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Spectroscopy of nonlinear band structures of one-dimensional photonic crystals
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The temporal development of extended nonlinear modes of a one-dimensional photonic crystal during the
build-up of the nonlinearity is experimentally investigated. For this a prism coupling setup is used, which
allows for a direct comparison of linear and nonlinear photonic band structures. The experimental results are
compared with numerical calculations which make use of the Floquet-Bloch approach and the finite difference

approximation.
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I. INTRODUCTION

Periodic photonic structures have been studied exten-
sively both theoretically and experimentally over the last de-
cades, see, e.g., Ref. [1]. Due to the spatially periodic refrac-
tive index distribution wave propagation in such systems
differs fundamentally from that in homogeneous optical me-
dia, but at the same time it exhibits characteristics known
from other periodic systems such as semiconductor lattices,
molecular chains, or coupled pendular. The linear modes of
periodic photonic structures are extended Floquet-Bloch
(FB) modes. Their longitudinal propagation constants de-
pend strongly on the transverse wave vector component and
form a transmission spectrum consisting of allowed bands
and forbidden gaps. This transmission spectrum defines the
propagation direction and the diffraction characteristics of an
incident optical beam.

Waveguide arrays are one-dimensional (1D) realizations
of periodic photonic structures. The first experiments reveal-
ing the properties of discrete diffraction in such systems
were made using III-V semiconductors [2]. The same type of
arrays of coupled channel waveguides was also used to dem-
onstrate that the presence of a nonlinear medium can alter the
diffraction characteristics and lead to the formation of local-
ized states, so-called discrete solitons [3], as predicted by
Christodoulides et al. [4]. These experiments initiated a se-
ries of studies revealing more linear properties of periodic
photonic structures including the observation of anomalous
diffraction [5], realization of diffraction management [6], and
the measurement of transmission spectra (band structures)
and intensity distributions of FB modes [7]. By using highly
nonlinear materials, for example photorefractive crystals, lo-
calized nonlinear structures [8—11], Bloch oscillations [12],
and modulational instabilities [13—15] were discovered.

In a previous publication we demonstrated that a prism
coupler can be used to determine the linear band structures of
1D waveguide arrays [16]. In this contribution we show that
the same technique can also be utilized to examine the non-
linear index changes altering the propagation constants of
extended FB modes, which enables time-resolved measure-
ments of nonlinear band structures and forms the base for
future experiments on Zener tunneling, multiband mixing,
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and vector soliton formation. This work is organized as fol-
lows. First we give a short description of the experimental
procedure and the sample used. After this, experimental re-
sults for extended modes of all guided bands of the sample
are presented. This includes measured changes in the propa-
gation constants of the excited FB modes itself as well as the
influence of these induced nonlinear refractive index changes
on the whole band structure. Finally a simple theoretical
model will be presented to discuss the experimental results
obtained.

II. EXPERIMENTAL METHODS

For the experiments a prism coupling setup in a retro
reflective scheme and green light of an Ar* laser (wavelength
N=514.5 nm) is used. Light coupled into the high-index
prism is totaly reflected at the interface of prism base and
sample. By varying the angle of incidence the wave vector
component parallel to the prism base can be controlled. If
this component matches the propagation constant of a mode
of the sample light couples into this mode due to optical
tunneling. The intensity reflected at the prism base as a func-
tion of the angle of incidence forms a mode spectrum of the
sample. As stated in Ref. [16] the transverse wave vector
component, the Bloch momentum k,, can be adjusted by tilt-
ing the waveguide array relative to the plane of incidence. A
series of mode spectra for different tilt angles gives the lon-
gitudinal propagation constants of the guided FB modes as a
function of k,. This is the band structure of the sample. In-
stead of the propagation constant 3 the effective refractive
index ngg=LB/ky=LN/2 is used here. The waveguide array
is fabricated in Fe-doped x-cut LiNbO; (LN) using Ti in-
diffusion [17]. Tron increases the impurity level and thus in-
creases the photorefractive effect in LN. The waveguide ar-
ray which possesses a saturable defocusing nonlinearity [18]
consists of 250 channels with a width of 5 wm and has a
grating period of A=8 pum. The array was prepared by pat-
terning a 5 nm thick Ti layer. Before in-diffusion for 2 h at
1273 K a second homogeneous layer with a thickness of
5 nm was deposited on top of the patterned stripes. The
22 mm long channels run parallel to the y axis and the grat-
ing vector is parallel to the crystallographic ¢ axis of the
crystal [16].

