periodic changes in the long-time
limit, see Fig. 6. For small oscillation amplitudes ra there is
little difference between the two methods, see curves �a� and
�b�. However, for larger values of ra the amplitude of the
oscillations in the AP case is much larger than those obtained
in the AC averaging. The dependence of the oscillation am-

plitude on the averaging range for the AP method is shown in
Fig. 5, curve �b�. As in the corresponding curve �a� for the
AC averaging method, resonance structures appear. But de-
pending on ra, the two methods yield either similar or very
different oscillation amplitudes. In addition, the result for the
AP method seems to have a root at about ra=0.4
. A careful
analysis shows, however, that this minimum is not a true
root. The reason for the minima in the AP curve is that for
these oscillation amplitudes, the turning point at minimum
interatomic distance is close to a distance where the coupling
constants between orthogonal transition dipole moments are
small. Then, the averaged coupling constants are small such
that the oscillation amplitude has a minimum. These minima
nicely show a crucial difference between the two averaging
methods. In the AP method, it is easy to find averaging
ranges where the averaged coupling constants are small or
even vanish. Then, also the oscillation in the long-time dy-
namics is negligible. The results from the AC method, how-
ever, typically remain oscillatory even for such averaging
ranges, as the dynamics for each of the different geometries
contributes rather than only an averaged geometry. We will
find this difference again in the following sections.

B. Averaging over relative orientation

In the following, we consider the case where the inter-
atomic distance r12 is fixed, but the relative orientation and
thus the angles � and/or � are averaged over. A realization
for this could be a Mexican-hat-like potential where one of
the atoms is placed in a potential dip in the center whereas
the other atom is confined to the potential minimum in the
rim. First we fix the angle � and assume atom B to move
around A on a circle in a plane which is perpendicular to the
x -y plane and includes the origin. Since � is only defined
between 0 and � we have to average over two semicircles
with � and �+� to include the whole circle. Some examples
of our results for r12=0.1
 using the AC method of averag-
ing are shown in Fig. 7. Here, the angle � is chosen as 0.2�,
0.5�, 0.8�, and �, respectively. For �=0.5� and for �=�
the system reaches a time-independent steady state in the
long-time limit. That is because the cross-coupling constants
are zero for these values of �, as both �vc

dd and �vc
dd are
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FIG. 5. �Color online� Dependence of the amplitude of the os-
cillating fluorescence intensity on the oscillation amplitude r12 of
the atom for larger mean distance rm=2.25
. In �a� we used the AC
and in �b� the AP method. The other parameters are as in Fig. 2.
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FIG. 6. �Color online� Comparison of the time dependence of
the fluorescence averaged over r by both methods. The orientation
angles �=0.5� and �=0.25� are fixed and rm=0.25
. �a� AC
method, ra=0.14
, �b� AP method, ra=0.14
, �c� AC method, ra

=0.2
, and �d� AP method, ra=0.2
. All other parameters are as in
Fig. 2.
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FIG. 7. �Color online� Time dependence of the fluorescence av-
eraged over � by using the AC method. The distance r12=0.1
 is
fixed. �a� �=0.2�, �b� �=0.5�, �c� �=0.8�, and �d� �=�. All
other parameters are as in Fig. 2.
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proportional to sin�2��sin2���, see Eqs. �8a� and �8b�; but
even though the coupling constants are zero in both cases,
the resulting intensities are not identical. This demonstrates
that it is not sufficient to analyze the coupling constants
alone to understand the system dynamics.

In addition we can see from Fig. 7 that there is a phase
shift of � with respect to the oscillation in the long-time limit
between the two curves for �=0.2� and �=0.8�. We found
that in general curves for different values of � split into two
groups separated by such a phase shift of �. The first group
contains curves for 0���� /2, whereas the other consists
of curves for � /2����. Within each of these groups, the
oscillation amplitude of the intensity has the same depen-
dence on the angle �. For �=0 and �=� /2 the amplitude is
zero. Then it increases with growing � and reaches a maxi-
mum for �=0.2� and �=0.8�, respectively. Thus in Fig. 7
the curves with maximum oscillation amplitude are shown.
This separation is likely to appear due to the change of sign
of the cross-coupling constants at �=0.5�. This can be un-
derstood from the explicit expressions of the coupling con-
stants Eqs. �8a� and �8b�. In the master equation �4� we can
see that a sign change in the terms with the cross-couplings
can be rewritten as a constant phase shift factor of exp�i��. It
is, however, not straightforward to connect this phase shift to
the phase shift seen in Fig. 7, because the oscillation fre-
quency of the time-dependent fluorescence in general does
not only depend on , but also, e.g., on the laser field Rabi
frequencies. In addition, one has to note that the geometric
parameters � ,� enter the total fluorescence intensity as well,
see Eq. �10�; but our interpretation is further supported by
the fact that a change of the interatomic distance r12 has no
influence on the separation of our curves into two groups.
The separation also persists for different initial conditions,
e.g., atom A in state �1	 and atom B in �3	, and thus is not a
consequence of the initial dynamics until the steady state has
been reached.

