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We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized
fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for
the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum
fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an
incident field in a linearly polarized coherent state �driving field� and vacuum in the perpendicular polarization
and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal
polarizations. We analyze different configurations depending on the total angular momentum of the ground and
excited atomic states. We examine the generation of squeezing for the driving-field polarization component and
vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted.
Noise spectral features specific to �Zeeman� multilevel configurations are identified.
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I. INTRODUCTION

The preparation of optical fields in states with purely
quantum-mechanical properties is the key ingredient of
quantum optics and the essential requirement for their use in
quantum-information processing. Light fields presenting
squeezing are well-known examples of nonclassical states
for which numerous applications have been suggested and
demonstrated. Entanglement of a two-mode field is another
important example of a purely quantum-mechanical resource
which lies at the basis of a large number of quantum-
information procedures such as Einstein-Podolsky-Rosen
�EPR� pair production, teleportation, and quantum cryptog-
raphy �1�. For two degenerate field modes, considered as
continuous-variable systems, squeezing and entanglement
are related concepts. Squeezing in one mode leads to en-
tanglement between two modes obtained by a linear optical
transformation, as implemented by a beam splitter �2,3�.

Ever since the first proposals for light squeezing, atomic
systems have attracted considerable attention owing to the
large nonlinearities associated with resonant transitions. In-
deed, the first successful demonstration of squeezing used
nondegenerate four-wave mixing in sodium atoms �4� con-
tained in an optical cavity. Several subsequent experiments
�5,6� also used atomic samples contained in optical cavities.
In these experiments, the highly nonlinear interaction be-
tween the atoms and the cavity mode plays an essential role
in the generation of squeezing.

Following the early work, most present-day experiments
on the generation of nonclassical fields with atomic samples
involve the use of optical cavities and require rather compli-
cated experimental setups �7–9�. However, in view of appli-
cations, the use of single-path schemes for the generation of
nonclassical light fields could be of considerable practical
interest. In this paper, we are concerned with the modifica-
tion of quantum fluctuations of a single monochromatic light
beam interacting with an atomic medium on a single path.
This possibility is already implicit in the pioneering work by

Walls and Zoller �10� and Mandel �11� predicting reduced
quantum fluctuations in the light emitted by a resonantly
driven two-level atom. The spectral distribution of the
quadrature fluctuations of light emitted by a driven two-level
atom was first calculated in �12�. The generalization of this
study to an extended atomic sample was carried out by
Heidmann et al. �13�, who considered the fluctuations in the
field emitted in the forward direction by a thin layer of atoms
at rest, driven by a normally incident laser beam. At low
laser intensities, squeezing is predicted for the low-frequency
components of the in-phase quadrature. For saturating inten-
sities, squeezing occurs for noise frequencies around the gen-
eralized Rabi frequency �= ��2+�0

2�1/2, where � is the
atom-laser detuning, and �0 the incident-field resonant Rabi
frequency. The calculation of the fluctuation spectra of light
traversing a thick two-level atom medium was presented by
Ho et al. �14�. Single-path squeezing was observed using
sodium �15� and ytterbium �16�. Quite recently, intensity-
intensity quantum correlations �sub-shot-noise intensity-
difference noise� were observed in nondegenerate forward
four-wave mixing in rubidium vapor �17�.

The initial work on squeezing through light-atom interac-
tion considered ideal two-level transitions and a single-mode
optical field. A more realistic approach requires the consid-
eration of multimode light fields �including different polar-
izations� and multilevel atoms. Three-level atoms interacting
with two fields �� systems� have been analyzed. Such sys-
tems are of considerable interest owing to the possibility of
large nonlinearities in association with electromagnetically
induced transparency �EIT�. Phase-noise squeezing was pre-
dicted for a � system in which one of the fields was classi-
cal, for a cavity-contained atomic system �18�, and for
single-path propagation through an ensemble of motionless
atoms �19�.

An interesting issue of the multimode field interaction
with an atomic sample is the possibility of achieving polar-
ization squeezing, which is signaled by squeezing of the
vacuum field with orthogonal polarization relative to the in-
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cident field. Polarization squeezing with cold atoms inside an
optical cavity was demonstrated by Josse and co-workers
�8,20�. Polarization squeezing is intimately related to the ob-
servation of continuous-variable entanglement between two
field modes �9,21–23�.

Recently, a renewal of attention in the fluctuations of light
transmitted through an atomic sample was motivated by the
prediction that vacuum-field squeezing could be achieved on
a single path as a consequence of polarization self-rotation
�PSR� �24�. An experimental observation of squeezing via
PSR was reported �25�, using a room-temperature rubidium
cell. This result could not be reproduced by other groups, in
spite of the methodical exploration of the relevant experi-
mental parameter space �26�. It is argued by Hsu and co-
workers �26� that excess noise, preventing the observation of
squeezing via PSR, originates from the quantum atomic fluc-
tuations not explicitly included in the original theoretical
proposal �24�. This argument is supported by a simplified
four-level system model �20�, for which the noise arising
from atomic quantum fluctuations dominates over the semi-
classical squeezing terms, under the conditions correspond-
ing to the experiments. However, PSR squeezing is not ex-
cluded for cold atom samples in the regime of large
intensities and optical detunings.

The noise properties of light fields interacting with atom
samples on a single path have been experimentally investi-
gated under conditions of EIT. Large correlations and anti-
correlations were observed between the two fields at the Ra-
man resonance condition between the two ground-state
hyperfine levels of Rb �27,28�. The change in sign of the
correlation is determined by the light intensity. Noise spectra
and correlations between two polarization components par-
ticipating in Hanle-EIT resonance involving Zeeman sublev-
els of the Rb ground state were observed �29�. These studies
were carried out using diode lasers, known to possess large
excess phase noise. A qualitative agreement between these
experiments and theory could be reached by considering a
classical field with random phase diffusion.

