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Mixed-type �bright-dark� soliton solutions of the integrable N-coupled nonlinear Schrödinger �CNLS� equa-
tions with mixed signs of focusing- and defocusing-type nonlinearity coefficients are obtained by using Hiro-
ta’s bilinearization method. Generally, for the mixed N-CNLS equations the bright and dark solitons can be
split up in �N−1� ways. By analyzing the collision dynamics of these coupled bright and dark solitons
systematically we point out that for N�2, if the bright solitons appear in at least two components, nontrivial
effects, such as onset of intensity redistribution, amplitude-dependent phase shift, and change in relative
separation distance take place in the bright solitons during collision. However their counterparts, the dark
solitons, undergo elastic collision but experience the same amplitude-dependent phase shift as that of bright
solitons. Thus, in the mixed CNLS system, there is a coexisting shape-changing collision of bright solitons and
elastic collision of dark solitons with amplitude-dependent phase shift, thereby influencing each other mutually
in an intricate way.
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I. INTRODUCTION

Solitons in coupled nonlinear Schrödinger �CNLS� equa-
tions have been the subject of intense studies due to their
intriguing collision properties and their robustness against
external perturbations. The study of physical and mathemati-
cal aspects of CNLS equations is of considerable current
interest as these equations arise in diverse areas of science,
such as nonlinear optics, optical communication, biophysics,
Bose-Einstein condensates �BECs�, and plasma physics
�1–6�. In the context of nonlinear optics, solitons arising as a
result of competing focusing-type nonlinearity and anoma-
lous dispersion �diffraction� of pulse �beam� are called bright
solitons �3� as they are well localized structures of light. The
dark solitons resulting due to compensation between
defocusing-type nonlinearity and normal dispersion of pulse
appear as localized intensity dips on a finite carrier wave
background, and they are more robust than bright solitons
�3�. The appearance of multicomponent CNLS-type equa-
tions as dynamical equations in various areas of physics
�3,4,6� and the subsequent studies on these systems lead to
the identification of bright-, dark-, bright-dark-, and dark-
bright-type solitons �7–16�. Even though there are a number
of works on bright and dark soliton propagation and collision
separately, results are scarce for the study on bright-dark-
type soliton propagation and their collision dynamics.

In the present paper we perform a study on bright-dark
soliton solutions of mixed N-CNLS equations and examine
the shape-changing collisions of multicomponent bright soli-
tons in the presence of dark components. We consider the
following set of integrable mixed N-CNLS equations �in di-
mensionless form�:

iqj,z + qj,tt + 2��
l=1

N

�l�ql�2�qj = 0, j = 1,2, . . . ,N , �1a�

where qj, j=1,2 , . . . ,N, is the complex amplitude of the jth
component, the subscripts z and t denote the partial deriva-
tives with respect to normalized distance and retarded time,
respectively, and the coefficients, �l, define the sign of the
nonlinearity. For convenience and without loss of generality,
we define �l for this mixed case as

�l = 	1 for l = 1,2, . . . ,m ,

− 1 for l = m + 1,m + 2, . . . ,N .

 �1b�

Recent theoretical and experimental studies show that the
bright solitons in the focusing case ��l=1, l=1,2 , . . . ,N�
undergo fascinating shape-changing collisions characterized
by intensity redistribution, amplitude-dependent phase shift,
and relative separation distance �11–13�, whereas the stan-
dard elastic collision of dark solitons occurs in the defocus-
ing case ��l=−1, l=1,2 , . . . ,N� �8,14�. Later, it has been
observed in Ref. �16� that bright-bright solitons of mixed
CNLS equation �1� also undergo shape-changing collision
but of different nature. Very recently, it has also been shown
that the bright solitons in the mixed CNLS system exhibit
periodic energy switching during the shape-changing colli-
sion process in the presence of linear couplings �17�. Now it
is of further interest to examine how the bright solitons are
influenced by dark solitons and vice versa in this mixed
CNLS system. The main aim of this paper is to investigate
the nature of bright-dark soliton solutions of the mixed
CNLS equation �1� and their collisions.

The pioneering works of Makhankov et al. �18� in the
context of the Bose-Hubbard model and a few recent works
�19,20� on left-handed materials �LHMs� in nonlinear optics,
suggest that the mixed CNLS system studied in our paper
could be of considerable physical significance. The mixed
2-CNLS system can be obtained as the modified Hubbard
model �Lindner-Fedyanin system� in the long-wavelength
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approximation by taking into account the electron-phonon
interaction �18�. Here the two component Bose-condensate is
a mixture of two “gases” with attractive and repulsive inter-
boson fields and the bright-dark soliton solution corresponds
to the so-called drop-bubble solution. A straightforward gen-
eralization of this mixed 2-CNLS system to an arbitrary
number of fields is given in Ref. �18�. Exactly this is the
system which we have considered in this paper �Eqs. �1��
where the first m components have positive sign of nonlin-
earity and the remaining components possess negative sign
of nonlinearity. The mixed 2-CNLS equations also arise as
governing equations for an electromagnetic field propagation
in LHMs with Kerr-type nonlinearity �19�. In fact, this case
arises when the fields in the medium experience different
types of nonlinearity, leading to �1=−�2=1 or �2=−�1=1,
corresponding to a medium of effective positive dielectric
permittivity �eff and effective negative magnetic permeability
�eff or vice versa. This suggests that mixed N-CNLS equa-
tions could be a possible generalization of multiple electro-
magnetic fields propagating in LHMs with suitably chosen
effective permittivity and effective permeability.

Equation �1� with N=2 can also be viewed as the govern-
ing equation for two fields, q1 and q2

�, propagating in the
anomalous and normal dispersion regimes, respectively �that
is, the self-phase modulation coefficients are positive and
cross-phase modulation coefficients are negative in both the
components�. A possible physical realization of such type of
nonlinearities is multifield propagation in a quadratic me-
dium with inefficient phase matching �21�. Another impor-
tant physical realization of Eq. �1� arises in the context of
boson-fermion gas mixtures. For example, the dynamics of
two-species condensates is governed by mixed 2-CNLS
equations for suitable choice of intraspecies �a11,a22� and
interspecies �a12,a21� scattering lengths �22�. These two-
species condensates offer a wider range of possibilities, the
main one being the possibility of having a negative interspe-
cies scattering length. This possibility has been theoretically
explored in the context of Feshbach resonance management
and realized experimentally for boson-fermion mixtures �23�.
Thus, the interspecies interactions a12 and a21 can be tuned to
be negative �attractive type� and positive �repulsive type�
scattering lengths, respectively, by Feshbach resonance. It is
also possible to choose the self-interactions as a11�0, a22
�0 �24�. Therefore, studying N-CNLS equations �1� of
mixed type will provide a better understanding on the dy-
namics of multispecies condensates with suitably tuned scat-
tering lengths. In addition, mixed 2-CNLS equations arise in
BECs involving two isotopes of the same element, for ex-
ample, isotopes of rubidium �Rb87 and Rb85� �25�. In fact,
multicomponent BECs support nonlinear waves which do
not exist in single component BECs such as domain-wall
solitons, bright-dark solitons, etc. Thus, the mixed CNLS
system which we have investigated could be of considerable
physical relevance and significance in the context of nonlin-
ear optics and matter waves.

The plan of the paper is as follows. In Sec. II, we briefly
present the Hirota’s bilinearization procedure for the mixed
N-CNLS Eq. �1� to obtain exact soliton solutions. Section III
is devoted to obtain exact one and two bright-dark soliton
solutions for mixed 2-CNLS, 3-CNLS, and N-CNLS equa-

tions. The collision dynamics of bright-dark solitons in
mixed CNLS equations is given in Sec. IV, where we have
pointed out that if the bright solitons appear in more than one
component then they undergo shape-changing collisions
characterized by intensity redistribution, amplitude-
dependent phase shift, and change in relative separation dis-
tance. We have also discussed the role of dark solitons on the
shape-changing collisions of bright solitons and also the ef-
fect of bright solitons on the dark soliton collisions. In Sec.
V, we summarize the results of our study. Asymptotic analy-
sis of mixed 2-CNLS and mixed 3-CNLS equations are
given in Appendixes A and B, respectively.