The experimental procedure to measure nonlinear changes
induced by the intensity distribution of a certain excited FB
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FIG. 1. Measured reflected light intensity / versus incident angle
a at k,=/ A, before (solid line) and after (dashed line) a mode of
the first band was excited for 200 min with P;;=0.11 uW per
channel.

mode is as follows. First, before any nonlinear measure-
ments, the full linear band structure is measured. Here a low
light intensity is used for the incident beam such that the
power coupled into the waveguide array does not exceed
1073 uW per channel. After the linear band structure has
been measured, the angle «, being the angle formed between
the incident laser beam and the normal-to-the-input face of
the prism, is adjusted to excite the FB mode of interest with
fixed value of k,. Then the input intensity of this mode is
increased. Due to the nonlinear refractive index changes in-
duced by the intensity distribution of the FB mode and ther-
mal effects discussed below the angle « has to be readjusted
to fulfill the transverse phase matching condition. During the
nonlinear excitation a mode spectrum with fixed k, is mea-
sured every five minutes. From these mode spectra the
propagation constants of the guided modes and substrate ra-
diation modes are determined. In this way the influence on
the other FB modes at the selected value of k, used can be
studied. At the end of the experiment the input intensity is
reduced, and the complete band structure for all k, is mea-
sured again. Finally, before restarting a new measurement,
all induced nonlinear refractive index changes are erased us-
ing white light illumination.

The example given in Fig. 1 shows a linear (solid line)
and a nonlinear (dashed line) mode spectrum at the edge of
the Brillouin zone (BZ) at k,=m/A. In this experiment the
mode of the first band has been excited for 200 min with an
in-coupled power of P;,=~0.11 uW per channel. A clear
change of the mode spectrum can be seen. As higher values
of the angle « correspond to higher values of refractive index
the effective refractive index n.y of the mode of the first
band has been reduced in the nonlinear case. The coupling
angle of the mode of the second band has been slightly
shifted to higher values, i.e., the effective refractive index is
increased. The mode of the third band is not visible in this
spectrum because this mode is both, weakly guided for k,
=/ A and hardly excited because of the quite small overlap
with the plane wave entering the prism.

As can be seen in Fig. 1 the coupling angle corresponding
to the refractive index of the substrate is hard to determine.
There is no sharp bend and the typical decay of the reflected
intensity for coupling angles corresponding to effective re-
fractive indices smaller than the substrate index is superim-
posed with several minima [19]. These minima correspond to
intensity distributions localized below the waveguide array
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FIG. 2. (a) Effective refractive index changes of the modes of
the first (circles) and second (squares) band versus time when a
mode of the first band at k,= /A is excited with P;;=0.11 uW per
channel. (b) Measurement as shown in (a) (solid lines) and for
P;,=0.4 uW per channel.

having only a very small fraction of their intensity distribu-
tion in the region of the waveguides. It can be expected that
these substrate radiation modes are only very weakly af-
fected by the nonlinear changes of the waveguide array.
Therefore, their coupling angles can be used as reference
points. In addition to the changes of the effective refractive
index of the guided modes a shift of the whole mode spec-
trum is observed in the experiments. This shift is of the order
of 0.01° to 0.04° and always positive. No correlation be-
tween the magnitude of the shift and the intensity of the
in-coupled light could be found, but the time dependent be-
havior indicates that thermal effects are responsible for this
effect. The high thermal sensitivity of prism coupling setups
has already been described by Holman et al. [20], which is
due to the temperature dependence of the refractive index of
LN and the rutile prism used. With the thermooptic coeffi-
cients for the extraordinary refractive indices of LN [21] and
rutile [22] it is found that a temperature change of 3 K in-
duces a shift of 0.04° of the coupling angle. As this tempera-
ture change increases the extraordinary refractive index of
LN by 5X 107 and decreases the extraordinary refractive
index of rutile by 4 X 10~ the observed shift of the mode
spectra can be mainly attributed to index changes of the
prism. Furthermore the thermal influence on the band struc-
ture, meaning the difference between effective refractive in-
dices of the modes and the substrate index, may be neglected
because An.y/ AT~ An,/AT can be assumed [23].

III. EXPERIMENTAL RESULTS

The influence of the nonlinear refractive index changes
induced by the intensity distribution of an excited FB mode
on the mode itself and the whole band structure is analyzed
using the procedure described above. For this FB modes of
all three guided bands at different points of the BZ are used.