All theoretical models considered so far in connection
with the analysis of light fluctuations interacting with an
atomic sample are based on several simplifications. Single-
mode approaches ignore the light polarization orthogonal to
the incident field, through which vacuum fluctuations enter
the atomic system. Such fluctuations interact with the inci-
dent field, provided the sample possesses or acquires some
anisotropy through interaction with light. Multimode models
also rely on simplifying assumptions. Sometimes one of the
incident fields is taken as classical �18�. The transverse spa-
tial structure of the field is generally not considered �30�. In
most cases, quantum fluctuations of the atomic operators are
ignored. Even when a full quantum treatment was used, the
atomic level structure considered was assumed to be an ideal
three- or four-level system. In most studies, the effect of
propagation through an optically thick sample is not exam-
ined. The effect of the atomic velocity distribution and that
of nearby atomic levels within the hyperfine structure is usu-
ally neglected.

It is the purpose of this work to investigate the quantum
noise in fields transmitted through a homogeneous atomic
sample when the full Zeeman degeneracy of the ground and

excited atomic levels is taken into account. We consider a
light field incident on the atomic sample with a well-defined
polarization and take into account the incoming vacuum-field
fluctuations with orthogonal polarization. We calculate the
field fluctuation noise spectrum after propagation through the
medium for arbitrary polarization and field quadrature angle,
fully taking into account the influence of the quantum fluc-
tuations of the atomic medium. Depending on the choice of
the ground- and excited-level angular momenta �Fg and Fe,
respectively� and the field polarization, several configura-
tions can be analyzed. A two-level system is obtained for a
Fg=0→Fe=1 transition. An open � system is obtained for a
Fg=1→Fe=0 transition, if the incident field is linearly po-
larized and the two circular polarization components are con-
sidered. The four-level system studied in �20� corresponds to
an Fg=1 /2→Fe=1 /2 transition, with linear field polariza-
tion. In addition to those schemes previously explored, our
calculation allows us to address other configurations, such as
Fg�0→Fe=Fg+1, for which no full quantum treatment was
previously reported in spite of the prediction of PSR squeez-
ing in this system �24�. Our calculation considers a one-
dimensional propagation �along the z axis� through a spa-
tially homogeneous atomic sample considered as a
continuous medium �31�. We begin by assuming that the at-
oms are at rest. Next, we briefly address the effect of a ther-
mal atomic velocity distribution. Propagation effects on
quantum fluctuations for a thick medium, of length L, are
included in the calculation, although the depletion of the
incident-field mean value is ignored for simplicity. Thus, our
results can be directly applied to situations in which absorp-
tion of the carrier frequency component of the field can be
neglected �saturating field intensities or large atom-field de-
tunings�.

Our calculation confirms the prediction of quadrature
squeezing under several conditions and indicates that squeez-
ing by PSR can take place for Fg=1 /2→Fe=1 /2 transitions,
and for Fg�0→Fe=Fg+1 transitions as well. The rather
complex structure of the noise spectrum for thick optical
media is illustrated and additional features in the noise spec-
trum specific of the multilevel Zeeman structure are pre-
sented.

The paper is organized as follows. In the next section, the
main lines of our theoretical model and noise spectrum cal-
culation are presented. In Sec. III, we present and discuss the
noise spectra corresponding to different level schemes. Con-
cluding remarks are made in Sec. IV.

II. MODEL

The problem that we address in this paper is schemati-
cally presented in Fig. 1. A laser beam traverses an optically
thick atomic sample. The polarization of the incident driving
field is defined by appropriate polarization optics. After the
sample, the field is decomposed into two chosen orthogonal
polarizations. The quadrature noise on both polarization
components is analyzed by homodyne detection �32�.

Our theoretical approach follows closely the method used
by Dantan and co-workers �33� for the study of the propaga-
tion of light fluctuations through an ensemble of three-level
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atoms in a � configuration. We consider two levels with
Zeeman sublevels: a ground state g, of total angular momen-
tum Fg and zero energy, and an excited state e, of angular
momentum Fe and energy ��0. The total radiative relaxation
coefficient of level e is �. We assume that the atoms in the
excited state can radiatively decay into the ground state g at
a rate b�, where b is a branching ratio coefficient that de-
pends on the specific atomic transition �0�b�1�. For a
closed �cycling� transition, b=1. When the transition is open
�b	1�, excited atoms can decay back into level g or into
levels external to the two-level system. The atoms are in the
presence of a magnetic field B directed along the light propa-
gation axis z. In order to simulate the effect of a finite inter-
action time of the atoms with the light, we introduce an
overall phenomenological decay constant 
 �
���, which
is compensated, in the steady state, by the arrival of fresh
atoms in the ground state. We initially analyze a homoge-
neous ensemble of atoms at rest, leaving the effect of the
atomic velocity distribution for subsequent consideration.

Incident upon the atoms is a light field described in the
Heisenberg picture by the operator

E� �z,t� = ��a1ei�kz−�Lt�ê1
� + a2ei�kz−�Lt�ê2

� + a1
†e−i�kz−�Lt�ê1

+ a2
†e−i�kz−�Lt�ê2� , �1�

where ê1 and ê2 are two orthogonal �complex� polarization
unit vectors and a1, a2, a1

†, and a2
† are the slowly varying field

operators obeying the commutation rules

�a��z,t�,a�z�,t��� = 0

and

�a��z,t�,a
†�z�,t��� = �L/c�����t − t� − z−z�

c � .