II. BILINEARIZATION METHOD FOR INTEGRABLE
MIXED N-CNLS EQUATIONS

In this section, we briefly outline the procedure to obtain
m-bright–n-dark soliton solution �m+n=N� of the mixed
N-CNLS equations using Hirota’s bilinearization method
�26�. We denote the soliton solution of Eq. �1� in which the
bright and dark solitons are split up in the first m components
and the remaining �N−m�=n components, respectively, as
“mixed soliton solutions,” for brevity. To start with, let us
apply the bilinearizing transformation

qj =
g�j�

f
, j = 1,2, . . . ,m , �2a�

ql+m =
h�l�

f
, l = 1,2, . . . ,n , �2b�

to Eq. �1�, where g�j�’s and h�l�’s are arbitrary complex func-
tions of z and t while f is a real function. Then, the set of
mixed N-CNLS equations given by Eq. �1� reduces to the
following set of bilinear equations:

D1�g�j� · f� = 0, j = 1,2, . . . ,m , �3a�

D1�h�l� · f� = 0, l = 1,2, . . . ,n , �3b�

D2�f · f� = 2��
j=1

m

g�j�g�j�� − �
l=1

n

h�l�h�l��� , �3c�

where D1= �iDz+Dt
2−��, D2= �Dt

2−��, � denotes complex
conjugate and � is a constant to be determined. The Hirota’s
bilinear operators Dz and Dt are defined as

Dz
pDt

q�a · b� = � �

�z
−

�

�z�
�p� �

�t
−

�

�t�
�q

��a�z,t�b�z�,t����z=z�,t=t��. �4�

Expanding g�j�, h�l�, and f formally as power series expan-
sions in terms of a small arbitrary real parameter �,

g�j� = �g1
�j� + �3g3

�j� + ¯ , j = 1,2, . . . ,m , �5a�

h�l� = h0
�l��1 + �2h2

�l� + �4h4
�l� + ¯�, l = 1,2, . . . ,n , �5b�
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f = 1 + �2f2 + �4f4 + ¯ , �5c�

and solving the resultant set of equations recursively, we can
obtain the explicit forms of g�j�, h�l�, and f .

III. EXACT MIXED-TYPE (BRIGHT-DARK) SOLITON
SOLUTIONS OF MULTICOMPONENT MIXED

CNLS EQUATIONS

A significant feature of the system of integrable mixed
CNLS equation �1� is that it admits a rich structure of soliton
solutions, such as bright-, dark-, bright-dark-type soliton so-
lutions depending upon the boundary conditions. Here, our
focus is on bright-dark-type �or dark-bright-type� solutions.
In order to understand the nature of such mixed soliton so-
lutions, their propagation and collision dynamics, we first
obtain the solution for the N=2 case. Then by extending the
analysis to the arbitrary N-component case in the remaining
sections, we point out that for N�2, if the bright solitons are
split up in two or more components, there occurs shape-
changing collision of bright solitons which are also influ-
enced by the presence of a dark soliton.

A. Bright-dark soliton solutions
of the mixed 2-CNLS equations

�a� Mixed (bright-dark) one-soliton solution. In this case
the bright soliton appears in the q1 component and the re-
maining component q2 comprises of dark soliton �or vice
versa�. This case corresponds to the choice �1=1 and �2
=−1 �or �1=−�2=−1� for which Eq. �1� become

iq1,z + q1,tt + 2��q1�2 − �q2�2�q1 = 0, �6a�

iq2,z + q2,tt + 2��q1�2 − �q2�2�q2 = 0. �6b�

After restricting the power series expansion �5� as

g�1� = �g1
�1�, �7a�

h�1� = h0
�1��1 + �2h2

�1�� , �7b�

f = 1 + �2f2, �7c�

and solving the resulting set of linear partial differential
equations recursively, one can write down the mixed one-
soliton solution explicitly as

q1 =
	1

�1�e
1

1 + e
1+
1
�+R

= A1k1Rei
1I sech�
1R +
R

2
� , �8a�

q2 =

c1ei�1�1 − � k1 − ib1

k1
� + ib1

�e
1+
1
�+R�

1 + e
1+
1
�+R

, �8b�

where

eR =
�	1

�1��2

�k1 + k1
��2�1 −

�c1�2

�k1 − ib1�2�
−1

, A1 = � 	1
�1�

2k1R
�e−R/2,

�8c�


1 = k1t + i�k1
2 − ��z, k1 = k1R + ik1I, 	1

�1� = 	1R
�1� + i	1I

�1�,

�8d�

�1 = − �b1
2 + ��z + b1t, � = 2�c1�2, c1 = c1R + ic1I,

�8e�

with the condition

�c1�2 � �k1 − ib1�2. �8f�

Here 	1
�1�, k1, and c1 are arbitrary complex parameters while

b1 is a real parameter. In the above equations and in the
following sections, the suffixes R and I denote the real and
imaginary parts, respectively. The above one-soliton solution
is characterized by seven real parameters 	1R

�1�, 	1I
�1�, k1R, k1I,

c1R, c1I, and b1 along with the constraint �8f�. In the context
of nonlinear optics the quantity A1 defined through the 	
parameter can be viewed as the polarization vector of the
light pulse or beam and A1k1R as the amplitude of the bright
soliton. By defining the quantities � and 1

�1� as �
=tan−1�	1I

�1� /	1R
�1�� and 1

�1�=tan−1��k1I−b1� /k1R�, respectively,
Eqs. �8a� and �8b� can be rewritten as

q1 = k1R
2 − �c1�2 cos2 1

�1�ei� sech�k1R�t − 2k1Iz�

+
R

2
�eik1It+i�k1R

2 −k1I
2 −2�c1�2�z, �9a�

q2 = − c1ei�1�cos 1
�1� tanh�k1R�t − 2k1Iz� +

R

2
� + i sin 1

�1�� .

�9b�

Now the condition �8f� becomes k1R
2 � �c1�2 cos2 1

�1�. It can
be inferred from Eq. �9a� that the intensity of the bright
soliton increases with a decrease in the magnitude of the dark
soliton parameter c1 as shown in Fig. 1 �all of the quantities
in Fig. 1 and the rest of the figures are dimensionless�. This
is a consequence of the particular type of cross-phase modu-
lation coupling given in Eq. �6a� and �6b�. Note that the
	-parameter influences only the central position of the bright
and dark solitons and not the intensities. However, it can be
inferred from Eq. �9a� that the 	 parameters appear in the
complex phase �ei�� of the amplitude part.