In Fig. 1 the linear and nonlinear mode spectra for the
excitation of the FB mode of the first band at k,=m/A were
given. The corresponding temporal evolution of the effective
refractive index changes of the two FB modes located in the
first and second band is given in Fig. 2(a). The effective
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FIG. 3. Measured band structure before (squares) and after
(crosses) the mode of the first band had been excited at k,=/ A for
200 min with P;;=0.11 uW per channel.

index of the first mode (circles) decreases while in the sec-
ond band (squares) the mode’s effective index increases first
but decreases after reaching a maximum value. Figure 2(b)
shows the results of a second experiment with a higher in-
coupled power and longer excitation time. Here changes are
not given as a function of time but as a function of energy.
As it is known from two-beam interference experiments in
Fe-doped LN, the maximal value of the nonlinear refractive
index change does not dependent on light intensity, provided
that the dark intensity is negligible and that the time constant
is inversely proportional to light intensity. This means in-
creasing the intensity will only speed up the process and
index changes obtained for different intensities coincide if
plotted as a function of energy. The data from part (a) is
given as solid lines in Fig. 2(b). The curves agree well within
the margin of error, which is approximately =2X 107> in
these experiments. As can be seen the changes for the mode
of the first band saturate and the mode’s effective refractive
index is reduced by 10™*. The mode of the second band
increases first and afterwards decreases to a value slightly
smaller than in the linear case.

Figure 3 shows the nonlinear band structure (crosses)
measured at the end of the experiment given in Fig. 2(a). For
comparison the linear case (squares) before illumination is
shown, too. The uncertainty in these measurements is ap-
proximately =5 X 107>, which is mainly due to the error in
the adjustment of k,. To improve the accuracy the band struc-
ture measurements are performed covering two full BZ’s. It
turns out that the effective refractive index of the first band is
reduced throughout the BZ. The second band is almost un-
shifted, but small changes in the vicinity of the center of the
BZ (data for |k,|=0.277/ A) indicate that the curvature of the
band has increased. Similar conclusions can be also drawn
for the diffraction of the third band in the BZ center. At the
same time the effective refractive indices of modes of the
third band are shifted towards higher values. Thus the gaps
between all neighboring bands are reduced.

To examine if the changes induced by modes of the first
band depend on Bloch momentum experiments were re-
peated for excitations at several other points of the BZ. It
turns out that the nonlinear band structures corresponding to
these experiments are very similar to the result obtained for
k,=/A. The effective refractive index changes are compa-
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FIG. 4. (a) Effective refractive index changes of modes of first
(circles) and second band (squares) versus time for excitation of the
second band at k.=7/A with P;;=0.19 uW per channel. (b) Data
from (a) (solid lines) and for a second measurement with Pj,
~(.2 uW per channel.

rable for all modes located in the first band. On the other
hand, the changes of the modes lying in the second and third
band depend on k_, as indicated by the nonlinear band struc-
ture.

Next we move over to excitation of modes of the second
band, starting at the edge of the BZ. Figures 4(a) and 4(b)
show the temporal behavior of the effective refractive index
changes for the modes of the first (circles) and second
(squares) band. In saturation the effective refractive index of
the mode lying in the second band is reduced by 5x 107*
whereas in the first band the index is increased by a slightly
higher value.

The linear (squares) and nonlinear (crosses) band struc-
tures corresponding to the experiment in Fig. 4(a) are given
in Fig. 5. Changes in the first and second band are nearly
constant throughout the BZ. The first band is shifted to
higher values whereas the second band is shifted towards
smaller values. The third band remains constant. No clear
conclusions can be drawn on changes of diffraction coeffi-
cients from this measurement.

When a mode of the second band is excited in the center
of the BZ at k,=2m/A=0 a significantly different band
structure is obtained when compared with the experiment for
k,=m/ A, see Fig. 6. This is different to the excitations using
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FIG. 5. Measured band structure before (squares) and after
(crosses) the second band had been excited at k,=/A for 200 min
with P;,=~0.19 uW per channel.
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FIG. 6. Measured band structure before (squares) and after
(crosses) the mode of the second band had been excited at
k,=2/ A for 360 min with P;;=0.35 uW per channel.