The quantization length L is chosen as the atomic medium
length and c is the speed of light in vacuum. �
=���L /2�0SL is the single-photon field amplitude �where S
is the mode cross section�.

The atomic operators in the Heisenberg representation for
an atom j at position zj are ���

j �t�= ������ j where ��� and ���
designate Zeeman substates. We introduce the slowly vary-
ing atomic operators ���

j �zj , t�=U���
j �t�U†, where U

= Pe
jei�kzj−�Lt�+ Pg

j is a unitary transformation. Pg
j and Pe

j are

the projectors on ground- and excited-state manifolds, re-
spectively. Following �33�, we define continuous local opera-
tors �at position z� by averaging over a slice of the atomic
medium of length �z:

����z,t� = lim
�z→0

L

N�z
	

z�zj�z+�z

���
j �zj,t� , �2�

where L is the total length of the atomic medium and N the
number of atoms.

The atomic Hamiltonian is

HA =
N

L

 �H0 + HB�dz , �3�

with H0=��0Pe the isolated-atom Hamiltonian and HB
= ��gPg+�ePe�FzB the Zeeman coupling with the magnetic
field B. Pe and Pg are the local projectors on the excited and
ground manifolds, respectively, �g and �e are the ground-
and excited-state gyromagnetic factors, and Fz is the local
total angular momentum operator projection along the
magnetic-field axis z.

The atom-field coupling Hint, in the rotating-wave ap-
proximation, is

Hint = −
N

L
��
 ��a1

†ê1 + a2
†ê2� · Q� ge + H.c.�dz . �4�

Here Q� ge= �Q� eg�†= PgQ� Pe is a dimensionless operator related

to the atomic electric dipole operator D� through D�

= �g�D� �e�Q� . The reduced matrix element �g�D� �e� of the di-
pole operator between the ground and excited states is taken

to be real. �=��g�D� �e� /� is the reduced atom-field coupling
constant �half the single-photon Rabi frequency�. The stan-

dard spherical components of the operator Q� eg are Qeg
q , with

�q=−1,0 ,1�. Their matrix elements Q��,ge
q ����Qge

q ���
�where � and � refer to Zeeman substates belonging to the
ground and excited manifolds, respectively� are the corre-
sponding Clebsch-Gordan coefficients.

The complete set of atomic operators can be organized
into a two-dimensional operator array ���ij� whose ele-
ments are the individual �ij operators. After manipulation,
one can formally write the Heisenberg-Langevin equations
�including relaxation terms� for the atomic operators in the
form

d�/dt = − i��Pe,�� −
i

�
�HB,�� + i���a1ê1

� + a2ê2
�� · Q� eg

+ H.c.�,�� + b��2Fe + 1�	
q

Qge
q �Qeg

q −
�

2
Pe,��

− 
�� − �0� + f , �5�

where �=�0−�L is the optical detuning and 
�0 is a pump-
ing term describing the isotropic arrival of fresh atoms in the
lower ground state. �0��ij

0 � is chosen such that �ij
0 =0 for

i� j, �ij
0 = I / �2Fg+1� �I is the identity operator� if state i

belongs to the ground level, and �ij
0 =0 otherwise. f �f ij�

represents the set of Langevin force operators satisfying �33�

atoms

x

y
z

W1 W2

P1 P2

noise
analysis

noise
analysis

vacuum

laser

L

FIG. 1. �Color online� Scheme of the physical situation theoreti-
cally addressed in this paper �P1,P2, polarizers; W1,W2, wave
plates�. The driving field polarization is imposed by P1 and W1,
while W2 and P2 achieve the decomposition of the transmitted field
into orthogonal polarization components. The noise analysis is
made by homodyne detection. In the calculations, we have chosen
linear x polarization for the driving field and analyzed fluctuations
for polarizations x and y.
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�f ij�z , t�fkl
† �z� , t���= �L /N�2Dij,kl��z−z����t− t��, where Dij,kl

is the corresponding diffusion coefficient.
The field evolution is governed by the Maxwell-

Heisenberg equations �in the slowly varying envelope
approximation�:

� �

�t
+ c

�

�z
�a = iN�ê · 	

k�e,l�g

Q� ge,lk�kl, �6a�

� �

�t
+ c

�

�z
�a

† = − iN�ê
� · 	

k�e,l�g

�lkQ� eg,kl �6b�

with =1,2.
Equations �5� and �6� form a set of coupled differential

equations for the atom-field interaction throughout the
atomic sample. We simplify the solution of these equations
by assuming that the process is stationary and that the
incident-field mean value is undepleted as the atomic me-
dium is traversed, �a�z��= �a�0��= �a�. We proceed by lin-
earizing the field and atom operators �ij�z , t�= ��ij�
+��ij�z , t� and a�z , t�= �a�+�a�z , t� with ���ij�= ��a�=0.

The mean value of the atomic operators, given the
incident-field mean values, can be obtained by taking the
mean value of both sides of Eq. �5�. This gives the usual
Bloch equations. A numerical solution of these equations was
presented in Ref. �34�. We consider next the evolution of the
fluctuation operators up to first order. Fourier-transforming
the first-order contributions in Eqs. �5� and �6�, we get