Using the AP method the separation into two groups re-
mains, but again the curves are different from our results
from the other averaging method. In Fig. 8 we compare
curves from both methods of averaging for averaging over �
with fixed angles �=0.6� and �=0.9�. The curves resulting
from the AP method have pronounced local extrema in each
oscillation period in addition to the global ones, and the
overall intensity is higher as in the AC case.

Next we assume atom B to move on a circle in the x -y
plane. Thus � is fixed and we average over the angle �. The
interatomic distance is 0.1
. Some examples of our results
are shown in Fig. 9, where � is chosen as 0.25�, 0.3�, 0.5�,
and �. For the AC method the system does not reach a time-
independent state in the long-time limit except for the angle
�=�. This is because for this choice of �=� the coupling
constants vanish since they are proportional to
sin�2��sin2���, see Eqs. �8a� and �8b�. For any different �
our system remains oscillating in the long-time limit. In case
of �=0.3� one can see local extrema in addition to the glo-
bal extrema in the fluorescence intensity. In both cases, even
the time-averaged average intensity is considerably larger
than in the nonoscillatory case �=�. Interestingly, for �
=� /2, the absolute value of the intensity is lower than for
the nonoscillatory case �=�. Thus the orthogonal coupling
together with the averaging can have either an enhancing or
a detrimental effect to the total emitted fluorescence.

For this set of geometries, the AP method of averaging
always yields a stationary long-time limit and thus behaves
qualitatively different from the first method. The reason for
this is that the coupling constants for the orthogonal cou-
plings vanish upon averaging over then angle �. As dis-
cussed before, then the time dependence in the long-time
limit also vanishes, see Fig. 9.

We now turn to the case of atom B moving around A on a
sphere with radius r12. In this case, neither of the two angles
� and � is fixed, and we have to average over both of them
while the interatomic distance is fixed. Some results from
both methods are shown in Fig. 10. We already know that the
coupling constants vanish when averaged over �. That is
why the time dependence in the AP method also vanishes
when we average over � and �, see curve �d�. In curves
�a�–�c� obtained using the AC method, the interatomic dis-
tance is chosen as 0.1
, 0.15
, and 0.2
, respectively. One
can see that both the oscillation amplitude and the absolute
value of the fluorescence intensity decrease with increasing
interparticle distance. For the distance 0.2
 there is almost
no oscillation left due to the vanishing of the coupling con-
stants with increasing interatomic distance. This also ex-
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FIG. 8. �Color online� Time dependence of the fluorescence in-
tensity averaged over � with fixed interatomic distance r12=0.1
.
�a� AC method with �=0.6�, �b� AP method with �=0.6�, �c� AC
method with �=0.9�, and �d� AP method with �=0.9�. The other
parameters are as in Fig. 2.
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FIG. 9. �Color online� Time dependence of the fluorescence in-
tensity averaged over �. r12 is fixed at 0.1
. �a� �=0.25�, �b� �
=0.3�, �c� �=0.5�, and �d� �=�. Curves �a�–�d� are obtained using
the AC method. �e� shows a result using the AP method for �
=0.3�. All other parameters are as in Fig. 2.
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plains why this curve approaches the AP method result,
where the averaged coupling constants are zero. As com-
pared to curves �a� and �b� in Fig. 9, curve �a� in Fig. 10
shows that the additional averaging over � does lead to a
reduction of the oscillation amplitude. Still, the oscillation
and thus the dipole-dipole coupling of orthogonal dipole mo-
ments can survive an averaging over all orientations, depend-
ing on the averaging case.