�b� Mixed two-soliton solution. The mixed two-soliton so-
lution can be obtained by terminating the power series ex-
pansion �5� as

g�1� = �g1
�1� + �3g3

�1�, �10a�

h�1� = h0
�1��1 + �2h2

�1� + �4h4
�1�� , �10b�

f = 1 + �2f2 + �4f4. �10c�

After solving the resulting bilinear equations recursively, the
explicit two-soliton solution is obtained as

q1 =
1

D
�	1

�1�e
1 + 	2
�1�e
2 + e
1+
1

�+
2+�11 + e
2+
2
�+
1+�21� ,

�11a�
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q2 =
1

D
�c1ei�1�1 + e
1+
1

�+Q11
�1�

+ e
1+
2
�+Q12

�1�
+ e
2+
1

�+Q21
�1�

+ e
2+
2
�+Q22

�1�
+ e
1+
1

�+
2+
2
�+Q3

�1�
�� , �11b�

where

D = 1 + e
1+
1
�+R1 + e
1+
2

�+�0 + e
2+
1
�+�0

�

+ e
2+
2
�+R2

+ e
1+
1
�+
2+
2

�+R3 �11c�

and


 j = kjt + i�kj
2 − 2�c1�2�z, j = 1,2. �11d�

In the above 	1
�1�, 	2

�1�, k1, k2, and c1 are complex parameters
and b1 is a real parameter �see below�. Introducing the quan-
tity

�ij =
	i

�1�	 j
�1��

�ki + kj
��2�1 −

�c1�2

�ki − ib1��kj
� + ib1�

�−1

, i, j = 1,2,

�12a�

the various other parameters in the expression �11� are de-
fined as follows:

eR1 = �11, eR2 = �22, e�0 = �12, e�0
�

= �21, �12b�

e�11 =
�k2 − k1�2

	1
�1�� �1 +

�c1�2

�k1 − ib1��k2 − ib1�
��11�21,

�12c�

e�21 =
�k2 − k1�2

	2
�1�� �1 +

�c1�2

�k1 − ib1��k2 − ib1�
��22�12,

�12d�

eQij
�1�

= −
�ki − ib1�
�kj

� + ib1�
�ij, i, j = 1,2,

eQ3
�1�

= � �k1 − ib1��k2 − ib1�
�k1

� + ib1��k2
� + ib1�

�eR3, �12e�

and

eR3 = ��11�12�21�22

�	1
�1�	2

�1��2 ��k1 − k2�2�1 +
�c1�2

�k1 − ib1��k2 − ib1�
�2

.

�12f�

The above two-soliton solution �11� is restricted by the con-
ditions kjR

2 + �kjI−b1�2� �c1�2 , j=1,2, as in the case of one-
soliton solution. The two-soliton solution �11� is character-
ized by 11 real parameters 	1R

�1�, 	2R
�1�, 	1I

�1�, 	2I
�1�, k1R, k1I, k2R,

k2I, c1R, c1I, and b1.

B. Bright-dark soliton solutions
of the mixed 3-CNLS equations

Let us consider the set of mixed 3-CNLS equations which
corresponds to Eq. �1� with N=3. In its explicit form the set
of mixed 3-CNLS equations reads as

|q1|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|q2|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|q2|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|q1|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|q2|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|q1|2

t
�10 �5 0 5 10

0.2

0.4

0.6

0.8

1

|c1|=0.7 |c1|=0.9|c1|=0.3

FIG. 1. Intensity plots of one-soliton of the mixed CNLS equations with N=2 for different values of the background parameter c1 for a
fixed value of z. Note that the intensity of the bright soliton increases as the depth of the dark soliton decreases. The other parameters are
chosen as k1=1+ i , 	1

�1�=1, b1=0.2.
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iq1,z + q1,tt + 2��1�q1�2 + �2�q2�2 + �3�q3�2�q1 = 0,

�13a�

iq2,z + q2,tt + 2��1�q1�2 + �2�q2�2 + �3�q3�2�q2 = 0,

�13b�

iq3,z + q3,tt + 2��1�q1�2 + �2�q2�2 + �3�q3�2�q3 = 0. �13c�

In the above, the nonlinearity coefficients � j’s, j=1,2 ,3 take
the values either �1=�2= +1, �3=−1 or �1= +1, and �2
=�3=−1. In Eq. �13�, in the context of BECs the components
q1, q2, and q3 either denote the condensates of three isotopes
of the same element �for example, Rb isotopes� �25� or the
hyperfine spin states of spinor BECs �27�. This set of equa-
tions admits the following two distinct types of mixed soliton
solutions.

�i� Two-bright–one-dark soliton solution: In this case the
bright solitons are separated out into two of the three com-
ponents and the dark soliton appears in the remaining com-
ponent �with the choices �1=�2=1 and �3=−1�.

�ii� One-bright–two-dark soliton solution: In this type of
solution the dark solitons appear in two components and the
remaining component comprises of the bright soliton �with
the choices �1=1 and �2=�3=−1�.

The procedure of obtaining these soliton solutions is simi-
lar to that of the mixed 2-CNLS equations.

1. Two-bright–one-dark soliton solution

We present below the explicit forms of the obtained one-
and two-soliton solutions.

�a� Mixed one-soliton solution. The mixed one-soliton so-
lution, in which two bright solitons appear in the first two
components and the dark one appears in the third compo-
nent, is obtained by Hirota’s method as

qj =
	1

�j�e
1

1 + e
1+
1
�+R

, j = 1,2, �14a�

that is

qj = Ajk1Rei
1I sech�
1R +
R

2
� , �14b�

q3 =

c1ei�1�1 − � k1 − ib1

k1
� + ib1

�e
1+
1
�+R�

1 + e
1+
1
�+R

, �14c�

where

eR =

�
j=1

2

�	1
�j�	1

�j���

�k1 + k1
��2 �1 −

�c1�2

�k1 − ib1�2�
−1

, �14d�

Aj = � 	1
�j�

2k1R
�e−R/2

�
k1R

2 − �c1�2 cos2 1
�1�

k1R
� 	1

�j�

��	1
�1��2 + �	1

�2��2�
�, j = 1,2.

�14e�

Here the quantities 
1 and �1 are as defined in Eqs. �8d� and
�8e�, respectively. Aj’s defined through the 	�j� and c1 param-
eters represent the polarization of the bright components. For
the dark component, the parameter b1 denotes the direction
of the background and c1 gives its amplitude. The one-
soliton solution is characterized by nine real parameters 	1R

�1�,
	1I

�1�, 	1R
�2�, 	1I

�2�, k1R, k1I, c1R, c1I, and b1 and is restricted by the
condition �c1�2� �k1− ib1�2. Now the role of 	 parameters can
be realized explicitly in the amplitude �intensity� of bright
components and also through the nontrivial phase of all the
components. This is shown in Fig. 2. In fact this has impor-
tant consequences in the collision process as will be illus-
trated in the following sections. Thus the dark soliton part
influences the bright part through the parameters c1 and b1
whereas the bright solitons influence the dark soliton phase
�central position� through the 	 parameters.

�b� Two-soliton solution. Following Hirota’s bilineariza-
tion method as in the case of N=2, here we obtain the two-
soliton solution as

qj =
1

D
�	1

�j�e
1 + 	2
�j�e
2 + e
1+
1

�+
2+�1j + e
2+
2
�+
1+�2j�,

j = 1,2, �15a�

q3 =
1

D
�c1ei�1�1 + e
1+
1

�+Q11
�1�

+ e
1+
2
�+Q12

�1�
+ e
2+
1

�+Q21
�1�

+ e
2+
2
�+Q22

�1�
+ e
1+
1

�+
2+
2
�+Q3

�1�
�� , �15b�

e�1j = �k2 − k1��11�21�	2
�j��21 − 	1

�j��11� , �15c�

e�2j = �k2 − k1��12�22�	2
�j��22 − 	1

�j��12� , �15d�

eR3 = �k1 − k2�2�11�12�21�22��12�21 − �11�22�, j = 1,2,

�15e�

where �il’s are now redefined as

�il =
1

�ki + kl
���il

, �15f�

�il =
�ki + kl

��

�
j=1

2

�	i
�j�	l

�j���

�1 −
�c1�2

�ki − ib1��kl
� + ib1�

�, i,l = 1,2.

�15g�

The form of D is given as in Eq. �11c� and the expressions

for eQ11
�1�

, eQ12
�1�

, eQ21
�1�

, eQ22
�1�

, and eQ3
�1�

take the form as given in
Eq. �12e� with the above redefinition of the �il’s. 	iR

�j�, 	iI
�j�,
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kiR, kiI, i , j=1,2, c1R, and b1 are the 15 real parameters which
characterize the above solution. The nature of this two-
soliton solution will be discussed in Sec. IV B.