�

�z
�aj�z,�� = i

�

c
�aj�z,�� + iN

�

c
êj · 	

k�e,l�g

Q� ge,lk��kl�z,�� ,

�7a�

�

�z
�aj

†�z,�� = i
�

c
�aj

†�z,�� − iN
�

c
êj

� · 	
k�e,l�g

��lk�z,��Q� eg,kl,

�7b�

f��� = − i��� + i��Pe,��� +
i

�
�HB,��� − i����a1

†�ê1

+ �a2
†�ê2� · Q� ge + H.c.�,��� − i����a1

†ê1 + �a2
†ê2� · Q� ge

+ H.c.�,���� − b��2Fe + 1��	
q

Qge
q ��Qeg

q �
+

�

2
Pe,��� + 
�� , �8�

where f����f ij�z ,���, with �f ij�z ,��fkl
† �z�����= �L /

N�2Dij,kl��z−z�����−���.
Field fluctuations depend linearly on atomic fluctuations,

which in turn are driven by the Langevin force operators. To
numerically solve these equations, we adopt a Liouville-
space approach �34,35�, organizing all operators �ij into a
column vector x, with n=4�Fg+Fe+1�2 elements, and the
four field operators a1, a1

†, a2, and a2
† into a four-element

column vector A. Then, with some manipulation, Eqs. �7�
and �8� can be written in the form �we drop the dependence
on z and � for brevity�

��A

�z
= i

�

c
I4�A +

N�

c
W�x , �9�

− �i�In + A��x = f + �V�A , �10�

where In is an n�n identity matrix, W is a 4�n matrix
dependent on the coefficients Qij

q , A is an n�n matrix cor-
responding to the atomic evolution �including relaxation
terms�, and V is an n�4 matrix describing the coupling of
the field fluctuations to the atomic operator mean value. By
defining M �−�i�In+A�, we can invert Eq. �10� and from
Eq. �9� we get

��A

�z
= B�A +

N�

c
Gf , �11�

with G=WM−1 a 4�n matrix and B= �i�� /c�I4

+ �N�2 /c�GV� a 4�4 matrix. A formal solution of Eq. �11�
for propagation over a length z is given by

�A�z,�� = eBz��A�0,�� +
N�

c



0

z

e−Bz�Gf�z�,��dz�� .

�12�

The power spectra of the field fluctuations after propagation
through an atomic medium of thickness z can be obtained
from the matrix S�z ,�� related to the field-operator spectral
correlation matrix through

��A�z,����A�z,����†� =
L

c
S�z,����� − ��� . �13�

Making use of �f�z ,��f†�z� ,����= �L /N�2D��z−z�����
−���, where D is the atomic Langevin force diffusion ma-
trix, and of Eq. �13�, one obtains

S�L,�� = eBLS�0��eBL�†

+ 2
N�2

c
eBL�


0

L

e−Bz�GDG†e−B†z�dz��eB†L,

�14�

where we have omitted the dependence on � for brevity and
taken z=L.

The term proportional to the identity in B commutes with
all other operators, so we can write

S�L,�� = eKLS�0�eK†L +
N�2

c
eKL�


0

L

e−Kz�Je−K†z�dz��eK†L,

�15�

where J=2GDG† and K= �N�2 /c�GV.
Let X� be a matrix satisfying

− �KX� + X�K†� = J . �16�

Then the integral in Eq. �15� can be evaluated, and we get
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S�L� = eKLS�0�eK†L +
N�2

c
�X� − eKLX�eK†L� . �17�

Introducing X= ��X� /L� we have:

S�L� = eC�GVS�0�e�C�GV�†
+ C�X − eC�GVXe�C�GV�†

� ,

�18�

where C=N�2L /c� is the cooperativity parameter �33,36�.
Equation �18� gives the spectral density matrix S�L ,��

after the atomic medium, given the incident-field spectral
density S�0,��. The first term on the right-hand side of Eq.
�18� represents the semiclassical effect on light fluctuations
owing to the mean value of the atomic polarization in re-
sponse to the mean incident field. Such a term may lead to
noise reduction and cross-polarization effects. The second
term on the right-hand side of Eq. �18� represents the light
noise introduced by the atomic quantum fluctuations via the
matrix X, which is determined by the Langevin force diffu-
sion matrix D �Eq. �16��. It always corresponds to noise in-
crease �detrimental to squeezing�. The calculation of the dif-
fusion matrix D can be made with the help of the generalized
Einstein theorem �37� and the corresponding expressions are
given in the Appendix.

In order to be able to calculate noise spectra for arbitrary
field quadratures, we introduce the rotated field operator ar-
ray �A����a1e−i� ,a1

†ei� ,a2e−i� ,a2
†ei��T. It can be immedi-

ately calculated as �A���=T�A, where T is the 4�4 matrix
with e−i�, ei�, e−i�, and ei� along its main diagonal. In a simi-
lar way, fluctuations along two arbitrary orthogonal polariza-
tion unit vectors ê1� and ê2� can be calculated as �A����
=R�A���, where R is the polarization-basis-change matrix.
Thus, the spectral density matrix S���L ,�� for a given quadra-
ture angle and arbitrary choice of the polarization basis can
be evaluated as

S���L,�� = TRS�L,��R†T†. �19�

The noise spectrum sj�� for the quadrature angle � of the field
with polarization êj� �j=1,2�, as can be measured by homo-
dyne detection, can be evaluated from the matrix elements
S���� of S���L ,��. Dropping, for brevity, the L and � depen-
dence, we have

s1�� = S�11� + S�12� + S�21� + S�22� , �20a�

s2�� = S�33� + S�34� + S�43� + S�44� . �20b�

Other matrix elements of S�� not appearing in Eqs. �20a� and
�20b� are related to the field correlations between the two
polarizations.