C. Averaging over distance and orientation

After the individual averaging over the interatomic dis-
tance and the relative orientation of the two atoms in the
previous sections, we now consider the case of averaging
over both. This situation is realized, e.g., in a gas of atoms,
where the relative position of any two particles changes with
time. An averaging over the two-particle configuration space
is meaningful, since in a macroscopic volume of gas at any
time there is a finite probability for an arbitrary geometry
within the volume of the sample to be present. A different

realization is a sample of atoms randomly embedded in a
host material. In this case, again an averaging is in order. The
two situations differ, however, since the former case corre-
sponds to a time-dependent geometry for any two-particle
subsystem, whereas the latter case can be represented by a
sample of time-independent pairs.

Thus, in the following, we investigate whether in these
cases any time dependence of the fluorescence intensity re-
mains in the long-time limit by considering a system where
r12, �, and � are variable. The three-dimensional case of
course leaves several possibilities for the averaging range. In
the following, we will consider two cases. In the first case,
atom B moves on a sphere with atom A in its center and
additionally oscillates around the mean distance r12 with an
amplitude ra. In the second case, the particle fly-by, particle
B passes atom A moving with constant velocity on a straight
line, see Fig. 12.

In Sec. III B we have seen that averaging the coupling
constants over � makes them vanish, such that the system
does not show any time dependence in the long-time limit
when we use the AP method of averaging. This, of course,
also holds true for the three-dimensional averaging for atom
B moving on a sphere with oscillation of the interatomic
distance. In contrast, the AC method of averaging still yields
time-dependent fluorescence intensities. An example is
shown in Fig. 11. Here, the interatomic mean distance is
chosen as rm=0.2
 and the oscillation amplitude is ra
=0.12
. We see that even if we average over all three geo-
metric parameters, the system does not reach a time-
independent state in the long-time limit, even though the
oscillation amplitude is small.

Finally, we consider the case where atom A flies past atom
B along the z axis from −zmax to zmax with constant velocity,
see Fig. 12. The angle � is fixed and we average over � and
r12 considering the respective volume element. We analyzed
the case �=� /4 and found that for both averaging methods
the fluorescence intensity remains oscillatory in the long-
time limit. To further study these oscillations, in Fig. 13 we
show the oscillation amplitude of the time-dependent fluo-
rescence intensity in the long-time limit against the extent of
the motion zmax. The minimum interatomic distance is cho-
sen as rmin=0.05
. Curve �a� shows our results from the AP
and �b� those from the AC method of averaging. One can see
that in both cases the amplitude decreases with increasing
zmax for large values of zmax. This is because for large dis-
tances the dipole-dipole interaction tends to zero, and oscil-
lations only occur if the particles are close. If the averaging

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 2 4 6 8 10 12 14

(a)

(b)

(c)
(d)

I y
(a

rb
.

un
it
s)

γ t

FIG. 10. �Color online� Time dependence of the total fluores-
cence intensity averaged over � and � for the interatomic distances
�a� r12=0.1
, �b� r12=0.15
, and �c� r12=0.2
. Curves �a�–�c� are
obtained using the AC method. �d� is the result from the AP method
for r12=0.1
. The other parameters are as in Fig. 2.
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FIG. 11. �Color online� Time dependence of the total fluores-
cence intensity averaged over r, �, and � for atom B moving on a
sphere around atom A with additional harmonic oscillation of the
interatomic distance. Here, rm=0.2
 and ra=0.12
. In �a� we used
the AP and in �b� the AC method. All other parameters are as in Fig.
2.
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FIG. 12. �Color online� Geometry for the case of atom B flying
past atom A with constant velocity on a straight line from −zmax to
zmax.
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interval contains increasing ranges of z where there essen-
tially is no oscillation because of the interatomic distance,
then the oscillations in the overall signal decrease. It is inter-
esting to note, however, that in this averaging configuration
the AP method shown in curve �a� yields much larger oscil-
lations than the AC method shown in curve �b�. Also, it can
be seen that the AP method shows oscillations over a range
of zmax up to several wavelengths 
. The reason for this is as
follows. In the AP method, the coupling constants are aver-
aged over the different geometries. For z=0, the distance
between the particles is rmin=0.05
. At this position, the cou-
pling constant �vc

dd acquires a large value of more than 73�.
Of course, with increasing distance the constant �vc

dd rapidly
decreases down to zero; but averaging over a certain range
�−zmax,zmax� still gives a considerable averaged coupling

constant �̄vc
dd even for values of zmax where the unaveraged

coupling constants are negligible. This is the reason why the
oscillations persist for large zmax values in the AP case. In
contrast, in the AC case, contributions from larger z values
do not oscillate at all such that the decrease of the oscillation
amplitude with zmax is much more rapid.