modes of the first band presented before. The induced non-
linear index changes shift the first band towards higher val-
ues. While the second band itself remains mostly unshifted,
the curvature of this band is reduced in the center, accompa-
nied by a small increase of the effective refractive indices of
the corresponding modes. The latter can be also observed in
the temporal evolution of the light-induced changes in Figs.
7(a) and 7(b). Here effective refractive index changes for
modes of the first (circles), second (squares), and third (tri-
angles) band are given for two different values of the in-
coupled power. The band structure in Fig. 6 corresponds to
data obtained for P;,=~0.35 uW. The decrease of the effec-
tive refractive index of the mode located in band three indi-
cates that the curvature is reduced. Additionally it can be
stated that the temporal evolution of the effective refractive
index changes shows zero crossings for modes of the second
and third band, while for modes in band one a monotonic
increase is found. These results show that the changes in the
band structures induced by the modes of the second band
depend strongly on the value of k,. Measurements at inter-
mediate points indicate that these changes change continu-
ously from the center of the BZ to the edge.

As already stated modes of the third band are hardly
guided at k,=m/A. Therefore only results obtained for mode

25 50 75 100 125
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FIG. 7. (a) Measured effective index changes for the modes of
the first (circles), second (squares), and third (triangles) band versus
time for excitation of the FB mode of the second band at
k,=2m/A with P;;=02 uW per channel. (b) Measurement as
shown in (a) (solid lines) and for P;,~0.35 uW per channel and
longer excitation time over P;,t.
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FIG. 8. Measured change of the effective refractive of the mode
of the first (circles), second (squares), and third (triangles) band
versus time for excitation of the FB mode of the third band at
k,=2m/A with P;;=0.25 uW per channel.

excitation in the third band at k,=27/A can be presented. In
Fig. 8 it can be observed that the nonlinear changes of the
refractive index induced by the intensity distribution of the
third band influence all three guided bands. The effective
refractive index of modes located in the first (circles) and
second (squares) band are increased by 10~*, while values in
the excited third band (triangles) are reduced by the same
amount. When comparing the corresponding linear (squares)
and nonlinear (crosses) band structures in Fig. 9 the same
holds true for the bands as a whole.

IV. MODELING

In this section a rather simple theoretical model for the
calculation of band structures of nonlinear waveguide arrays
will be presented. First the refractive index profile of the
waveguide array is calculated by solving the diffusion equa-
tion for a depletable source using parameters related to the
experimental data given above. The resulting Ti concentra-
tion profile is transferred into a refractive index distribution
using the method described in Ref. [24]. We start with the
scalar Helmholtz equation for TE polarized modes propagat-
ing in the y direction,

[- (?)26 + - k%@(x,z) - &ngl(x,z)r?zs3(x,z)]E3(x,z) =0.
(1)

The calculated refractive index profile enters Eq. (1) in the
diagonal elements of the second rank permittivity tensor
s,»(x,z):niz(x,z). The only nonzero element of the electric
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FIG. 9. Measured band-gap structure before (squares) and after
(crosses) the mode of the third band had been excited at
k,=2/ A for 200 min with P;,=~0.25 uW per channel.
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field vector is the z component E;(x,z). Assuming a weakly
guiding structure with a slowly varying refractive index pro-
file the equation can be further simplified:

{_ a)zg + ké[niff_ SS(X’Z)] - (no/ne)za?}E:i(x’Z) =0. (2)

In the case of a single isolated channel waveguide this equa-
tion can be solved using the finite difference approach. Here
this approach is used for the x direction only. As the refrac-
tive index changes induced by Ti in-diffusion decay expo-
nentially along x it can be expected that the component
E;(x,z) will also show a strong dependency on x. In the z
direction the refractive index profile is spatially periodic with
grating period A. Using the Bloch ansatz the solution is sup-
posed to be of the form E5(x,z)=E(x,z)exp(—1k.z), with the
periodic function E(x,z)=E(x,z+A) and Bloch momentum
k.. The periodic function E(x,z) is written as a Fourier series

o]

E(x,0)= 2 a,()exp(mKz), 3)

m=—o%

with grating vector K=27r/A. Using a constant grid in the x
direction the periodic function can be expressed as follows:

N
E(x2)=2 2 dy,expimkKz). 4)

n=0 m=—»

The permittivity is written in an analogous way with the
amplitudes g, ,.

With these assumptions, Eq. (2) is transfered into an ei-
genvalue equation for the effective refractive index n.g and
the electric field amplitudes a,,, as a function of k.

