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We study a simple model of N-component fermions with contact interactions which describes fermionic
atoms with N=2F+1 hyperfine states loaded into a one-dimensional optical lattice. We show by means of
analytical and numerical approaches that, for attractive interaction, a quasi-long-range molecular superfluid
phase emerges at low density. In such a phase, the pairing instability is strongly suppressed and the leading
instability is formed from bound states made of N fermions. At small density, the molecular superfluid phase
is generic and exists for a wide range of attractive contact interactions without an SU�N� symmetry between the
hyperfine states.
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Because of rapid progress in recent years, cold atom sys-
tems have become a major field of research for investigating
the physics of strong correlations in a widely tunable range
and in unprecedentedly clean systems �1�. Ultracold atomic
systems also offer direct access to the study of spin degen-
eracy since the hyperfine spin F can be larger than 1 /2,
resulting in 2F+1 hyperfine states. In nonmagnetic traps,
such as optical traps, this high degeneracy might give rise to
novel exotic quantum phases. The superfluid state of opti-
cally trapped alkali fermions with hyperfine spin F�1 /2 has
been studied with an emphasis on the general structure of the
large-spin Cooper pairs �2�. The spin degeneracy in fermi-
onic atoms is also expected to give rise to more complex
superfluid phases. In particular, a molecular superfluid �MS�
phase might be stabilized where more than two fermions
form a bound state. Such a nontrivial superfluid behavior has
already been found in different contexts. In nuclear physics,
a four-particle condensate—the � particle—is favored over
deuteron condensation at low densities �3� and it may have
implications for light nuclei and asymmetric matter in
nuclear stars �4�. This quartet condensation can also occur in
semiconductors with the formation of biexcitons �5�. A quar-
tetting phase, which stems from the pairing of Cooper pairs,
has also been found in a model of one-dimensional �1D�
Josephson junctions �6�. A similar phase has also been re-
ported in exact-diagonalization calculations of the two-
dimensional t-J model at low doping �7�. More recently, the
emergence of quartets and triplets �three-fermion bound
states� has been proposed to occur in the context of ultracold
fermionic atoms �8–11�.

In view of this increasing interest in the formation of
complex superfluid condensates, it would be highly desirable
to have at one’s disposal a simple paradigmatic N-component
fermionic model which displays this exotic physics. It will

be shown in this letter that such a model is provided by the
1D N-component fermionic Hubbard model with attractive
contact interaction

H = − t�
i,�

�c�,i
† c�,i+1 + H.c.� +

U

2 �
i

ni
2, �1�

where c�,i
† is the fermion creation operator corresponding to

the N=2F+1 hyperfine states �=1, . . . ,N and ni=��c�,i
† c�,i

is the density at site i. Model �1� displays an extended
U�N�=U�1��SU�N� symmetry and it has been recently in-
troduced in the context of ultracold fermionic atoms �12�. A
possible experimental realization of this model �1� for N=3
would be a system of 6Li atoms loaded into a 1D optical
lattice with a carefully tuned combination of external mag-
netic and optical fields to make three internal states exhibit
SU�3� symmetry �13�. The N=4 case might also be relevant
to the optical trap of four hyperfine states of 40K �F=9 /2
atoms� �14�. The SU�N� symmetry of Eq. �1� has an impor-
tant consequence since, when N�2, even for U�0 there can
be no pairing between fermions: there is no way to form a
SU�N� singlet with only two fermions. The only superfluid
instability that can be stabilized is a molecular one where N
fermions form a SU�N� singlet: Mi

†=c1,i
† c2,i

†
¯cN,i

† . In this
paper, we shall show, by means of a combination of analyti-
cal and numerical results obtained by the density-matrix
renormalization group �DMRG� technique �15�, that this MS
phase emerges in the phase diagram of model �1� for U�0
and at at small enough density n. The latter phase is not an
artifact of the extended SU�N� symmetry of model �1�—it is
robust to symmetry breaking terms toward more realistic
situations. In this respect, we believe that the Hubbard model
�1� captures the main generic features responsible for the
formation of the MS phase.

Low-energy approach. The low-energy effective field
theory corresponding to the SU�N� Hubbard chain �1� can be
derived, as usual, from the linearization at the two Fermi*capponi@irsamc.ups-tlse.fr
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points ��kF� of the dispersion relation of free N-component
fermions �16,17�. The derivation of the low-energy Hamil-
tonian is straightforward �see, for instance, Ref. �18� for de-
tails� and, away from half-filling, it separates into two com-
muting charge and spin pieces H=Hc+Hs. This is the
famous spin-charge separation which is the hallmark of 1D
electronic systems �16,17�. Within this low-energy descrip-
tion, the U�1� charge excitations are described by a free
massless bosonic field � with Hamiltonian density

Hc =
v
2
� 1

K
��x��2 + K��x��2� , �2�

where v and K are, respectively, the charge velocity and the
Luttinger parameter. A perturbative estimate gives v
=vF�1+U�N−1� / ��vF��1/2 and K= �1+U�N−1� / ��vF��−1/2

with the Fermi velocity vF=2ta sin�kFa� and lattice spacing
a. For generic fillings, no umklapp terms appear and the
charge degrees of freedom display metallic properties in the
Luttinger liquid universality class �16,17�.