We now focus on the region with smaller motion extents
zmax. The corresponding results are shown in Fig. 14 for
rmin=0.05
. In the limit zmax→0, the time-dependent fluo-
rescence approaches the unaveraged curve �d� in Fig. 4,
which exhibits relatively low oscillation amplitudes. The rea-
son is that at this small distance, the atomic states are shifted
by the dipole-dipole interaction out of resonance with the
laser fields, such that the overall fluorescence is low. For
both methods, the intensity oscillations first strongly enhance
with increasing zmax, and then decrease again after passing
through a maximum oscillation amplitude. The AC method
results for larger zmax essentially remain structureless. The
AP results, however, exhibit some oscillations, and only then
start to decay monotonously with increasing averaging
range. Due to the complexity of the system, it is difficult to
definitively attribute the oscillation to a property of the sys-
tem. We believe, however, that they are due to a similar
alternating constructive and destructive interference in the
averaging as the one that led to the resonance structures in
Figs. 3 and 5. Such resonances do not appear in the AC

method results because there the contributions for higher val-
ues of z where the oscillations in the AP method appear are
already too small.

IV. DISCUSSION AND SUMMARY

Dipole-dipole interactions between transitions with or-
thogonal transition dipole moments give rise to a different
class of effects in collective quantum systems. These cou-
plings, however, strongly depend on the geometry of the
setup, and even vanish for some geometries. Therefore here
we have discussed different averaging schemes to answer the
question of whether measurable effects of the dipole-dipole
coupling of orthogonal dipole moments survive if the geom-
etry of the system under study is not fixed. As observable, we
chose the easily accessible fluorescence intensity of a pair of
laser-driven �-type atoms, which for suitable laser param-
eters is known to exhibit periodic oscillations in the long-
time limit due to the orthogonal couplings.

As a main result, we found that the effects of the dipole-
dipole coupling of orthogonal transition dipole moments can
survive extensive averaging over all three spatial dimen-
sions. We have analyzed the obtained averaged signals, and
expect our physical interpretations to carry over to other
atomic level structures. Depending on the averaging range,
both constructive and destructive superpositions of the con-
tributions for the respective geometries is possible, such that
a wide range of results was observed. The results also
strongly depend on the method of averaging, and thus on the
physical situation considered. Typically, the adiabatic case,
where the geometry changes slowly as compared to the in-
ternal dynamics, is more favorable since it better preserves
the intensity oscillations. In the average potential case, where
the change of geometry is so fast that the atoms effectively
see a dipole-dipole interaction averaged over the different
geometries, some averaging ranges lead to an exact vanish-
ing of the coupling constants. This usually does not occur in
the adiabatic case. A somewhat different situation was found
in the particle fly-by, where the averaging over the coupling
constants in the AP method led to a much wider range of
distances over which an effect of the orthogonal couplings
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FIG. 13. �Color online� Dependence of the oscillation amplitude
of the time-dependent intensity on zmax for impact parameter rmin

=0.05
. �=� /4, and the other parameters are as in Fig. 2. In �a� we
used the AC and in �b� the AP method.
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FIG. 14. �Color online� Dependence of the oscillation amplitude
of the time-dependent intensity on zmax for smaller values of zmax.
�a� AC method with rmin=0.05
 and �b� AP method with rmin

=0.05
. All other parameters are as in Fig. 13.
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can be observed. In general, our results show that the most
pronounced effects of the orthogonal couplings in systems
with variable geometry can be expected in one- or two-
dimensional setups. There, it is easier to avoid detrimental
averaging over extended sets of geometries, and additional
control parameters such as the orientation of the dipole mo-

ments with respect to the axis of a one-dimensional sample
allow one to study the system properties in more detail. In-
terparticle distances down to small fractions of the involved
transition wavelength can be obtained experimentally, e.g., if
low-frequency transitions such as in Rydberg atoms are
considered.
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