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The interaction of near-resonant laser radiation with atoms immersed in a magnetic B field is calculated
using a quantum electrodynamic model. In this model, the magnetic field is assumed to produce a small
perturbation such that the degeneracy of the magnetic substates is lifted while maintaining the usual quantum
numbers that define the states �the Zeeman effect�. The laser radiation is considered to have a narrow band-
width and to be temporally and spatially coherent. The model produces three general coupled differential
equations that describe the state populations and their relative coherences and the optical coherences between
levels coupled by the laser radiation. The model can therefore be directly applied to different experiments
ranging from atom trapping and cooling experiments through to collision experiments carried out in magnetic
and laser fields.
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I. INTRODUCTION

The application of laser radiation to atomic or molecular
targets immersed in magnetic fields is now widely used in
many different experiments. Such experiments include the
production of slow atoms from effusive sources in a Zeeman
slower and the cooling and trapping of atoms to microkelvin
temperatures in a magneto-optical trap �MOT� �1�. New col-
lision experiments have also been performed where atoms
are prepared in an excited state within a magnetic field pro-
duced by a magnetic angle changing �MAC� device �2�, so
that the differential cross section can be obtained for electron
collisions over all scattering geometries �3,4�. In such experi-
ments, the magnetic field steers electrons to and from the
interaction region where the laser-excited targets are located.

In each of these examples, the targets are immersed in
both a magnetic B field and a near-resonant laser field. To
accurately reveal the dynamics of these interactions, it is
necessary to adopt a model that allows the equations of mo-
tion of the system to be derived. In most cases studied so far,
the system is assumed to occupy only two states so that
simple rate equations can be formulated �1�. This approach is
used extensively in trapping and cooling experiments to pre-
dict the reaction of the atoms to the field. However, these
experiments are then restricted to those involving circularly
polarized radiation where the system is closed �i.e., only two
states are coupled by the laser radiation�. Although this is a
valuable and simple model, it is more appropriate to use a
theory that involves all participating states of the system,
that allows for different polarization states of the laser and
that is tractable to the experimentalist.

New experiments have now been performed in which the
simple two-state model cannot be applied. In these experi-
ments, an atom is prepared in an excited state using laser
radiation prior to electron impact excitation �5�, deexcitation
�4�, or ionization �6� of the target. In each case, it can be
advantageous to employ a MAC device so that the electrons
that participate in the collision are steered into and out of the
interaction region over all scattering geometries from 0° to
180° �2,6,7�. The MAC device has recently been employed

in superelastic scattering experiments from laser-excited cal-
cium atoms �4�, and so it is essential to develop a model of
the laser interaction to fully describe the collision process
under study. An example of how this model is applied to
superelastic scattering of electrons from calcium is given in
Sec. IV below.

The criteria chosen in the development of the model are
as follows. The magnetic B field is assumed to be relatively
weak so that the total angular momentum of the target re-
mains a good quantum number �the Zeeman effect�. In this
case, the laser interaction requires an atom to be described in
either J representation �for targets that do not possess nuclear
spin, such as 40Ca� or in F representation �for targets with a
nonzero nuclear spin, such as the alkali-metal atoms�. The
second criterion is that the laser radiation is assumed to be
sufficiently weak that multiphoton processes can be ne-
glected. The dipole approximation is therefore used, and the
harmonic approximation �which assumes the operator ele-
ments evolve freely during the laser interaction� is adopted.
The state of the system is derived from expectation values of
the operators with the assumption that the dynamics varies
slowly compared to the oscillation frequency of the laser
field. The model is therefore not applicable for radiation in
the fs temporal regime. Finally, normal ordering is chosen in
the usual way when describing the laser field interaction with
the targets �8�.

These criteria restrict the model to laser intensities typi-
cally less than �1012 W /cm2 and to lasers with coherence
times of picoseconds or longer. As such, the model can be
applied to all cases involving high-resolution cw lasers �such
as the cooling, trapping, and collision experiments described
above� and to pulsed laser experiments that satisfy these
criteria.