The hyperfine spin sector is described by the SU�N�
Thirring model which is an integrable field theory �19�. For
attractive interaction �U�0� a spectral gap m opens. The
low-energy spectrum in the hyperfine spin sector consists of
N−1 branches with masses mr=m sin��r /N� �r=1, . . . ,N
−1� �19�. The dominant instability which governs the phys-
ics of this phase is the one with the slowest decaying corre-
lations at zero temperature. Both the one-particle Green
function G�x�= �c�,i

† c�,i+x	 and �onsite� pairing correlations
P�x�= �c�,i

† c	,i
† c	,i+xc�,i+x	 are short range. On the contrary, the

equal-time density correlation N�x�= �nini+x	 associated with
a charge-density wave �CDW� and the equal-time MS corre-
lations M�x�= �MiMi+x

† 	 have the following power-law decay
at long distance �20�:

N�x� 
 cos�2kFx�x−2K/N, �3�

M�x� 
 x−N/�2K� for N even, �4�

M�x� 
 sin�kFx�x−�K+N2/K�/�2N� for N odd. �5�

We thus see that CDW and MS instabilities compete and
the key point of the analysis is the one which dominates. At
issue is the value of the Luttinger parameter K. In particular,
a dominant MS instability requires K�N /2 �K�N /�3� for
N even �odd, respectively� and thus a fairly large value of K
which, with only short range interaction, is not guaranteed.
However, a simple argument suggests that this may be real-
ized at sufficiently small density at large negative U. Indeed,
when n
1 and �U� / t�1, a dilute gas of strongly bound
N-fermion objects forms and Eq. �1� behaves as essentially
free hardcore bosons �N even� or free fermions �N odd� with
an effective hopping tN / �U�N−1. One can therefore estimate
M�x� in this limit as the free bosonic Green function M�x�

x−1/2 �17,21�, when N is even and, as the free fermion
Green function, M�x�
sin�kFx� /x, when N is odd. By com-
paring with Eqs. �4� and �5�, we deduce an upper bound for
K which is Kmax=N �22�. From the perturbative estimate we
see that K�1 and K increases with �U�, so that there is room

to stabilize an MS phase for sufficiently strong attractive
interaction and small density. In addition, at zero density, the
N-component Fermi gas with an SU�N� symmetry is known
to be exactly solvable by means of the Bethe-ansatz ap-
proach and bound states of N fermions are formed for attrac-
tive interaction �23�. Outside these cases of infinite attractive
interaction or vanishing density, the existence and stability of
this MS phase stem from the full nonperturbative behavior of
the Luttinger parameter K as a function of the density n and
the interaction U. We shall now evaluate numerically this
parameter in the simplest odd and even cases N=3,4 by
computing dominant correlations with the DMRG technique
to conclude on the extension of the MS phase.

Numerical results. We have performed extensive DMRG
calculations for both the N=3 and N=4 cases and for a wide
range of densities n and interactions U �24,25�. We show in
Figs. 1�a� and 1�b� and Figs. 2�a� and 2�b� our data for N
=3 and 4, respectively, at typical values of n and U=−4t. In
both cases, and in agreement with the low-energy approach,
we find that a gap opens in the hyperfine spin sector and that
the one-particle and pairing correlations are always short
ranged. From Figs. 1�b� and 2�b�, one can compute the one-
and two-particle correlation lengths � that is expected to vary
as the inverse gap: �
1 /m. We find that the ratio R
=m1 /m2 is close to 1 and 1 /�2, respectively, for N=3 and
N=4 as expected from the low-energy approach. In contrast,
we see in Figs. 1�a� and 2�a� that the density and MS corre-
lations N�x� and M�x� display power-law behavior. Clearly,
triplet and quartet correlations dominate over CDW at these
densities �n=1 /3 for N=3 and n=0.5 for N=4�. The phase
diagrams for both SU�3� and SU�4� models are presented in
Figs. 3 and 4 which give a map of K vs interaction and
density. The values of K were obtained from the power-law
behavior of the molecular correlation M�x� using Eqs. �4�
and �5�. We find that triplet and quartet superfluid phases
emerge in a wide portion of the phase diagrams �gray area�
separated from a CDW phase by a crossover line nc�U�. As
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FIG. 1. �Color online� SU�3� model: triplet and density correla-
tions vs distance obtained by DMRG with L=153, n=1 /3, and
U / t=−4. �a� Dominant triplet over CDW correlations can both be
fitted with K=2.7. We also see the kF �2kF� oscillations of M�x�
�N�x��. �b� One-particle Green function G�x� and pairing correla-
tions P�x� vs distance. Both are short range and with the same
correlation length �=0.68.
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the density decreases from half-filling �n=N /2� to 0, K in-
creases from N /4 to N for moderate or strong �U� / t, as ex-
pected from the strong-coupling argument. Interestingly
enough, the MS phase extends to small values of U at suffi-
ciently small densities. We also observe that the curve nc�U�
is likely to saturate in the strong coupling limit �25�. For
example in the SU�4� case, the K�n� function is almost
U-independent for �U� / t�2 so that lines of equal K are par-
allel to the U axis.