Velocity distribution

So far we have considered a homogeneous sample of at-
oms at rest. We will generalize now our calculation to a
sample of moving atoms with velocity vz in the direction of
the light propagation axis. The velocity distribution is W�vz�,
obeying �−�

+�W�vz�dvz=1. Then Eq. �11� becomes:

���A�z,���
�z

= B��A +
N�

c



−�

+�

W�vz�G�vz�fvz
dvz, �21�

with

B� = i
�

c
I4 +

N�2

c



−�

+�

W�vz�G�vz�V�vz�dvz, �22�

G�vz� = WM�vz�−1, �23�

M�vz� � − i�In + A�vz� . �24�

A�vz� depends on vz through the velocity-dependent detun-
ing �=�0−�L−kvz �see Eq. �5�� and V�vz� depends on vz

through the mean values �x�vz��.
After formal integration of Eq. �21� one has

�A�z,�� = eB�z��A�0,�� +
N�

c



0

z

e−B�z�

�

−�

+�

W�vz�G�vz�f�vz,z�,��dvzdz�� . �25�

Since the Langevin forces for atoms with different veloci-
ties are uncorrelated, we impose

�f�z,vz,��f†�z�,vz�,���� =
L

NW�vz�
2D��z − z����� − ���

���vz − vz�� . �26�

Using Eqs. �25� and �26� one can obtain the spectral density
matrix for the output field as

S�L� = eK�LS�0�eK�†L

+
N�2

c
eK�L�


0

L

e−K�z�J�e−K�†z�dz��eK�†L, �27�

with

K�L = C�

−�

+�

W�vz�G�vz�V�vz�dvz �28�

and

J� = 

−�

+�

W�vz�G�vz�DG�vz�†dvz. �29�

The expression for the spectral density matrix given in Eq.
�27� represents a generalization of Eq. �15� that can be evalu-
ated by the same method. The integrals in Eqs. �28� and �29�
can be evaluated numerically, given the velocity distribution
W�vz�.

III. CALCULATED NOISE SPECTRA

The model developed in Sec. II allows us to calculate the
spectral density of the fields transmitted through a homoge-
neous atomic sample of thickness L and total number of
atoms N under a wide range of conditions, i.e., arbitrary
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choices of the atomic levels’ angular momenta, driving-field
polarization, and incident field mean intensity. In addition,
the model allows the arbitrary choice of the branching ratio b
and the longitudinal magnetic field B. However, in this paper
we will restrict ourselves to considering a reduced number of
parameters. No magnetic field is considered. In addition, the
branching ratio b is taken as one which means that no tran-
sition to states external to the two-level system are allowed.
This assumption may not necessarily correspond to actual
observable atomic transitions. Although the detailed study of
the role of the branching b is beyond the scope of this work,
one should notice that some choices of Fg and Fe effectively
describe open systems since there are trapping �dark� states
not coupled to the applied field. The driving field polariza-
tion �ê1� is chosen to be linear along axis x, which means that
vacuum enters the system with y polarization �ê2�. The
x-polarized driving field is assumed to be in a coherent state
���. The corresponding reduced Rabi frequency �independent
of polarization and atomic dipole orientation� is �r=2��,
taken real. Under these conditions, the incident �white noise�
spectral density matrix is �35�

S�0,�� =�
1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0
� , �30�

in units for which the standard quantum noise limit corre-
sponds to 1.

We have analyzed the output-field fluctuations for the
same set of orthogonal polarizations �x and y� used for the
incident field �R= I4 in Eq. �19��. Noise spectra for a different
choice of the polarization basis can be easily obtained using
the appropriate matrix R. We have calculated the spectra for
both the amplitude quadrature ��=0� and the phase quadra-
ture ��=� /2�. In all calculations, the relaxation rate 
 was
taken as 
=0.01�, a realistic figure for experiments using
alkali-metal-atom D lines. In the following, we analyze dif-
ferent level schemes depending on the angular momentum of
the ground and excited states. We begin by considering the
case of a homogenous sample of atoms at rest �cold atom
sample�. The effect of atomic motion is discussed at the end
of this section.

A. Fg=0\Fe=1

Choosing the quantization axis in the direction �x� of the
linear polarization of the applied field, this case reduces to a
pure two-level system in which the field couples the Zeeman
sublevels �Fg=0,mg=0� and �Fe=1,me=0�. The y polariza-
tion, along which vacuum is entering the atomic system, is
totally uncoupled to the driven transition. As a consequence,
no change takes place for the y-polarization mode and this
field emerges from the sample in the vacuum state.

The results of our model are in agreement with previous
work on quantum fluctuations and squeezing for pure two-
level atoms �12–14�. Figure 2 presents the noise spectra ob-
tained for both quadratures in the case of resonant atomic
excitation ��=0� for a rather thin sample �C=1�, for differ-

ent values of the reduced Rabi frequency �r. Excess noise,
with maximum value at zero frequency, is obtained for the
phase quadrature for all field intensities. The amplitude
quadrature presents squeezing centered at zero frequency for
small light-field amplitude ��r�0.5��. As the Rabi fre-
quency increases, the maximum squeezing shifts to increas-
ing nonzero frequencies and disappears as �r��. For large
�r, the intensity fluctuations present an excess noise peak
centered at the actual Rabi frequency �0. Notice that, since
�r is the reduced Rabi frequency, the actual Rabi frequency
associated with the specific two-level transition is �0
= �Q00,ge

0 ��r= �1 /�3��r. As discussed in �13�, amplitude
squeezing occurs in this case only in the limit of an optically
thin medium, where the amount of squeezing is linearly de-
pendent on C. However, at zero detuning, the mean field
absorption, which is not taken into account in our treatment,
is considerable and also linearly dependent on C. Conse-
quently, absorption of the incident field should prevent the
observation of squeezing in this regime. To avoid the effect
of field absorption, one should consider situations in which
the generalized Rabi frequency �= ��2+�0

2�1/2 is large. This
case corresponds to well-resolved levels in the dressed-atom
picture �38�. Noise spectra calculated for �=�r=10� are
presented in Fig. 3, for different values of the cooperativity
parameter. C=1 corresponds to a thin atomic medium. The
noise spectrum is essentially dominated by a peak occurring
at �=�. Squeezing occurs for the phase quadrature and,
correspondingly, excess noise is present in the amplitude
quadrature. The observed squeezing is due to four-wave mix-
ing between the mean field at the carrier frequency �L and
the noise sidebands at frequencies �L±� �14�. In the
dressed-atom picture of the atoms driven by the incident
mean field, a double � scheme occurs, involving the absorp-
tion �emission� of two driving-field photons and the emission
�absorption� of a photon from each of the two sidebands �see
inset in Fig. 4�. This mechanism results in the buildup of
correlations between the two sideband fluctuations, leading
to quadrature squeezing �32�. This process is fully resonant
with the energy levels of the dressed atom when �=�.