This paper is divided into five sections. Following this
Introduction, the theory is described and the general equa-
tions of motion derived. Specific coupled rate equations are
then formulated for a J=0 to J=1 transition �as in calcium
excitation from the ground state� so as to illustrate the model.
The example systems are divided into two cases: that of cir-
cularly polarized laser excitation directed along the B-field
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direction and that of linearly polarized laser excitation where
the applied B field is orthogonal to the polarization vector of
the laser. Examples of the dynamics of the interaction are
also presented.

The steady-state solutions are then derived for the J=0 to
J=1 transition, and it is shown that these are considerably
more complex than for the two-state system when linearly
polarized radiation is used. From these equations, the effects
of the combined magnetic and electric fields are derived in
terms of a density matrix describing the “shape” and orien-
tation of the excited P-state atom in an analogous way to that
used to describe atoms excited by electron impact. Finally,
the application of the model to the superelastic scattering
process in a MAC device is presented.

II. QED THEORY FOR THE INTERACTION OF LASER
AND MAGNETIC FIELDS WITH A TARGET

In the following description of the QED theory, we follow
the work of Farrell, MacGillivray, and Standage �9�, who
derived the equations of motion for superelastic scattering
studies from sodium. The Hamiltonian used in this previous
work is modified here to include the effects of the magnetic
field, which is treated as a perturbation. The description is in
the Heisenberg picture in which the operators are time de-
pendent. By moving to the reference frame of the laser field,
the operators are transformed to slowly varying terms whose
expectation values directly relate to density matrix elements
describing the populations and coherences between states
coupled by the radiation field.

Consider first the Hamiltonian, which describes the inter-
action of an atomic target with a laser field and a weak mag-
netic field. This may be written

H = Hatom + Hfield + Hinteraction

= �Hfree + HB field� + Hfield + Hinteraction, �1�

where

Hatom = Hfree + HB field = �
i

��i�i��i�

Hfree

+
�BgJ�F�

�
J�F� · B

HB field

= �
i

��i�i��i� + ��BgJ�F��B�

�
�J�F� · B̂ , �2�

�BJ�F�=
�BgJ�F��B�

� is the Larmor precession frequency, �B is the
Bohr magneton, and gJ�F� is the Lande g factor either in J or
F representation �10�. Equation �2� can be written in either
representation, so J will be used from this point for
simplicity.

The Hamiltonian for the coherent laser field may be writ-
ten in terms of annihilation and creation operators in the
usual way:

Hfield = �
��

����a��
† a��, �3�

where the mode index �� specifies the polarization ���� and
wave vector k�� of the laser field. The interaction Hamil-

tonian that physically describes the coupling of the laser field
to the atom is given by �8�

Hinteraction = �
��,e�,g�

��ge�g�
�� �̂e�g�a��e

+ik��z

+ ge�g�
��* a��

† e−ik��z�̂g�e�� , �4�

where ge�g�
�� = i� ���

2�0�V���� ·De�g� is a coupling coefficient be-
tween the laser field mode and atomic states �g�	 , �e�	, with V
being the mode volume and De�g� the dipole moment. The
atomic operators are given by the outer product of state vec-
tors that define the atomic system:

�̂ij = �i	
j� . �5�

Since the field and atomic operators commute, the ordering
of Eq. �4� is arbitrary. However, by writing Eq. �4� in normal
ordering as above, it is then possible to directly relate the
results of further operations to the classical analogies of
spontaneous emission due to radiation reaction of the source
Coulomb field upon itself �11�.

The derivation of the Heisenberg operator equations of
motion is calculated in the usual way. For operators �̂eg be-
tween the lower states �g	 and upper excited states �e	, this is
given by

d�̂eg

dt
= −

i

�
��̂eg,H� = −

i

�
��̂eg,Hatom�

term 1

−
i

�
��̂eg,Hint�

term 2

.