2. One-bright–two-dark soliton solution

Next we consider the case where the bright soliton ap-
pears in the q1 component and the two dark solitons are
found in the remaining two components �q2 ,q3�. This gives
us the possibility of introducing two background fields c1ei�1

and c2ei�2.
�a� Mixed one-soliton solution. The corresponding one-

soliton solution obtained by using Hirota’s method is

q1 =
	1

�1�e
1

1 + e
1+
1
�+R

, �16a�

that is

q1 = A1k1Rei
1I sech�
1R +
R

2
� , �16b�

ql+1 =

cle
i�l�1 − � k1 − ibl

k1
� + ibl

�e
1+
1
�+R�

1 + e
1+
1
�+R

, l = 1,2, �16c�

where


1 = k1t + i�k1
2 − ��z, �l = − �bl

2 + ��z + blt,

� = 2��c1�2 + �c2�2�, l = 1,2.

eR =
�	1

�1��2

�k1 + k1
��2�1 −

�c1�2

�k1 − ib1�2
−

�c2�2

�k1 − ib2�2�
−1

, �16d�

A1 = � 	1
�1�

2k1R
�e−R/2. �16e�

Now the one-soliton solution is characterized by 10 real pa-
rameters, 	1R

�1�, 	1I
�1�, k1R, k1I, c1R, c1I, c2R, c2I, b1, and b2.

�b� Two-soliton solution. As in the preceding section, here
also we obtain the two-soliton solution as
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FIG. 2. Intensity plots of one-soliton of the mixed CNLS equations with N=3 for different values of the 	 parameters for a fixed value
of z. �a� 	1

�1�=0.2+0.01i , 	1
�2�=0.5+0.05i, �b� 	1

�1�=1+ i , 	1
�2�=2+ i, and �c� 	1

�1�=13−13i , 	1
�2�=17+0.3i. The role of 	 parameters are

shown in both the intensity and phase of the bright soliton while it affects the phase �central position� of the dark soliton. The parameters c1,
b1, and k1 are chosen as �c1�=0.56, b1=0.2, k1=1+ i.
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q1 =
1

D
�	1

�1�e
1 + 	2
�1�e
2 + e
1+
1

�+
2+�11 + e
2+
2
�+
1+�21� ,

�17a�

ql+1 =
1

D
�cle

i�l�1 + e
1+
1
�+Q11

�l�
+ e
1+
2

�+Q12
�l�

+ e
2+
1
�+Q21

�l�

+ e
2+
2
�+Q22

�l�
+ e
1+
1

�+
2+
2
�+Q3

�l�
��, l = 1,2, �17b�

where

e�11 = �k2 − k1�2�11�21

	1
�1�� �, e�21 = �k2 − k1�2�12�22

	2
�1�� � .

�17c�

In Eqs. �17a� and �17b�, the form of D, eQij
�l�

, and eQ3
�l�

are the
same as in Eqs. �11c� and �12e� with i , j , l=1,2. Also, the
quantities eR3, �il, and � are redefined as

eR3 = �k1 − k2�2
�11�12�21�22

�	1
�1�	2

�1��2
���2, �17d�

�il =
	i

�1�	l
�1��

�ki + kl
��2�1 − �

v=1

2 �cv�2

�ki − ibv��kl
� + ibv��

−1

, i,l = 1,2,

�17e�

and

� = �1 + �
v=1

2 �cv�2

�k1 − ibv��k2 − ibv�� . �17f�

The two-soliton solution is characterized by 14 real param-
eters. Again we will study the nature of this solution in Sec.
IV B.

C. N-soliton solutions

The above procedure of obtaining soliton solutions can be
extended to three- and N-soliton solutions with some effort,
though the analysis is cumbersome. In this work, we restrict
our analysis to the two-soliton solution only as the N-soliton
collisions represented by N-soliton solution in general take
place pairwise in soliton theory. Work is in progress in this
direction and the results will be presented separately.

D. Bright-dark soliton solutions of the mixed N-CNLS case

After obtaining the two- and three-component mixed-
soliton solutions, the next natural step is to generalize the
results to the arbitrary N-component case, where N=m+n.
For this purpose, we consider the case where the bright soli-
tons appear in the first m components and the dark solitons
appear in the remaining n���N−m�� components. So the re-
sulting mixed-soliton solution can be denoted as m-bright–
n-dark-type soliton solution, as pointed out in Sec. II.

m-bright–n-dark soliton solution

�a� One-soliton solution. The mixed one-soliton solution
of the mixed N-CNLS case is found as

qj =
	1

�j�e
1

1 + e
1+
1
�+R

, �18a�

that is

qj = Ajk1Rei
1I sech�
1R +
R

2
�, j = 1,2, . . . ,m ,

�18b�

ql+m =

cle
i�l�1 − � k1 − ibl

k1
� + ibl

�e
1+
1
�+R�

1 + e
1+
1
�+R

, l = 1,2, . . . ,n ,

�18c�

where

eR =

�
j=1

m

�	1
�j�	1

�j���

�k1 + k1
��2 �1 − �

l=1

n �cl�2

�k1 − ibl�2
�−1

, �18d�

Aj = � 	1
�j�

2k1R
�e−R/2. �18e�

Here


 j = kjt + i�kj
2 − ��z, �l = − �bl

2 + ��z + blt,

� = 2�
l=1

n

�cl�2, j = 1,2, . . . ,m and l = 1,2, . . . ,n .

�18f�

The one-soliton solution is characterized by �2m+3n+2�
number of real parameters, 	1R

�j� ,	1I
�j� ,k1R ,k1I ,clR ,clI ,bl, j

=1,2 , . . . ,m, l=1,2 , . . . ,n with the condition �cl�2� �k1
− ibl�2 , l=1,2 , . . . ,n.

�b� Two-soliton solution. Generalization of the mixed two-
soliton solution presented in the preceding sections for N
=2 and N=3 cases yields the following m-bright–n-dark
two-soliton solution of Eq. �1� with arbitrary N:

qj =
1

D
�	1

�j�e
1 + 	2
�j�e
2 + e
1+
1

�+
2+�1j + e
2+
2
�+
1+�2j�,

j = 1,2, . . . ,m , �19a�

ql+m =
1

D
�cle

i�l�1 + e
1+
1
�+Q11

�l�
+ e
1+
2

�+Q12
�l�

+ e
2+
1
�+Q21

�l�

+ e
2+
2
�+Q22

�l�
+ e
1+
1

�+
2+
2
�+Q3

�l�
��, l = 1,2, . . . ,n .

�19b�

Here the denominator D is given by Eq. �11c�. The quantities

eR1, eR2, e�0, and e�0
�

are as defined in Eq. �12b� but with the
following redefinitions:
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eQij
�l�

= −
�ki − ibl�
�kj

� + ibl�
�ij, i, j = 1,2,

eQ3
�l�

= � �k1 − ibl��k2 − ibl�
�k1

� + ibl��k2
� + ibl�

�eR3, �19c�

e�1j = �k2 − k1��11�21�	2
�j��21 − 	1

�j��11�, j = 1,2, . . . ,m ,

e�2j = �k2 − k1��12�22�	2
�j��22 − 	1

�j��12� ,

eR3 = �k1 − k2�2�11�12�21�22��12�21 − �11�22� , �19d�

�ip =
1

�ki + kp
���ip

,

and

�ip =
�ki + kp

��

�
j=1

m

�	i
�j�	p

�j���
�1 − �

l=1

n �cl�2

�ki − ibl��kp
� + ibl�

�, i,p = 1,2.

�19e�

The number of real parameters which characterize the two-
soliton solution is �4m+3n+4�.

IV. SHAPE-CHANGING COLLISIONS OF MIXED
SOLITONS

The fascinating property of the bright solitons of the in-
tegrable N-CNLS system with focusing-type nonlinearity is
that they exhibit shape-changing collisions characterized by
intensity redistribution, amplitude-dependent phase shift, and
relative separation distances �12,13,16�, which can then be
used to construct collision-based logic gates for optical com-
putation �28,29�. In this and in the following sections we
analyze such collision dynamics of bright solitons in the
presence of dark solitons in the mixed 2-CNLS and 3-CNLS
equations and also its effect on the propagation and collision
of dark solitons. In this regard, we perform an asymptotic
analysis of the two-soliton solutions for mixed 2-CNLS and
3-CNLS equations.