(s 2am,n + Ayn-1

Ax?
+ [k (12— &) = (/1) 2 (= m2K? + 2mk K - K*)]a,, ,

=0. (5)

The effective refractive indices obtained describe the band
structure of the array when plotted over k,. From the ampli-
tudes of the electric field the intensity distributions of the FB
modes can be calculated, showing good agreement with ex-
perimental results, see Ref. [16] for further details.

In the nonlinear case the intensity distributions will in-
duce nonlinear refractive index changes via the photorefrac-
tive effect. The response of Fe-doped photorefractive LN to
inhomogeneous illumination is described by the one-center
band-transport model [25]. In this model the photorefractive
effect is due to photoionization, redistribution of excited
charge carriers and their retrapping at different locations,
which finally results in the build-up of space-charge fields
altering the refractive index via the electro-optic effect. The
corresponding nonlinear rate equations have been intensively
studied for the case of two-beam interference experiments,
see Ref. [26], and references therein. Analytical solutions
have been found for single gratings with sinusoidal intensity
distribution and small modulation depths [25]. In that case
only the first harmonic of the space-charge field has to be
considered. However, for large modulation depths and super-
imposed or sequentially recorded gratings, substantial contri-
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butions of higher harmonics were observed experimentally
and predicted theoretically, see, e.g., Refs. [27-32], including
sum and difference grating formation. The present problem
can be understood as a special case of holographic recording
of superimposed gratings. The intensity distribution of a FB
mode cannot be described by a single sinusoidal function. It
has to be expanded in a Fourier series of the grating vector
K, including higher harmonics. All these gratings are re-
corded simultaneously and influence each other leading to a
rather strong interaction.

For the following simulations the rate equations given in
Ref. [25] are further simplified. First, as in the band structure
calculations, the crystal is discretized in the x direction. Each
layer is assumed to be independent from the others, thus
neglecting diffusion of excited charge carriers as well as
space-charge fields along the x direction. In this way the
scalar equations used to describe two-beam interference ex-
periments are applicable. The one-center band-transport
model in LN is described by

- 0,j(2) = €y€339,0.E5c(2), (6)

J(2) = epit,(z) Esc(2) + B33l(2), (7)
11

0=yI(z) +1p) - ;ne(z) + ;é’zJ(Z), (8)

with permittivity €3, space-charge field Egc(z), and current
density j(z). As the periodic refractive index modulation of
the array is small, €35 is assumed to be constant in Eq. (6).
The bulk photovoltaic effect dominates the charge transport,
thus we neglected diffusion terms in Eq. (7). Here we used
the Glass notation [33], with intensity I(z) and the corre-
sponding tensor element (53 for the bulk photovoltaic effect.
The remaining quantities are the mobility of the excited elec-
trons u and the electron density in the conduction band 7z,(z).
In Egs. (8) the time derivative of 7,(z) is neglected: as the
electron trapping rate in LN exceeds any other rate by sev-
eral orders of magnitude, the electrons reach the local equi-
librium almost instantaneously [34]. Additionally, the density
of filled and empty traps is assumed to be constant through-
out the sample. Therefore the generation constant y and the
recombination time constant 7 are introduced. The dark in-
tensity I, accounts for thermal generation of electrons. For
each layer the intensity distribution is of the form

N

I(z)= 2 I, expimKz),
m=—N

with I_,=1I,. The current density, electron density, and
space-charge field are expressed in terms of the grating vec-
tor K, too.

From Egs. (8) and (7) expressions for the amplitudes of
the electron density are obtained:

o= Iy+1p), a,= = ,
o=yrly+1p) m 7, Lo+ 1

where 7, is the constant part and a,, are the amplitudes of
higher harmonics m. Here we assume that the electron den-
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FIG. 10. Amplitudes of the constant component and the first
three spatial harmonics of the intensity distribution forming the
mode of the first band at k,=/A over the crystal depth. The solid
and dashed lines represent the amplitudes in the linear and nonlin-
ear case, respectively.

sity is unshifted with respect to the intensity distribution
[35], and that nonlinear mixing of spatial harmonics can be
neglected, as it has been shown numerically by Buchhave
[36]. The temporal evolution of spatial harmonics of the
space-charge field results from Egs. (6) and (7):

il B Jk#0
(o k] 33
&tESC,m == _ Ayt ESC,m + 2 ajESC,k . (9)
€33€) \ eun jtk=m

The boundary condition of a short-circuited sample was used
here. Neglecting the mixing term, this equation has the well
known analytical solution

Egcn=A,[1 —exp(=1/7)], (10)

with Amoclm/(l()‘l‘ID) and T():e,bbﬁ()/(fg,g,fo).