�6�
Hfield does not contribute since it commutes with the atomic
operator. By appropriate manipulation of the above equa-
tions, term 1 is given by

−
i

�
��̂eg,Hatom�

term 1

= − i���g − �e��e��g� + 	�e��g�
�BgJB

�2 �J · B̂

− 
�BgJB

�2 �J · B̂�e��g��
 . �7�

The derivation of term 2 is considerably more involved.
Since the field mode couples to the atom, the time depen-
dence of a��

† and a�� depends on the atomic-state ensemble
and the coupling coefficients. By appropriate manipulation
of the operator equation, it can be shown that

a���t� = a���0�e−i���t

− i �
e�,g�

ge�g�
��* e−ik��z�

0

t

�̂g�e��t��e
−i����t−t��dt�,

a��
† �t� = a��

† �0�e+i���t

+ i �
e�,g�

ge�g�
�� eik��z�

0

t

�̂e�g��t��e
+i����t−t��dt�. �8�
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Substituting Eqs. �8� into term 2 and by invoking the Har-
monic approximation, it can be shown that

−
i

�
��̂eg,Hint� = − i �

��,e�

ge�g
��*a��

† �0�e+i����t−k��z��̂ee�

+ i �
��,g�

geg�
��*a��

† �0�e+i����t−k��z��̂g�g

+ �
��,e�

� �
e�,g�

ge�g
��*ge�g�

�� �̂e�g�

��
0

t

e+i����−�e�+�g���t−t��dt�
�̂ee�

− �
��,g�

� �
e�,g�

geg�
��*ge�g�

�� �̂e�g�

��
0

t

e+i����−�e�+�g���t−t��dt�
�̂g�g. �9�

The integrals in Eq. �9� are evaluated in the usual way for
interaction times large compared to the characteristic time
associated with detuning and can be approximated to 	 func-
tions �8,11�. The complete operator equation is thus given by
summing terms 1 and 2:

d�̂eg

dt
= − i���g − �e��̂eg +

�BB

�2 ��̂eggJJ · B̂ − gJJ · B̂�̂eg�

− i �

��,e�

ge�g
��*a��

† �0�e+i����t−k��z��̂ee�

+ i �
��,g�

geg�
��*a��

† �0�e+i����t−k��z��̂g�g

− �
��,g�,e�

geg�
��*ge�g�

�� �̂e�g
	���� − �e� + �g�� . �10�

To establish expectation values, the atomic operators �̂ij are
transformed to slowly varying operators �ij:

�̂eg = �egei��Lt−kLz�, �̂gg� = �gg�;�̂ee� = �ee�, �11�

and so

d�̂eg

dt
=

d�eg

dt
ei��Lt−kLz� + i�L�egei��Lt−kLz� − ikL

dz

dt
�egei��Lt−kLz�

= �̇egei��Lt−kLz� + i��L − kLvz��egei��Lt−kLz�. �12�

Taking expectation values, the equation of motion then be-
comes


�̇eg	 = − i���L − kLvz − �eg�
�eg	

+
�BB

�2 
�eggJJ · B̂ − gJJ · B̂�eg	

− i �

��,e�

ge�g
�* 
a��

† �0�	
�ee�	e
+i�����−�L�t−�k��−kL�z�

+ i �
��,g�

geg�
��*
a��

† �0�	
�g�g	e+i�����−�L�t−�k��−kL�z�

− �
��,g�,e�

geg�
��*ge�g�

�� 
�e�g	
	���� − �e� + �g�� .

�13�

Assuming coherent laser excitation �e.g., from a high-
resolution laser operating far above threshold� and noting
that the laser field can be written in terms of coherent states
�8�, we set ��=L in the driving terms so that


�̇eg	 = − i��L,eg
�eg	 +
�BB

�2 
�eggJJ · B̂ − gJJ · B̂�eg	

− i�

L,e�


e�g
L 
�ee�	 + i�

L,g�


eg�
L 
�g�g	

− �
�,g�,e�

geg�
�* ge�g�

� 
�e�g	
	��� − �e� + �g�� , �14�

where the Doppler detuning is given by

�L,eg = �L − kLvz − ��e − �g� = �L − kLvz − �eg �15�

and the on-resonance half Rabi frequency �set to be real by
an appropriate choice of phase� is given by


eg
L = geg

L*
aL
†�0�	 = geg

L 
aL�0�	 , �16�

where expectation values are taken over the coherent states
of the laser field. The Rabi frequency can be directly calcu-
lated from the intensity of the laser radiation and lifetime of
the upper excited state �see, for example, �12,13��.