FIG. 2. �Color online� Transition Fg=0→Fe=1. �Inset: the level
scheme is shown using x as the quantization axis; hollow arrow
shows the driving field.� Noise spectra normalized to the standard
quantum noise limit of the amplitude �solid� and phase �dashed�
quadratures of the transmitted field with the same linear polariza-
tion as the driving field, at zero detuning. The different values of the
reduced Rabi frequency �r �in units of �� are indicated �C=1, 

=0.01��.
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As the medium’s optical thickness increases, the noise
feature around �=� broadens considerably and presents os-
cillations that are due to the frequency-dependent phase mis-
match between the carrier mean field and the noise sidebands
�14�. For large C, broadband squeezing is present. More than
20% squeezing is obtained for C=100.

We notice from Fig. 3 that, except for the largest value of
the cooperativity parameter C, there is no significant varia-
tion of the noise power around zero frequency. This behavior
corresponds to closed two-level systems. Open two-level
systems show an increase of light fluctuations at low fre-
quency.

The relative effect on the transmitted light fluctuations of
the semiclassical atomic response and that of the atomic
quantum fluctuations is illustrated in Fig. 4. The total spec-
trum for the phase quadrature noise and the contributions
corresponding to the two terms on the right-hand side of Eq.
�18�, for �=10�=�r=10� and C=100, are shown. As ex-

pected, the squeezing is due only to the semiclassical term
contribution. For the chosen parameters, the atomic quantum
fluctuations introduce a rather broad and smooth noise
increase.

The fact that, for this level scheme, squeezing occurs for
one quadrature of the x-polarized field, while the vacuum
fluctuations incident along the y polarization are unaffected,
implies entanglement between two orthogonally polarized
modes �39�. This can be explicitly verified by noticing that
squeezing of the phase quadrature of field 1 together with
vacuum fluctuations in field 2 correspond to

���a1 − a1
†

i
��2

+ ��a2 + a2
†�2 � 2. �31�

Let us now consider a+= �a1+a2� /�2 and a−= �a1−a2� /
�2, the field operators corresponding to the two orthogonal
linear polarizations at 45° with respect to the x and y axes.
Then the operators X�= �a�+a�

† � /�2 and Y�= �a�−a�
† � /

i�2 ��= + ,−� are two pairs of conjugate Hermitian operators
satisfying �X� ,X��=0, �Y� ,Y��=0, �X� ,Y��= i���. For these
operators the inequality in Eq. �31� becomes

��Y+ + Y−�2 + ��X+ − X−�2 � 2, �32�

which is sufficient to demonstrate continuous-variable en-
tanglement of the + and − polarization fields �23�.

B. Fg=1\Fe=0

Excitation of a transition from a ground state with Fg=1
to an Fe=0 excited state with a linearly �x� polarized field
corresponds to the coupling of the incident field to an open
two-level system. Choosing the quantization axis along x de-
termines that the incident field is coupled to the �Fg=1,mg
=0� to �Fe=0,me=0� transition. The excited state can decay
into either of the ground-state Zeeman sublevels. Alterna-
tively �in a different basis for the ground-state manifold�, the
configuration corresponds to the excitation of one branch of
a � system while the vacuum field is acting on the second
branch. A similar situation was studied in �33�, in the case of
a resonant excitation ��=0�. Figure 5 shows the noise spec-
tra for both quadratures of the output fields with x and y
polarizations. The spectra corresponding to the x polarization
are very similar to those obtained for a closed two-level sys-
tem �Fig. 3�, except for the noise increase around zero fre-
quency. Such a low-frequency feature in the noise spectra
occurs in open transitions owing to the fluctuations intro-
duced by spontaneous decay out of the two-level system. In
addition, an increase in the noise power above the vacuum
fluctuations is seen for the y-polarized field. Both quadra-
tures with this polarization experience the same noise contri-
bution due to spontaneous emission from the excited state.
As a consequence of the light shift of the excited state pro-
duced by the driving field, the noise for the y polarization
peaks at ��0. In addition to this low-frequency peak, a
much smaller local maximum occurs for ���, almost in-
visible on the scale of Fig. 5.

FIG. 3. �Color online� Transition Fg=0→Fe=1. Noise spectra
normalized to the standard quantum noise limit of the amplitude
�solid� and phase �dashed� quadratures of the field transmitted with
the same linear polarization as the driving field for �=10�=�r

=10�. The different values of the cooperativity parameter C are
indicated �
=0.01��.