The assumption of independent spatial harmonics is not
valid here, as the higher harmonics have amplitudes compa-
rable to the amplitude of the fundamental grating. Therefore
the mutual influence of the spatial harmonics can be ex-
pected to play an important role [30]. For this reason Eq. (9)
is solved numerically. Starting with the linear intensity dis-
tribution of a certain FB mode, the amplitudes of the space-
charge field are calculated for a small time step At< 7. The
corresponding amplitudes of the nonlinear refractive index
changes are obtained using An“ml:—0.5n3r33ESC’m, with the
electro-optic coefficient 733 and n, being the extraordinary
refractive index of LN. With this altered index modulation of
the lattice the band structure is recalculated, giving new val-
ues for the effective refractive index of the FB modes and the
amplitudes of the intensity distribution. The old values of the
amplitudes of the space-charge field and the new values for
the intensity distribution are then used to calculate a new set
of space-charge field amplitudes for the next time step Az.
This procedure is repeated until the saturation regime is
reached. In all calculations a normalized peak power of 15
for the intensity distribution of the excited FB mode is used.
The dark intensity is set to /=0.1 and the maximal value of
the induced nonlinear refractive index change is set to
An® =125X107%

We again start our analysis for modes located in the first
band at the edge of the BZ. Figure 10 shows the linear am-
plitudes of the constant component and the first three spatial
harmonics forming the intensity distribution of a mode in
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FIG. 11. Comparison of experimental (symbols, dashed lines)
and theoretical data (solid lines) using the data from Fig. 2. Theo-
retical results were obtained with (a) and without (b) the mixing
term in Eq. (9).

band one at k,=m/A as a function of the crystal depth. The
dashed line corresponds to the amplitudes obtained by nu-
merically solving Eq. (9). Notice that the nonlinear ampli-
tude changes are small when compared to the linear case.
Additionally, the first two spatial harmonics have comparable
amplitudes whereas the third and higher harmonics (not
shown here) contribute only to a minor degree.

Figure 11 shows the simulated temporal build-up of the
effective refractive index changes. For comparison, the the-
oretical results are plotted together with the experimental
data. The time scale of the calculated data is adjusted to fit
the experimental ones. Notice that the temporal build-up of
the effective refractive index changes for both guided modes
is reproduced best in Fig. 11(a), which includes the mixing
term in Eq. (9). Comparing the experimental data with the
theoretical curves in Fig. 11(b), obtained without the mixing
term, shows not only clear deviations for the mode located in
band two, but also differs in the temporal evolution of the
effective refractive index of the mode of the first band.

The strong influence of the nonlinear mixing term in Eq.
(9) is also illustrated in Fig. 12. Here the amplitudes of non-
linear index changes and the corresponding nonlinear band
structures are given. Without the mixing term [i.e., using Eq.
(10)], only the first (circles) and second (squares) spatial har-
monics of the nonlinear refractive index change deviate from

b)‘

0 1 2 3 4 0 1 2 3 4
depth (um) depth (um)

~
Q
-~

N

103(n_$ff_n sub) )

0 0.25 05 0.75 1
kZA/T[

1

FIG. 12. Nonlinear index changes obtained using the intensity
distribution of a mode of the first band at k,=7/A. (a), (b) ampli-
tudes of the spatial harmonics of the nonlinear refractive index
changes as a function of the crystal depth. The first (circles), second
(squares), third (triangles), and forth harmonic are shown, both with
(a) and without (b) including the nonlinear mixing. (c), (d) Corre-
sponding nonlinear (dashed lines) and linear (solid line) band
structure.
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FIG. 13. Modulation of the extraordinary refractive index versus
crystal width at the maximum of the intensity distribution of the
modes located in the first band. The solid line represents the linear
case, while the dashed line corresponds to the profile of the nonlin-
ear band structure from Fig. 12(c). The dotted line shows the inten-
sity distribution.