In a similar way as shown above, the equations of motion
for substates in the same level can be derived. For the upper
laser-excited state,


�̇e�e	 = − i���e − �e��
�e�e	 +
�BB

�2 
�e�egJJ · B̂

− gJJ · B̂�e�e	
 − i�
L,g�


eg�
L 
�e�g�	

− �
��,g�,e�

geg�
�� ge�g�

��* 
	��e� − �g� − ����
�e�e�	

+ i�
L,g�


e�g�
L 
�g�e	 − �

��,g�,e�

ge�g�
��* ge�g�

��

�
	���� − �e� + �g��
�e�e	 , �17�

whereas for the lower state,
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�̇g�g	 = − i���g − �g��
�g�g	 +
�BB

�2 
�g�ggJJ · B̂

− gJJ · B̂�g�g	
 + i�
L,e�


e�g�
L 
�e�g	

+ �
��,e�,e�

ge�g�
�� ge�g

��*

�e�e�	

�
	��e� − �g − ���� − i�
L,e�


e�g
L 
�g�e�	

+ �
��,e�,e�

ge�g
��*

ge�g�
�� 
�e�e�	
	���� + �g� − �e�� .

�18�

A. Choice of quantization axis

Equations �14�–�18� are general equations that define the
dynamics of the system under the influence of a laser field
and a magnetic field. To proceed further, a quantization axis
is defined so that measurements can be taken. In the case
presented here, the quantization axis �z axis� is chosen par-

allel to the magnetic field B̂. The expectation values of the
magnetic terms can then be derived.

As an example, consider the magnetic terms in Eq. �14�:

��BB

�2 

�eggJJ · B̂ − gJJ · B̂�eg	

= ��BB

�2 
�
��e	
g�gJJ · B̂��	 − 
��gJJ · B̂�e	
g��	� . �19�

Since z � B̂, we have

��BB

�2 
�
��e	
g�gJJ · B̂��	 − 
��gJJ · B̂�e	
g��	�

= ��BB

�2 
�
��e	
g�gJJz��	 − 
��gJJz�e	
g��	�

= ��BJg
mg − �BJe

me�
�eg	 . �20�

The expectation values of the slowly varying operators are
directly related to the density matrix elements more com-
monly used to define the atomic states:


�eg	 = 
��e	
g��	 = �
e��	
��g	�* = �eg
* = �ge. �21�

The equations of motion �choosing the z axis along the
B-field direction� are then given for lower-state populations
�g=g�� and atomic coherences �g�g�� by:

�̇gg� = − i��g − �g� + �BJg
mg − �BJg�

mg���gg� + i�
L,e


eg�
L

�ge

− i�
L,e


eg
L �eg� + �

�,e�,e�

ge�g�
� ge�g

�*

	��e�g − ����e�e�

+ �
�,e�,e�

ge�g
�* ge�g�

�

	��e�g − ����e�e�; �22�

Upper state populations �e=e�� and atomic coherences
�e�e�� by:

�̇ee� = − i��e − �e� + �BJe
me − �BJe�

me���ee� + i�
L,g


e�g
L

�eg

− i�
L,g


eg
L �ge� − �

�,g�,e�

geg�
� ge�g�

�*

	��e�g� − ����e�e�

− �
�,g�,e�

ge�g�
�* ge�g�

�

	��e�g� − ����ee�, �23�

and optical �e=g�1,0� and non-optical �e�g�1,0�
coherences between lower and upper states by:

�̇ge = − i��L,eg + �BJg
mg − �BJe

me��ge − i�
L,e�


e�g
L

�e�e

+ i�
L,g�


eg�
L

�gg� − �
�,g�,e�

�ge�geg�
�* ge�g�

�

	��e�g� − ��� ,

�24�

where �eg=�e−�g and other terms are as stated. These
equations can be summarized into a single matrix equation

�̇
>

= A>
>
�
>
, �25�

where �
>

is a column vector with elements �ij and A>
>

is a
complex matrix defined by Eqs. �22�–�24�.

The coupled differential equations �22�–�24� are a general
set of equations that can be applied to any system with the
proviso that the quantization axis is along the direction of the
magnetic B field. The first terms are oscillatory terms be-
tween substates of the same state ensemble and may lead to
quantum beats or B-field-induced oscillations. Terms involv-
ing the Rabi frequency are coherent driving terms that result
in absorption of photons from the laser field and stimulated
emission of photons into the laser field. The Rabi frequency
is directly proportional to the magnitude of the electric field
�8�, and so the probability of absorption and stimulated emis-
sion processes is proportional to the square root of the laser
intensity.