A. Asymptotic analysis of mixed two-soliton solution of mixed
2-CNLS equations

To start with, we consider the collision properties associ-
ated with the mixed two-soliton solution �11� of the mixed
2-CNLS equations �6a� and �6b�. Following this we carry out
the analysis for mixed 3-CNLS equations. Without loss of
generality, we take kjR�0 and k1I�k2I, kj =kjR+ ikjI, j=1,2,
and obtain the asymptotic forms of two colliding solitons
�say S1 and S2�. Similar analysis can be carried out for other
choices of kjR and kjI also. Using the expression �11� for the
bright-dark two-soliton solution of the mixed 2-CNLS sys-
tem �6a� and �6b�, we carry out a detailed asymptotic

analysis in Appendix A for the two-soliton collision process.
Based on this analysis we identify the following.

1. Role of dark soliton on bright soliton collision

The amplitudes of the two solitons S1 and S2 before �after�
interaction are given by A1

1−k1R�A1
1+k1R� and A1

2−k2R�A1
2+k2R�,

respectively, in the q1 component. Forms of A1
j� , j=1,2, are

given in Appendix A �see Eqs. �A1c�, �A2c�, �A3c�, and
�A4c��. By rewriting these forms one can show that the in-
tensities of solitons before and after interaction are the same
�elastic�, i.e., �A1

j−�= �A1
j+�, j=1,2, even though the complex

amplitudes differ in phase. Also, the appearance of the back-
ground parameter c1 in the expression for the bright soliton
amplitudes before and after collision �see Eqs. �A1c�, �A2c�,
�A3c�, and �A4c�� shows that this parameter influences the
bright soliton amplitudes throughout the collision.

Typical bright-dark soliton collision in the mixed 2-CNLS
system is shown in Fig. 3 for the parametric choices k1=1
+ i , k2=2− i , �c1�=0.56, b1=0.2, 	1

�1�=1, 	2
�1�=1+ i. For

better understanding, first we plot the intensity profiles show-
ing the bright soliton elastic collision scenario in the absence
of dark soliton parameter �c1=0�, at z=−4 and z=4. This is
shown in Fig. 4�a�. Then the same bright soliton collision is
plotted for the above parametric choices as in Fig. 3 at z=
−4 and z=4, that is in the presence of the dark component, in
Fig. 4�b�. From these two figures, we observe that due to the
presence of dark soliton the amplitudes of the colliding
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FIG. 3. Elastic collision of �bright-dark� two solitons in the
mixed CNLS system for the N=2 case. The parameters are chosen
as given in the text.
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bright solitons are reduced by the same amount throughout
the collision.

The two colliding solitons S1 and S2 suffer phase shifts �1
and �2, respectively, in both the bright and dark components.
These phase shifts for the bright and dark solitons are given
by the expression

�1 = − �2 = �R3 − R2 − R1

2
�

=
1

2
ln� �k1 − k2�2

�k1 + k2
��2�k2 + k1

��2

�1 +
�c1�2

P1P2
��1 +

�c1�2

P1
�P2

��
�1 −

�c1�2

P2P1
���1 −

�c1�2

P1P2
�� � ,

�20a�

where P1=k1− ib1 and P2=k2− ib1. Note that the phase shifts
appearing here �Eq. �20a�� and in the following �see Eqs.

�23a� and �26�� are real quantities as the terms appearing in
the argument of the logarithmic function are products of
complex conjugates. The role of dark component comes into
picture through this phase shift due to the explicit appearance
of the background parameters �c1 ,b1�. Notice that in the ab-
sence of the dark component �c1=0�, the phase shift �1 re-
duces to the standard phase shift experienced by colliding
solitons in scalar nonlinear Schrödinger equations �NLS�.
Also, it is important to notice that the 	 parameters have no
effect on the phase shift in the mixed 2-CNLS case. How-
ever, this is not true in the mixed N-CNLS case for more
than two components �N�2� as will be shown in the follow-
ing sections. The relative separation distances between the
two colliding solitons before interaction

t12
− =

R3k1R − R1�k1R + k2R�
2k1Rk2R

�20b�

and after interaction
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FIG. 4. Intensity profiles of two colliding bright solitons of the mixed CNLS equations with N=2, before �z=−4� and after �z=4�
collision: �a� in the absence of dark component �c1=0 in Eq. �11��; �b� in the presence of dark component �c1�0 in Eq. �11��. The figure is
plotted for a special choice of parameters �as given in the text� with �c1�=0.56. Note the elastic nature of the collision.
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t12
+ =

R2�k1R + k2R� − R3k2R

2k1Rk2R
�20c�

also remain unaffected by 	 parameters.

2. Role of bright soliton on dark soliton collision

The asymptotic expressions �Eqs. �A1b�, �A2b�, �A3b�,
and �A4b�� reveal the fact that the collision among dark soli-
tons is elastic as the intensities of colliding solitons remain
the same before and after interaction. From Fig. 3 it can be
observed that the bright-component parameter 	 has no in-
fluence at all either in the amplitude or in the phase shift of
the dark soliton during collision. Thus, the inclusion of 	
parameters in the bright soliton solution �see Eq. �11�� does
not affect dark soliton collisions.

B. Asymptotic analysis of mixed two-soliton solution
of mixed 3-CNLS equations

The next natural step is to study the collision process in
the mixed 3-CNLS equations and one can generalize the re-
sults to the N-CNLS equations with arbitrary N. The
asymptotic expressions of the solitons corresponding to the
N=3 case are presented in Appendix B. This 3-CNLS system
admits two distinct types of solution as mentioned in Sec.
III B. First, let us consider the two-bright–one-dark soliton
collision and then the one-bright–two-dark soliton collision.

1. Two-bright–one-dark soliton collision

We analyze two important physical quantities, namely �i�
intensity and �ii� phase shift of both bright and dark solitons.
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FIG. 5. Shape-changing collision of two solitons in the mixed
CNLS system for the N=3 case. The parameters are as given in the
text.
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FIG. 6. Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS equations with N=3 in the absence of
dark component, �c1=0� with 	1

�1� /	2
�1��	1

�2� /	2
�2�. �a� z=−4 and �b� z=4, given by the specific choice of parameters as given in the text.
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�i� Intensities of bright and dark solitons: Analyzing Eqs.
�B1c�, �B2c�, �B3c�, and �B4c�, we find that the amplitudes
�intensities� of bright solitons before and after interaction
aredifferent. In fact, the intensities of the colliding bright
solitons before and after interactions can be related through
the expression

�Aj
l+�2 = �Tj

l�2�Aj
l−�2, j,l = 1,2, �21�

where the superscripts l� represent the solitons designated
as S1 and S2, at z→ ��. The transition intensities are iden-
tified from Appendix B as

�Tj
1�2 =

�1 − �2�	2
�j�/	1

�j���2

�1 − �1�2�
, �22a�

�Tj
2�2 =

�1 − �1�2�
�1 − �1�	2

�j�/	1
�j���2

, j = 1,2, �22b�

�1 =
�11

�21
, �2 =

�22

�12
, �22c�

�il =
�ki + kl

��

�
j=1

2

�	i
�j�	l

�j���

�1 −
�c1�2

�ki − ib1��kl
� + ib1�

�, i,l = 1,2.

�22d�

Note that the transition amplitudes Tj
l’s now are also func-

tions of dark soliton parameters c1 and b1. On the other hand,
from Eqs. �B1b�, �B2b�, �B3b�, and �B4b� we find that the
intensities of dark solitons remain unchanged due to the col-
lision process.