zero. The nonlinear band structure [dashed line in Fig. 12(c)]
shows a decrease of the effective refractive index of the first
band and small changes in the second and third band, thus
indicating an increase of the curvature of these band when
compared with the linear case. On the contrary, when the
mixing term is included, higher spatial harmonics of the non-
linear refractive index change appear [Fig. 12(b)]. Addition-
ally, the final amplitudes of the first and second spatial har-
monic are markedly influenced. When comparing with the
results given in Fig. 12(a) an enhancement of these ampli-
tudes can be recognized. Additionally the sign of the ampli-
tude of the second spatial harmonic has changed. This feed-
back has been experimentally observed in simultaneous
recording of photorefractive gratings in barium titanate crys-
tals, see Ref. [37], and has been theoretically predicted for
the same experiments utilizing LN [30]. Comparison of the
corresponding linear and nonlinear band structures in Fig.
12(d) shows similar changes as in the experimental section in
Fig. 3. The effective refractive index of the first band is
reduced throughout the BZ and the diffraction coefficients of
the second and third bands are increased. Additionally, all the
gaps between neighboring bands are reduced. In the follow-
ing, only numerical results obtained using the nonlinear mix-
ing term in Eq. (9) will be presented.

The nonlinear band structures obtained for modes located
in the first band at different positions of the BZ are quite
similar. This means the changes in the effective refractive
index for the modes located in the first band are comparable
throughout the BZ. As in the experiments the changes differ
for modes located in the second and third band and match the
values expected by the nonlinear band structure. One reason
for this might be that the amplitudes of the spatial harmonics
of the intensity distribution for all modes located in the first
band deviate only slightly from the values given in Fig. 10.

The effect of the nonlinear refractive index changes in-
duced by the modes of the first band can be understood with
regard to Fig. 13. Here the refractive index modulation is
given as a function of the crystal width for the layer where
the intensity distribution of the modes of the first band is
maximal. The solid line corresponds to the linear case,
whereas the dashed line refers to the saturation regime of the
simulations. The shape of the intensity distribution is in-
cluded as dotted line. Notice that the maximal value of the
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12 16
width (um)

FIG. 14. Amplitudes of the constant component and the first
three spatial harmonics of the intensity distribution forming the
modes of the second band at k,=0 (solid line) and k,=7/A (dashed
line).

modulation is decreased whereas the refractive index is in-
creased in-between channels. As both, the effective refractive
index of the modes located in the first band depends on the
maximal value of the modulation, and the size of the gaps on
its contrast, this may explain the experimental results.

Next we move over to excitation of modes of band two.
The experimental results indicate that in this case the in-
duced index changes depend strongly on the value of the
transverse wave vector. In Fig. 14 the amplitudes of the con-
stant part and the first three spatial harmonics contributing to
the intensity distribution are plotted for modes located at the
center and at the edge of the BZ. One may notice that all
amplitudes change distinctively with k_, indicating that this is
one explanation for the experimental observations. Addition-
ally it may be observed that the amplitude of the third har-
monic is of the same magnitude as the one of the fundamen-
tal harmonic. The fourth and higher harmonics have small
amplitudes and are not shown here.

Simulation results for excited modes at the edge of the BZ
are plotted in Fig. 15. Generally, the amplitudes of calculated
index changes are small when compared to experimental re-
sults (see Figs. 4 and 6). Nevertheless a qualitative agree-
ment between theory and experimental curves may be no-
ticed.

Figure 16 illustrates the refractive index changes induced
by the intensity distribution of the mode located in the sec-
ond band at the edge of the BZ. The 1D linear and nonlinear
index profiles correspond again to the layer in which the
intensity of the mode of the second band is maximal. When
comparing the linear and nonlinear profiles it may be ob-
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FIG. 15. (a) Simulated changes of the effective refractive index
of the mode lying in the first and second band at the edge of the BZ
as a function of time. (b) Dashed line: nonlinear band structure
corresponding to the steady-state values from part (a), solid line:
linear band structure.
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FIG. 16. Modulation of the extraordinary refractive index versus
crystal width of the mode located in band two at k,=m/A. Solid
line: linear case, dashed line: nonlinear case corresponding to the
profile that results in the nonlinear band structure given in Fig.
15(b), dotted line: illustration of the intensity distribution.

served that the profiles of the waveguides becomes more
narrow but higher in the nonlinear case. Additionally, the
contrast of the modulation is increased, which leads to an
increase of the gap between first and second band. At the
same time a higher value of the refractive index modulation
increases the effective refractive index of the guided modes.

The simulations performed using modes of the second
band in the center of the BZ show larger deviations from the
experimental data. Figure 17(a) monitors the theoretical
curves, and Fig. 7 the experimental results. Contrary to the
experiment the calculated effective index changes have high
absolute values in the saturation regime. Furthermore, the
first band is shifted towards smaller values of the effective
index and no zero crossings are found for modes of the sec-
ond and third band. We want to point out that, when slightly
varying the parameters of the (permanent) index profile of
the waveguide array, modes of higher bands are strongly
affected. Besides the effective refractive indices the ampli-
tudes as well as the ratio of spatial harmonics contributing to
the intensity distribution change.