The triple sums in Eqs. �22�–�24� arise from spontaneous
emission of photons. These relaxation terms arise even when
there are no driving terms �i.e., when 
eg

L =0� and lead to
damping of any oscillations over time. They can be repre-
sented by a set of generalized decay constants where

�ege�g� = �
��

�ge�g�
�� geg

��*

	��e�g� − ����

+ ge�g�
�� geg

��*

	��eg − �����

⇒ �eg = �egeg = 2�
��

�geg
���2
	��eg − ����

⇒ �e = �
g

�eg = 2�
g

�
��

�geg
���2
	��eg − ���� .

�26�

Note that should state �g	 not be the lowest state, an addi-
tional term must be included in Eq. �22� to allow for spon-
taneous decay from �g	 to all lower states that are optically
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accessible. Additionally, if the upper state �e	 can relax to
states other than state �g	, additional spontaneous emission
terms must be included to allow for these transitions. These
extra decay terms are fully described in �12,13�.

III. EXAMPLE: DERIVATION OF THE EQUATIONS
OF MOTION FOR S TO P TRANSITIONS

As an example of the use of Eqs. �22�–�24� in an experi-
ment, consider laser transitions from an S state to a P state
under the action of a weak B field, as shown in Fig. 1. In this
case, the laser is near resonance �detuning �L,31 from the
�J ,mJ	= �1,0	 state� and the Larmor frequency is �B1 for the
upper state. Since the ground state is singlet, �B0=0. The

coupling coefficients geg
�� that are nonzero are then given by

g21
−1, g31

0 , and g41
+1.

Two cases are presented to illustrate how the equations of
motion are calculated. In the first, the laser radiation is cir-
cularly polarized and is directed along the B-field axis. The
preferred quantization axis of the B field and the laser are
then the same, so that transitions occur with �mJ= �1 for
�� radiation, as in Fig. 1.

The second case to be considered is when the laser beam
is directed along the B-field direction and the laser is linearly
polarized along the x axis. In this case, the “natural” quanti-
zation axis for the laser is along the polarization vector so
that the target undergoes �mJ=0 transitions in this frame.
However, this reference frame is orthogonal to the axis cho-
sen when deriving Eqs. �22�–�24� and so cannot be adopted.
It is therefore necessary to describe linearly polarized laser
radiation as a superposition of �+ and �−. The amplitude
components of the superposed polarization account for the
direction of the incident linearly polarized radiation. For lin-
ear excitation, the magnitude of these components will be
equal. For elliptically polarized radiation, the complex am-
plitudes of the two components will differ so as to create a
net handedness and direction of the incident radiation �14�.

A. Case 1: Circularly polarized laser excitation
(B-field ¸ to laser direction)

In this configuration the quantization axis is chosen as in
Fig. 1 and the laser promotes excitation from the �0,0	= �1	 S

state either to the �1,−1	= �2	 state using �− radiation or to
the �1, +1	= �4	 state using �+ radiation. The �1,0	= �3	 state
remains unpopulated in this frame of reference.

Consider excitation to the �1,−1	= �2	 state using �− ra-
diation. In this case the only nonzero coupling coefficient is
g21

−1 and the half Rabi frequency is 
21
−1. There is only one

spontaneous emission route possible for this excitation pro-
cess, which is relaxation back to the �0,0	= �1	 state. This
configuration therefore represents a dynamic closed two-state
process described by four coupled differential equations �see
the Appendix for an example of the procedure to derive these
equations�

�̇11 = i
21
−1��12 − �21� + �21�22,

�̇22 = i
21
−1��21 − �12� − �21�22,

�̇12 = i
21
−1��11 − �22� − ��21

2
+ i��L,31 + �B1���12,

�̇21 = i
21
−1��22 − �11� − ��21

2
− i��L,31 + �B1���21, �27�

Note that the detuning can be incorporated into a single term:

	21 = �L,31 + �B1. �28�

The equations of motion then exactly match those from any
two-state closed system. In this case the detuning depends
upon the magnetic B field through the Larmor frequency
component �B1.