FIG. 4. �Color online� Transition Fg=0→Fe=1. Solid line: To-
tal noise spectrum normalized to the standard quantum noise limit
for the phase quadrature ��=�r=10�, 
=0.01�, and C=100�.
Dashed line: Semiclassical contribution �first term on the right-hand
side �RHS� of Eq. �18��. Dotted line: Contribution of the atomic
quantum fluctuations �second term on the RHS of Eq. �18��. Inset:
Dressed-atom picture for the four-wave-mixing process responsible
for squeezing in two-level atoms. Hollow arrows, laser mean field;
solid arrows, noise sidebands.
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C. Fg=1 Õ2\Fe=1 Õ2

This configuration was analyzed in �20� as a model sys-
tem for the study of squeezing via PSR. Figure 6 presents the
corresponding spectra for resonant excitation ��=0�. The
noise spectra for the driving-field polarization are analogous
to those in Fig. 2 for a two-level transition. In fact, for a
choice of the quantization axis along x, the present situation
corresponds to two two-level transitions coupled through
spontaneous emission. Spontaneous emission is also respon-
sible for the injection of field fluctuations for the y polariza-
tion. Owing to the large symmetry of this configuration, the
amplitude noise spectrum for the y polarization is equal to

the phase noise spectrum of the x polarization. The phase
noise spectrum for the y polarization presents enhanced noise
if compared to the amplitude quadrature of the x polariza-
tion.

The spectra for a nonresonant excitation ��=10�� are
presented in Fig. 7. For ��� the spectra reproduce the fea-
tures observed for nonresonant excitation of two-level sys-
tems �see Fig. 3�. Nearly identical noise spectra are obtained
for the x-polarization amplitude �phase� noise and the
y-polarization phase �amplitude� noise. This approximate
symmetry is broken for low noise frequencies �see inset in
Fig. 7�. Squeezing due to PSR occurs in this system for
nonzero detuning. In addition, the inequality �31� is verified
for ���, giving rise to entanglement.

D. Fg=1\Fe=2

We now consider a transition of the type Fg�0→Fe
=Fg+1. For this class of transition, no dark state exists
within the ground level. At two-photon Raman resonance
between ground-state Zeeman sublevels, coherence reso-
nances occur that correspond to enhanced absorption, that is,
electromagnetically induced absorption �EIA� �40,41�. The
absorption spectra of a transition of this type driven by a
strong classical field were examined in �42�. If a driving field
of circular polarization is used, owing to optical pumping,
the system approximates a pure two-level system. However,
if linear polarization is used for the driving field, while the
system is probed along the orthogonal polarization, the ab-
sorption spectrum presents a rather complex structure as a
result of the different light shifts experienced by the Zeeman
sublevels. A simple picture of this effect in terms of the
dressed-atom model is presented in �42�.

The transmitted-field noise spectra for the transition Fg
=1→Fe=2 are presented in Fig. 8 for nonzero detuning
��=10�� and large Rabi frequency ��r=40��. A thick opti-
cal medium is considered �C=100�. For ���, the spectra
corresponding to the driving-field polarization are similar to

FIG. 5. �Color online� Transition Fg=1→Fe=0 �the level
scheme is shown using x as quantization axis; hollow arrow, driving
field; solid arrows, spontaneous emission channels into the
y-polarized mode�. Noise spectra normalized to the standard quan-
tum noise limit of the amplitude �dotted� and phase �dashed�
quadratures of the transmitted field with the same linear polariza-
tion as the driving field. The solid line corresponds to the noise of
both quadratures of the output field with polarization orthogonal to
the driving field ��=�r=10�, 
=0.01�, and C=10�.

FIG. 6. �Color online� Transition Fg=1 /2→Fe=1 /2 �the level
scheme is shown using x as quantization axis; hollow arrow, driving
field; solid arrows, spontaneous emission channels into the
y-polarized mode�. Resonant noise spectra normalized to the stan-
dard quantum noise limit of the amplitude �solid� and phase
�dashed� quadratures of the transmitted field with the same linear
polarization as the driving field. Dotted line: amplitude quadrature
noise spectrum of the polarization perpendicular to the driving field,
the spectrum of the phase quadrature for this polarization coincides
with the dashed line ��=0, �r=10�, 
=0.01�, and C=10�.

FIG. 7. �Color online� Transition Fg=1 /2→Fe=1 /2, �=10�.
Noise spectra normalized to the standard quantum noise limit. Am-
plitude �solid� and phase �dashed� quadratures of the transmitted
field with the same linear polarization as the driving field. Ampli-
tude �dash-dotted� and phase �dotted� quadratures of the transmitted
field with polarization perpendicular to the driving field. Inset:
Expanded low-frequency range ��r=10�, 
=0.01�, and C=10�.
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the pure two-level spectra shown in Fig. 3. Unlike the pure
two-level system, noise is introduced by spontaneous emis-
sion into the y-polarized field. However, PSR squeezing is
nevertheless present on the amplitude quadrature for this po-
larization. In addition, the inequality in Eq. �31� is verified,
resulting in entanglement.

At low frequencies �����, the noise spectra present fea-
tures that are specific to such a multilevel system. Excess
noise peaking at �=0 occurs for the two quadratures of the
driving-field polarization. The orthogonal polarization pre-
sents features which are peaked at ��0 owing to the differ-
ent Zeeman sublevel light shifts �42,43�. Notice the signifi-
cant squeezing near zero frequency of the phase quadrature.

E. Effect of atomic motion

We will now illustrate the effect of atomic motion on the
noise spectra for an atomic sample with a Maxwell-
Boltzmann velocity distribution. Having in mind the case of
rubidium vapor at room temperature, we have used a Dop-
pler width �full width at half maximum� �Dopp=90�. We
consider as an example the Fg=1→Fe=2 transition �same as
in Fig. 8�.

Figure 9 shows the noise spectra for both field quadra-
tures in the case of a driving field resonant with the zero-
velocity atoms and a Rabi frequency �r=40� for C=100.
Notice that, although the average detuning is zero in this
case, the noise spectra are reminiscent of those obtained for
atoms at rest with nonzero detuning. A local maximum
�minimum� is observed for the amplitude �phase� quadrature
noise of the driving-field polarization for ���0. The
squeezing of the phase quadrature remains significant
��15%� in spite of the spreading of the field detuning caused

by the Doppler effect. Notice that the squeezing of the am-
plitude quadrature noise of the y-polarized field is not com-
pletely suppressed by the velocity distribution, nor are the
low-frequency spectral features for both polarizations.