Finally we proceed with the results obtained for excitation
of modes of the third band. As in the experimental section
we will focus on modes located in the center of the BZ. The
amplitudes of the contributing spatial harmonics of the inten-
sity distribution plotted in Fig. 18 show that the first four
spatial harmonics have to be considered.

The numerical results plotted in Fig. 19(a) monitor a de-
crease of the effective refractive index for the mode located
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FIG. 17. (a) Time evolution of the effective refractive index
changes for the mode of the first, second and third band induced by
the intensity distribution of the mode of the second band located in
the center of the BZ. Results were obtained utilizing Eq. (9). (b)
Solid line: linear band structure, dashed line: nonlinear band
structure.
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FIG. 18. Amplitudes of the constant component and the first five
spatial harmonics of the intensity distribution forming the mode of
the third band at k,=0 over crystal depth.

in the third band, whereas modes of the first and second band
are shifted to higher values. The corresponding nonlinear
band structure in Fig. 19(b) shows a shift of the first and
second band towards higher values. Additionally, a reduction
of the curvature of second and third bands may be noticed.
The modes of the third band in the center of the BZ have
smaller values of the effective refractive index in the nonlin-
ear case, when compared with the linear ones. To summarize,
the gaps between all neighboring bands have been increased.
This agrees well with the experimental observations (see
Figs. 8 and 9), although the calculated amplitudes of the
induced changes are again slightly smaller.

The explanation of the changes in the band structure can
be deduced from Fig. 20. The nonlinear refractive index
changes induced by the modes of the third band in the center
of the BZ increase the effective width of the channels form-
ing the array. Thus the guiding properties of the waveguides
are enhanced. Additionally, the contrast of the modulation is
increased because the refractive index is decreased in-
between channels.

V. CONCLUSIONS

In conclusion, we have demonstrated that a prism cou-
pling setup allows for measuring the temporal behavior of
extended nonlinear FB modes during the build-up of nonlin-
ear index changes. Additionally, the influence of the induced
refractive index changes on other modes of the waveguide
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FIG. 19. (a) Simulated changes of the effective refractive index
of modes of the first, second, and third band in the center of the BZ
as a function of time. (b) Dashed line: nonlinear band structure and
solid line: linear band structure.
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width (um)

FIG. 20. Modulation of the extraordinary refractive index versus
crystal width at the maximum of the intensity distribution (dotted
line) of modes located in the third band. The solid line represents
the linear case. The dashed line corresponds to the profile of the
nonlinear band structure from Fig. 19(b).

array was determined. Experiments were performed using
FB modes located in all three guided bands of a waveguide
array fabricated by in-diffusion of Ti in Fe-doped LN. To
describe the experimental results a simple approach was pre-
sented to calculate the band structure of 1D waveguide ar-
rays. Utilizing the one-center band-transport model the tem-
poral build-up of nonlinear index changes induced by the
intensity distribution of certain FB modes was described. As
in the experiments, the temporal behavior of the effective
index changes of the excited mode itself, as well as of modes
of other bands at the same value of transverse wave vector,
were determined. Finally, for the saturation regime the result-
ing nonlinear band structures were calculated. As higher spa-

PHYSICAL REVIEW A 77, 013818 (2008)

tial harmonics of the induced index changes contribute to the
intensity distribution of FB modes, two different approaches
were compared. In the first case, spatial harmonics of the
intensity distribution that change the refractive index are as-
sumed to be independent from each other, while in the sec-
ond one, the spatial harmonics mutually influence each other
due to a nonlinear mixing term in the current density. The
theoretical results, when compared with experimental data,
indicate that the latter approach describes the observed
changes best. This means that the nonlinear refractive index
changes induced by the intensity distribution of extended FB
modes exhibit the same characteristics as simultaneously re-
corded photorefractive gratings. Additionally, our results
point to a significant influence of index changes induced by a
certain FB mode on the whole band structure. The present
study of nonlinear FB modes allows for the detailed investi-
gation of nonlinear mechanisms in LN arrays, such as
build-up time constants, saturation values and dark intensity.
It also forms the base for the investigation of multiband mix-
ing and nonlinear Zener tunneling, where changes in the
band structure induced by the nonlinearity have to be taken
into account.
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