Effect of symmetry breaking perturbations. At this point,
the natural question is whether the molecular superfluid
phases survives to the breaking of the SU�N� symmetry. This
is an important question since in most of the realistic situa-
tions, the actual symmetry is expected to be much smaller.
Part of the answer is given in 1D systems by the accepted

view that, at sufficiently low energies and for generic inter-
actions, the dynamical symmetry is most likely to be en-
larged �26�: though the SU�N� symmetry is not an exact sym-
metry, it is physically meaningful as an effective low-energy
theory. As an example, we consider the SU�4� case relevant
for spin-3 /2 cold atoms and add to the Hubbard Hamiltonian
�1� a singlet-pairing coupling V�iP00,i

† P00,i, where P00,i
†

=c3/2,i
† c−3/2,i

† −c1/2,i
† c−1/2,i

† . As shown in Ref. �27�, the pairing
term reduces the SU�4� symmetry down to SO�5�. We show
typical data for U / t=−4 and V / t=−2 at the density n=1 /2 in
Fig. 5.

We clearly see that the equal-time pairing correlation
function P�x�= �P00,i

† P00,i+x	 admits an exponential decay,
i.e., there is no BCS instability. In contrast, quartet correla-
tions are �quasi-� long ranged and dominate over CDW ones.
Remarkably, we observe from Fig. 5 that the gap ratio R is
very similar to the one for the full SU�4� symmetric model
when V=0. This means that the SU�4� model �1� is a very
good starting point to explore the main features of the quartet
phase. Of course, for large negative V, a BCS phase does
appear �28� but the main point here is to show that the quar-
tet molecular phase is not an artifact of the SU�4� symmetry
and does exist in more realistic models �29�. A more detailed
study will be presented elsewhere.
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FIG. 2. �Color online� SU�4� model: �a� quartet and density
correlations vs distance obtained by DMRG with L=128 and U / t
=−4 at filling n=0.25. The same K2.7 is used to give a rough
estimate of the exponent. �b� One- and two-particle correlations vs
distance. Both are short-range and the ratio of the two correlation
lengths is �2 /�1=0.681 /�2.

������������������������������
������������������������������

-5 -4 -3 -2 -1 0

U/t

1.5

1

0.5

0

n

K=3/4

K=

K=3

K
=

1

gapped

K=2

K=2.5

K=1

K
pe

rt
ur

b. =

SU(3)

√ 3

√
3

FIG. 3. SU�3� model. Phase diagram showing the Luttinger pa-
rameter K vs filling n and interaction U. The gray area is the super-
fluid triplet phase. Lines are guide for the eyes which behavior
satisfies the perturbative limit close to the point �U / t=0, n=0�. We
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Concluding remarks. We have shown that a quasi-long-
range general MS phase can emerge in 1D for attractive
interactions at low density. This 1D phase, characterized by
a bound-state made of N fermions, can be viewed as a nem-
atic Luttinger liquid and a simple paradigmatic model to de-
scribe its main physical properties is the attractive SU�N�
Hubbard chain �1�. The triplet and quartet phases in the sim-
plest N=3,4 cases might be explored experimentally in the
context of spinor ultracold fermionic atoms. As a first step,
we have assumed here a homogeneous optical lattice and
neglect in the first approximation the parabolic confining po-
tential of the atomic trap. We expect that this potential will
not affect the properties of this molecular phase at low den-
sity. Such an effect could be investigated by DMRG calcu-

lations for quantitative comparisons �30�. In the context of
cold atoms experiments, the triplet and quartet phases can be
probed by radio-frequency spectroscopy to measure the
excitation gaps of the successive triplet-quartet dissociation
process. We hope that future experiments in ultracold fermi-
onic atoms will reveal the existence of these triplet and quar-
tet phases.
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