IV. CONCLUSIONS

We have developed a theoretical model supporting the
numerical calculation of the noise spectra of light traversing
an optically thick atomic medium, under a wide range of
conditions. The model takes into account the complete Zee-
man sublevel structure of the atomic transition and conse-
quently the arbitrary polarization of the light field. In this
paper, we have restricted our analysis to the case of a linearly
polarized driving field while considering that the Zeeman
sublevels are degenerate in the absence of light �zero mag-
netic field�. We have calculated the noise spectra for the am-
plitude and phase quadratures of the transmitted light with
the same and the orthogonal polarization relative to the driv-
ing field.

For atoms at rest, as can be produced in magneto-optical
traps, the dominant feature of the transmitted-field fluctua-
tion spectra can be traced back to pure two-level atom effects
�13�. For nonzero optical detuning, excess noise is intro-
duced in the amplitude quadrature while squeezing occurs
for the phase quadrature. The noise variations are maximum
for �=�, as a consequence of resonant four-wave mixing of
the mean field and noise sidebands with the dressed-atom
level structure. The propagation through the optically thick
medium results in broadening and oscillatory structure of the
noise spectrum owing to phase mismatch between the carrier
and the fluctuation sidebands. Up to 30% squeezing occurs
for the parameter values used in the simulations, chosen in
order to correspond to typical experimental conditions, in-

FIG. 8. �Color online� Transition Fg=1→Fe=2 �the level
scheme is shown using x as quantization axis; hollow arrow, driving
field; solid arrows, spontaneous emission channels into the
y-polarized mode�. Nonresonant noise spectra normalized to the
standard quantum noise limit ��=10��. Amplitude �solid� and
phase �dashed� quadratures of the transmitted field with the same
linear polarization as the driving field. Amplitude �dash-dotted� and
phase �dotted� quadratures of the transmitted field with polarization
perpendicular to the driving field. Inset: Expanded low-frequency
range ��r=40�, 
=0.01�, and C=100�.

FIG. 9. �Color online� Transition Fg=1→Fe=2. Noise spectra
normalized to the standard quantum noise limit for a Maxwell-
Boltzmann atomic velocity distribution and driving field tuned to
resonance with zero-velocity atoms. Amplitude �solid� and phase
�dashed� quadratures of the transmitted field with the same linear
polarization as the driving field. Amplitude �dash-dotted� and phase
�dotted� quadratures of the transmitted field with polarization per-
pendicular to the driving field. Inset: Expanded low-frequency
range ��r=40�, 
=0.01�, C=100, and �Dopp=90��.
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volving cw lasers and alkali-metal atoms. The figure of C
=100 used in several of the present calculations corresponds
to a realistic figure for magneto-optically trapped atom
clouds.

In addition to pure two-level atom features, other effects
are present as a consequence of the Zeeman sublevel struc-
ture. Except when Fg=0, spontaneous emission introduces
noise into the polarization orthogonal to the driving field.
Notwithstanding the random field fluctuations caused by
spontaneous emission, nonlinear interaction between noise
sidebands on both polarizations may result �as in Figs. 7 and
8� in vacuum squeezing for the orthogonal polarization. For
the conditions used in our calculations, the noise introduced
by the atomic quantum fluctuations does not completely
mask the orthogonal polarization vacuum squeezing. Fur-
thermore, for transitions involving multiple Zeeman sublev-
els, additional structures appear in the noise spectra at low
frequency. They come from the different Stark shifts experi-
enced by the Zeeman sublevels in the presence of the driving
field. Such low frequency structures are reported here.

The study presented here constitutes a necessary step to-
ward a satisfactory understanding and control of atom-light
interaction at the quantum level. This control can be applied
to matter-light interfaces for quantum-information purposes,
as the entanglement predicted here implies. Further develop-
ments may include the influence of nearby transitions as well
as that of the spatial structure of the light mode and atomic
sample. Pulse propagation effects should also be considered.
Such a theoretical approach needs to be complemented with
experimental tests, in particular using cold atomic samples.
Work in this direction is currently under way.

APPENDIX: CALCULATION OF THE DIFFUSION
COEFFICIENT MATRIX

The Heisenberg-Langevin equation �Eq. �5�� can be writ-
ten in the form

d�ij

dt
= D��ij� + f ij , �A1a�

D��ij� � 	
kl

Aij,kl�kl + 
�ij
0 , �A1b�

where A�Aij,kl� is the matrix appearing in Eq. �10�. The
Langevin forces obey: �f ij�z , t�fkl

† �z� , t���= �L /N�2Dij,kl��z
−z����t− t��. The diffusion matrix D= Dij,kl� can be calcu-
lated with the help of the generalized Einstein relation
�37,38�

2Dij,kl = �D��ij�kl
† � − D��ij��kl

† − �ijD��kl
† �� . �A2�

From Eq. �A1b�, by making use of �ij
† �kl��i��j��l��k�

=�ik
† � jl and Aij,mn=A ji,nm

� , we get

�D��ij�kl
† �� = 0,

�D��ij��kl
† � = 	

m

Aij,km��lm� + 
�ij
0 ��lk� ,

��ijD��kl
† �� = 	

m

Alk,mi��mj� + 
��ij��lk
0 . �A3�

The first of Eqs. �A3� results from the stationarity of the
system. The mean values ��ij� are obtained from the steady-
state solution of Eq. �A1a�.
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