�ii� Phase shift of bright and dark solitons: The amplitude-
dependent phase shift �1

�= R3−R2−R1

2
� for soliton S1 can be

expressed in the present case as
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FIG. 7. Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS equations with N=3 in the presence
of dark component �c1�0� with 	1

�1� /	2
�1��	1

�2� /	2
�2�. �a� z=−4 and �b� z=4, given by the specific choice of parameters as given in the text.
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�1 =
1

2
ln� �k1 − k2�2

�k1 + k2
���k2 + k1

���1

− U��k1 + k1
���k2 + k2

��
�k1 + k2

���k2 + k1
��

�1 −
�c1�2

P1P1
���1 −

�c1�2

P2P2
��

�1 −
�c1�2

P1P2
���1 −

�c1�2

P2P1
����� ,

�23a�

where

U =
�	1

�1�	2
�1�� + 	1

�2�	2
�2����	2

�1�	1
�1�� + 	2

�2�	1
�2���

��	1
�1��2 + �	1

�2��2���	2
�1��2 + �	2

�2��2�
. �23b�

Note that the soliton S2 experiences an exactly opposite
phase shift �2�=−�1�. The above phase shift in turn results
in the following change in relative separation distance be-
tween the solitons before and after collision:

�t12 = t12
− − t12

+ =
�k1R + k2R�

k1Rk2R
�1. �24�

The expression for �1 given in Eq. �23a� clearly indicates
that now the phase shift depends on 	 parameters as well as
c1. Thus, the phase shift and ultimately the relative separa-
tion distance between the solitons can be altered during a
two-soliton collision process for a given combination of kj,
c1, and b1, by just varying the 	 parameters and as a whole
the combined soliton profile gets altered.

This kind of collision scenario is shown in Fig. 5. The
corresponding intensity plots show that the bright solitons
undergo shape-changing collisions characterized by intensity
redistribution, amplitude-dependent phase shift, and relative
separation distance for the parametric choice k1=1+ i ,k2=2
− i , b1=0.2, �c1�=0.56, 	1

�1�=1, 	1
�2�= �32+ i80� /89, 	2

�1�

=1, 	2
�2�=1. The solitons �say S1 and S2� are well separated

before and after collision in both the components q1 and q2.
In the q1 component the intensity of soliton S1 gets sup-
pressed while that of soliton S2 is enhanced after interaction,
whereas in the q2 component it gets reversed. Such shape-

changing collisions occur for
	1

�1�

	2
�1� �

	1
�2�

	2
�2� , which is quite gen-

eral. But when we choose
	1

�1�

	2
�1� =

	1
�2�

	2
�2� , the two solitons exhibit

elastic collision. It is instructive to note that although the
dark solitons appear in the q3 component, they indirectly
influence the shape-changing collisions through the carrier
wave background parameters c1 and b1. From the asymptotic
analysis it follows that these background parameters influ-
ence the intensities of the colliding bright solitons before and
after collision by different amounts through their explicit ap-
pearance in the transition intensities �see Eq. �22��. However,
the nature of the collision is unaltered. We present below
a detailed discussion to obtain a clear picture about the

influence of dark solitons on bright soliton collision and vice
versa.

�a� Effect of dark soliton on the intensity of bright soliton.
For a better understanding, we present the shape-changing
collision of bright solitons �i� in the absence of dark compo-
nent, that is c1=0, in Fig. 6 and �ii� in the presence of dark
component, that is c1�0, in Fig. 7 for the above-mentioned
parametric choices. From these figures we observe that, in
the presence of dark component, the intensities of solitons S1

in the q1 component is decreased �increased� before �after�
collision �as compared with Fig. 6�, but not by the same
amount. Thus, the effect of the dark component on the inten-
sity of the bright soliton before its collision is different from
the effect on the intensity after the collision. But in the q2

component there occurs decrement of intensity in both the
solitons before and after collision due to the presence of dark
soliton. This confirms the fact that the presence of dark soli-
tons indeed influences the cross-phase coupling between the
two components q1 and q2 which in turn affects the energy
redistribution between those components as observed from
the figures.

However, the nature of collision, that is enhancement
�suppression� in S1 and suppression �enhancement� in S2 in
the q1�q2� component during the shape-changing collision
process, is still preserved. We also notice that in the case of
the standard elastic collision process resulting for the choice
	1

�1�

	2
�1� =

	1
�2�

	2
�2� , the role of the c1 parameter on the amplitudes of

colliding bright solitons before and after collision is the
same. This is shown in Fig. 8 and Fig. 9, for c1=0 and c1

�0, respectively. From the figures we observe that the inten-
sities of bright solitons before and after collision are affected
by the dark component by the same amount.

�b� Collision behavior of dark solitons in the presence of
bright solitons. The intensities of dark solitons in the q3 com-
ponent are unaffected during the collision in the presence of
the bright solitons in the q1 and q2 components. This is ob-
vious from the analytic expressions �B1b�, �B2b�, �B3b�, and
�B4b�. This type of collision scenario is shown in the third
figure of Fig. 5 �see also Fig. 7�. The analysis presented in
Appendix B reveals the fact that the 	 parameters do affect
the interaction of dark solitons through the shift in central
position of the solitons which ultimately changes the separa-
tion distance between them after collision. This phase shift
and the resulting change in the relative separation distance
between the solitons can be obtained from Eq. �23a� and Eq.
�24�, respectively. In fact, the change in relative separation
distance becomes more significant and displays interesting
propagation and collision dynamics of solitons when the
soliton velocities are moderately different and kjR’s are
equal. For illustrative purpose, we consider the propagation
of such composite two dark solitons arising for the choice
k1=0.6− i, k2=0.6−0.5i, b1=0.2, �c1�=0.56, 	1

�1�=1, 	1
�2�= i,

	2
�1�= �22 /55�−45i, 	2

�2�=1 in Fig. 10, at z=−5 and z=5. The

analytic expression corresponding to the above choice �k1R

=k2R ,
	1

�1�

	2
�1� �

	1
�2�

	2
�2� � is given by
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q3 = c1ei�1� eQ3/2 cosh�A +
Q3

2
� + e�Q11+Q22�/2 cosh�B +

Q22 − Q11

2
� + e�Q12+Q21�/2 cos�C +

Q21 − Q12

2
�

eR3/2 cosh�A +
R3

2
� + e�R1+R2�/2 cosh�B +

R2 − R1

2
� + e��0

�+�0�/2 cos�C +
�0

� − �0

2
� � , �25a�

where

A = 2k1R�t − z�k1I + k2I�� , �25b�

B = 2k1R�z�k1I − k2I�� , �25c�

C = �k2I − k1I�t + �k1I
2 − k2I

2 �z . �25d�

Such a soliton solution can be viewed as soliton complex
�30,31� and all the parameters in Eq. �25a� are defined in Eq.
�15�. Figure 10�a� shows that the dark soliton complex varies
its profile during propagation within a finite distance. This is
a consequence of change in the relative separation distance
due to the presence of 	 parameters. However, for the same

choice of kj, b1, and c1 but with
	1

�1�

	2
�1� =

	1
�2�

	2
�2� , the dark soliton

complex does not vary its profile after propagation through
the same distance. This is shown in Fig. 10�b�. This kind of
behavior is a striking feature of multisoliton complexes
�30,31�. The bright counterparts of this dark soliton also

form bright soliton complexes of variable shape and such
bright soliton complexes in CNLS equations with focusing
nonlinearity are discussed in Refs. �13,30–32�. Work is in
progress on such bright-dark multisoliton complexes.

2. One-bright–two-dark soliton collision

The two-soliton solution given by Eq. �17� describes the
collision of solitons in which bright soliton collision takes
place in the q1 component and the dark soliton collision oc-
curs in the q2 and q3 components. The asymptotic expres-
sions for the colliding solitons before and after collision are
given in Appendix B. Equations �B5�–�B8� show that the
intensities of bright solitons before and after collisions are
the same, i.e., �A1

l−�= �A1
l+�, l=1,2. Similarly, the intensities of

the dark solitons are also unaltered after collision. This indi-
cates that the bright as well as the dark solitons undergo
elastic collision. However, there occurs a dark soliton
parameter-dependent phase shift due to collision. The phase
shift of soliton S1 in both the bright and dark components is
given by

S2S1

|q1|2

t
�15 �10 �5 0 5 10 15

0.5

1

1.5

2

S2 S1

|q1|2

t
�15 �10 �5 0 5 10 15

0.5

1

1.5
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2

(a) (b)

FIG. 8. Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS equations with N=3 in the absence of
dark component �c1=0�, for 	1

�1� /	2
�1�=	1

�2� /	2
�2�. �a� z=−4 and �b� z=4. The parameters are chosen as given in the text.
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�1 = �R3 − R2 − R1

2
� =

1

2
ln� �k1 − k2�2

�k1 + k2
��2�k2 + k1

��2

�1 + �
v=1

2 �cv�2

�k1 − ibv��k2 − ibv��2

�1 − �
v=1

2 �cv�2

�k1 − ibv��k2 − ibv��2� . �26�

Similarly, soliton S2 undergoes a phase shift �2=−�1. The
dark-component parameters c1, c2, b1, and b2 influence the
phase shift whereas the bright-component parameter 	 does
not alter the phase shift.

The above asymptotic analysis of the two-soliton solution
of 2-CNLS and 3-CNLS can be extended straightforwardly
to N-CNLS equations, with arbitrary N. By generalizing the
above study we also point out that for mixed N-CNLS equa-
tion �1�, the bright and dark solitons can be split up in �N
−1� ways, starting from �N−1�-bright–one-dark soliton solu-

tion, �N−2�-bright–two-dark soliton solution, up to one-
bright–�N−1�-dark soliton solution. We also arrive at an im-
portant conclusion that for m-bright–n-dark two-soliton
solution, where m+n=N, the shape-changing collision of
bright solitons takes place only when m�2.

V. CONCLUSION

To conclude, we have obtained the explicit mixed-type
�bright-dark� soliton solutions for the multicomponent mixed

S2S1

|q1|2
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�15 �10 �5 0 5 10 15

0.5

1

1.5

2

S2 S1

|q1|2

t

�15 �10 �5 0 5 10 15

0.5

1

1.5

2

S2S1

|q2|2

t

�15 �10 �5 0 5 10 15

0.5

1

1.5

2

S2 S1

|q2|2

t

�15 �10 �5 0 5 10 15

0.5

1

1.5

2

S2

S1

|q3|2

t
�15 �10 �5 0 5 10 15

0.2

0.4

0.6

0.8

1

S2

S1

|q3|2

t
�15 �10 �5 0 5 10 15

0.2

0.4

0.6

0.8

1

(a) (b)

FIG. 9. Intensity profiles showing the collision scenario of two bright solitons of the mixed CNLS equations with N=3 in the presence
of dark component �c1�0�, for 	1

�1� /	2
�1�=	1

�2� /	2
�2�. �a� z=−4 and �b� z=4. The parameters are chosen as in the text.
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coupled nonlinear Schrödinger equations using Hirota’s bi-
linearization method. In particular, we have shown that these
coupled bright and dark solitons possess rich structure and
become more general than individual bright or dark solitons.
Next, our analysis of their collision behavior reveals the fact
that there exist elastic collisions of bright as well as dark
solitons for the two component case. We observe that for this
case the bright solitons are affected uniformly by the dark
solitons. The bright soliton parameters 	 have no effect on
the phase shift whereas it is influenced by the dark soliton
parameters c1 and b1. The important observation of this study
is that for more than two components, if the bright solitons
appear in at least two components, then those bright solitons
undergo shape-changing collisions characterized by intensity
redistribution, amplitude-dependent phase shift, and relative
separation distances, but their counterpart �dark solitons� ex-
hibits only elastic collisions but with amplitude-dependent
phase shift. This identification can find potential applications
in optical as well as matter wave switching devices where the
switching is performed through shape-changing collision of
solitons. Further, in contrast to the N-component Manakov
system here the phase shift of bright as well as dark solitons
is characterized by dark soliton parameters c1 and b1 in ad-
dition to the 	 parameters. Also, we observe that the dark
soliton parameter c1 influences the intensity of bright solitons
by a different amount when the bright soliton parameters, 	,

are such that
	1

�1�

	2
�1� �

	1
�2�

	2
�2� while their amplitudes are affected by

dark solitons by the same amount for
	1

�1�

	2
�1� =

	1
�2�

	2
�2� . One more

noticeable observation is that the dark solitons vary their

profiles depending on 	 parameters during propagation as in
multisoliton complexes �31,32�. The various results obtained
from the study will give further insight into the bright-dark
paired solitons, soliton complex formation, collision in
boson-fermion mixtures and in nonlinear left-handed materi-
als and their applications in switching devices.
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APPENDIX A: ASYMPTOCIC ANALYSIS
OF BRIGHT-DARK TWO-SOLITON SOLUTION

OF MIXED 2-CNLS EQUATIONS

In the limit z→ �� the two-soliton solution �11� takes
the following asymptotic forms for the choices k1R, k2R�0,
and k1I�k2I. For other choices of ki’s, i=1,2, similar analy-
sis can be made.

�a� Before collision (limit z→−�).
�i� Soliton 1 �
1R�0, 
2R→−��,

q1 � A1
1−k1Rei
1I sech�
1R +

R1

2
� , �A1a�

|q3|2

t
�20 �10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

|q3|2

t
�20 �10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

|q3|2

t
�20 �10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

|q3|2

t
�20 �10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

(a)

(b)

z=-5 z=5

FIG. 10. Intensity profiles showing the propagation of two dark solitons in the mixed CNLS system, before �z=−5� and after �z=5�
collision: �a� for the special choice of parameters �as given in the text� with 	1

�1� /	2
�1��	1

�2� /	2
�2�; �b� for the special choice of parameters �as

given in the text� with 	1
�1� /	2

�1�=	1
�2� /	2

�2�.
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q2 � − c1ei��1+1
�1���cos 1

�1� tanh�
1R +
R1

2
� + i sin 1

�1�� ,

�A1b�

where

A1
1− = � 	1

�1�

	1
�1���1/2 1

k1R

k1R
2 − �c1�2 cos2 1

�1�, �A1c�

1
�1� = tan−1� k1I − b1

k1R
� . �A1d�

�ii� Soliton 2 �
2R�0, 
1R→��,

q1 � A1
2−k2Rei
2I sech�
2R +

�R3 − R1�
2

� , �A2a�

q2 � c1ei��1+2
�1�� �k1 − ib1�

�k1
� + ib1�

�cos 2
�1� tanh�
2R +

�R3 − R1�
2

�
+ i sin 2

�1�� , �A2b�

where

A1
2− = � 	2

�1�

	2
�1���1/2 1

k2R

k2R
2 − �c1�2 cos2 2

�1�� X

X�� �A2c�

and

2
�1� = tan−1� k2I − b1

k2R
� . �A2d�

In the above expressions,

X = �k1 − k2��k1 + k2
���k1

� + ib1����k1 − ib1��k2
� + ib1� − �c1�2�

���k1 − ib1��k2 − ib1� + �c1�2��1/2.

�b� After collision (limit z→�).
�i� Soliton 1 �
1R�0, 
2R→��,

q1 � A1
1+k1Rei
1I sech�
1R +

�R3 − R2�
2

� , �A3a�

q2 � c1ei��1+1
�1�� �k2 − ib1�

�k2
� + ib1�

�cos 1
�1� tanh�
1R +

�R3 − R2�
2

�
+ i sin 1

�1�� , �A3b�

where

A1
1+ = � 	1

�1�

	1
�1���1/2 1

k1R

k1R
2 − �c1�2 cos21

�1�� Y

Y�� . �A3c�

Here

Y = �k1 − k2��k2 + k1
���k2

� + ib1����k1 − ib1��k2 − ib1� + �c1�2�

���k1
� + ib1��k2 − ib1� − �c1�2��1/2.

�ii� Soliton 2 �
2R�0, 
1R→−��,

q1 � A1
2+k2Rei
2I sech�
2R +

R2

2
� , �A4a�

q2 � − c1ei��1+2
�1���cos 2

�1� tanh�
2R +
R2

2
� + i sin 2

�1�� ,

�A4b�

where

A1
2+ = � 	2

�1�

	2
�1���1/2 1

k2R

k2R
2 − �c1�2 cos2 2

�1�. �A4c�

Note that in the above expressions Aj
l+�Aj

l−, j , l=1,2, �Aj
l+�

= �Aj
l−�, and thereby confirms that no intensity redistribution

occurs in the case of bright soliton and also for dark soliton
�see Eqs. �A1b�, �A2b�, �A3b�, and �A4b��. The phase shift
�1 ��2� of soliton S1 �S2� in the bright and dark component
obtained from the above asymptotic expressions is given by
Eq. �20a�.

APPENDIX B: ASYMPTOTIC ANALYSIS OF BRIGHT-
DARK TWO-SOLITON SOLUTION OF MIXED

3-CNLS EQUATIONS

1. Two-bright–one-dark soliton solution

Here also we assume k1R, k2R�0, and k1I�k2I, then the
two-soliton �two-bright–one-dark� solution �15� takes the
following forms asymptotically �z→ ���.

�a� Before collision (limit z→−�).
�i� Soliton 1 �
1R�0, 
2R→−��,

�q1

q2
� � �A1

1−

A2
1− �k1R sech�
1R +

R1

2
�ei
1I, �B1a�

q3 � − c1ei��1+1
�1���cos 1

�1� tanh�
1R +
R1

2
� + i sin 1

�1�� ,

�B1b�

where

�A1
1−

A2
1− � � �	1

�1�

	1
�2� � k1R

2 − �c1�2 cos2 1
�1�

k1R��	1
�1��2 + �	1

�2��2�1/2 . �B1c�

�ii� Soliton 2 �
2R�0, 
1R→��,

�q1

q2
� � �A1

2−

A2
2− �k2R sech�
2R +

�R3 − R1�
2

�ei
2I, �B2a�

q3 � c1ei��1+2
�1�� �k1 − ib1�

�k1
� + ib1�

�cos 2
�1� tanh�
2R +

�R3 − R1�
2

�
+ i sin 2

�1�� , �B2b�

where
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�A1
2−

A2
2− � ��	2

�1��1 − �	1
�1�/	2

�1���1

1 − �1�2
�

	2
�2��1 − �	1

�2�/	2
�2���1

1 − �1�2
��

�� �k2 − k1��k1 + k2
��

�k2 + k1
���k1 − k2�

k2R
2 − �c1�2cos2 2

�1�

k2R��	2
�1��2 + �	2

�2��2�1/2� .

�B2c�

�b� After collision (limit z→�).
�i� Soliton 1 �
1R�0, 
2R→��,

�q1

q2
� � �A1

1+

A2
1+ �k1R sech�
1R +

�R3 − R2�
2

�ei
1I, �B3a�

q3 � c1ei��1+1
�1�� �k2 − ib1�

�k2
� + ib1�

�cos 1
�1� tanh�
1R +

�R3 − R2�
2

�
+ i sin 1

�1�� , �B3b�

where

�A1
1+

A2
1+ � ��	1

�1��1 − �	2
�1�/	1

�1���2

1 − �1�2
�

	1
�2��1 − �	2

�2�/	1
�2���2

1 − �1�2
��

�� �k1 − k2��k1 + k2
��

�k1 + k2
���k1 − k2�

k1R
2 − �c1�2 cos2 1

�1�

k1R��	1
�1��2 + �	1

�2��2�1/2� .

�B3c�

�ii� Soliton 2 �
2R�0, 
1R→−��,

�q1

q2
� � �A1

2+

A2
2+ �k2R sech�
2R +

R2

2
�ei
2I, �B4a�

q3 � − c1ei��1+2
�1���cos 2

�1� tanh�
2R +
R2

2
� + i sin 2

�1�� ,

�B4b�

where

�A1
2+

A2
2+ � � �	2

�1�

	2
�2� � k2R

2 − �c1�2 cos2 2
�1�

k2R��	2
�1��2 + �	2

�2��2�1/2 . �B4c�

In the above equations 1
�1� and 2

�1� are defined in Eqs.
�A1d� and �A2d�, respectively. Note that Aj

l+�Aj
l−, and also

in general the intensities �Aj
l+�2� �Aj

l−�2, j , l=1,2, except

when
	1

�1�

	2
�1� =

	1
�2�

	2
�2� . The explicit relation between the intensities

before and after collision is given by Eq. �22� in the text. The
phase shifts �1 and �2 suffered by solitons S1 and S2, re-
spectively, are given in Eq. �23a�.

2. One-bright–two-dark soliton solution

Considering the one-bright–two-dark two-soliton solution
�17�, the analysis in the asymptotic limits can be performed
as follows �with k1R, k2R�0, and k1I�k2I�.

�a� Before collision (limit z→−�).
�i� Soliton 1 �
1R�0, 
2R→−��,

q1 � A1
1−k1Rei
1I sech�
1R +

R1

2
� , �B5a�

qj+1 � − cje
i��j+1

�j���cos 1
�j� tanh�
1R +

R1

2
�

+ i sin 1
�j��, j = 1,2, �B5b�

where

A1
1− = � 	1

�1�

	1
�1���1/2 1

k1R

k1R
2 − ��c1�2 cos2 1

�1� + �c2�2 cos2 1
�2�� ,

�B5c�

1
�j� = tan−1� k1I − bj

k1R
� . �B5d�

�ii� Soliton 2 �
2R�0, 
1R→��,

q1 � A1
2−k2Rei
2I sech�
2R +

�R3 − R1�
2

� , �B6a�

qj+1 � cje
i��j+2

�j�� �k1 − ibj�
�k1

� + ibj�
�cos 2

�j� tanh�
2R +
�R3 − R1�

2
�

+ i sin 2
�j��, j = 1,2, �B6b�

where

A1
2− = A1

2+�Q1Q2

Q1
�Q2

��, 2
�j� = tan−1� k2I − bj

k2R
� , �B6c�

Q1 = �k1 − k2��1 +
�c1

2�
�k1 − ib1��k2 − ib1�

+
�c2

2�
�k1 − ib2��k2 − ib2�

�1/2

, �B6d�

Q2 = �k1 + k2
���1 −

�c1
2�

�k1 − ib1��k2
� + ib1�

+
�c2

2�
�k1 − ib2��k2

� + ib2�
�1/2

. �B6e�

Here A1
2+ is defined in Eq. �B8c� given below.

�b� After collision (limit z→�).
�i� Soliton 1 �
1R�0, 
2R→��,

q1 � A1
1+k1Rei
1I sech�
1R +

�R3 − R2�
2

� , �B7a�
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qj+1 � cje
i��j+1

�j�� �k2 − ibj�
�k2

� + ibj�
�cos 1

�j� tanh�
1R +
�R3 − R2�

2
�

+ i sin 1
�j��, j = 1,2, �B7b�

where

A1
1+ = A1

1−�Q1Q2
�

Q1
�Q2

� . �B7c�

�ii� Soliton 2 �
2R�0, 
1R→−��,

q1 � A1
2+k2Rei
2I sech�
2R +

R2

2
� , �B8a�

qj+1 � − cje
i��j+2

�j���cos 2
�j� tanh�
2R +

R2

2
�

+ i sin 2
�j��, j = 1,2, �B8b�

where

A1
2+ = � 	2

�1�

	2
�1���1/2 1

k2R

k2R
2 − ��c1�2 cos2 2

�1� + �c2�2 cos2 2
�2�� .

�B8c�

Note that in the above expressions �A1
l+�= �A1

l−� , l=1,2, and
thereby confirms that no intensity redistribution occurs in the
case of bright solitons, and also for dark solitons �see Eqs.
�B5b�, �B6b�, �B7b�, and �B8b��.
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