B. Case 2: Linearly polarized laser excitation „B�E…

For excitation using linearly polarized radiation where the
polarization vector of the laser is orthogonal to the B field,
the light vector must be decomposed into two orthogonal
components whose reference axes are aligned with the B
field. The result of this decomposition is that both the
�1,−1	 and �1, +1	 states are simultaneously and coherently
excited in the reference frame shown in Fig. 1. The equations
of motion reflect this excitation by an appropriate choice of
laser modes �L= �1� and an appropriate choice of Rabi
frequencies.

It can be shown that the relationship between the Rabi
frequency in the reference frame of the laser polarization 
eg




and that of the B field �
eg
�1� is given by


eg

x =

1
�2

�
eg
−1 − 
eg

+1� , �29�

where the convention of Corney �10� has been adopted for
the circular basis states. Since excitation now involves three
states ��1	,�2	, and �4	�, there will be nine coupled differential
equations that must be solved simultaneously. The nonzero
coupling coefficients are g21

−1 and g41
+1 and the half Rabi fre-

quency is 1
�2

�
21
−1−
41

+1�.
The full set of coupled differential equations are then

given by �see the Appendix�

�̇11 = i
21
−1��12 − �21� + i
41

+1��14 − �41� + �21�22 + �41�44,

σ −

σ
+

mJ = 0mJ = -1 mJ = +1

Polarizing
Optics

Laser

1
S0

1
P

1

1

|1>

|2> |3> |4>

E
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tio

n

∆ L,31

ω B1

Q
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n
A
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B
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ie
ld

A
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s

FIG. 1. �Color online� Application of a weak B field removes
the degeneracy of the states as shown. The laser is tuned near reso-
nant to the atomic transition, such that the detuning from resonance
is �L,31. The figure shows excitation by �+ and �− radiation, where
the quantization axes for the laser �along the beam direction� and
the B field are the same.
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�̇22 = + i
21
−1��21 − �12� − �21�22,

�̇44 = + i
41
+1��41 − �14� − �41�44,

�̇24 = + i
41
+1�21 − i
21

−1�14 − �1

2
��41 + �21� − 2i�B1��24,

�̇12 = + i
21
−1��11 − �22� − i
41

+1�42

− ��21

2
+ i��L,21 + �B1���12,

�̇14 = + i
41
+1��11 − �44� − i
21

−1�24

− ��41

2
+ i��L,41 − �B1���14

+ complex conjugates. �30�

The equations no longer appear like those for a simple two-
state system, and all participating populations ��11,�22,�44�,
atomic coherences ��24=�42

* �, and optical coherences ��12

=�21
* ; �14=�41

* � must be included. The atomic coherences
�24=�42

* are particularly interesting, as their equations con-
tain an oscillatory term ��2i�B1� which results in precession
of the charge cloud around the quantization axis. It is this
term that leads to the familiar Hanle effect observed for elec-
tron or broadband photon excitation of an atomic state in a
magnetic field.

It should also be noted that Eq. �30� reduces to the famil-
iar two-state equations if the B field is set to zero ��B1=0�.
The nine equations then reduce to the more familiar set of
four for a two-state system involving states �1	 and �3	. This
is accomplished using Eq. �27� and by applying a rotation
operator to change the quantization axis from being parallel
to the B field to being parallel to the polarization vector �E
field� of the laser �13�:

�Jm,J�m�
B field �t� = �

�=−J

+J

�
��=−J�

+J�

D�m
J* ��E��J�,J���

E field �t�D��m�
J� ��E� .

�31�

The Euler angles for this rotation are given by

�E = ��E,�E,�E� = �0, +



2
,0
 . �32�

An important difference between the results from Eq. �30�
and those observed in the Hanle effect is that the driving
terms due to the laser field directly compete with the preces-
sional motion of the atomic electrons due to the B field.
Since the laser field is linearly polarized, Rabi oscillations
between the ground and excited states attempt to maintain a
P state aligned along the E field of the laser while the mag-
netic B field applies a torque to the atomic electrons causing
them to precess around the B field axis. This competition
results in oscillations of the charge cloud around the quanti-
zation axis which depend on the strength of the B field and
the intensity of the laser radiation. Spontaneous emission
damps out these oscillations so that, after a time typically
greater than 10 times the lifetime of the upper state, the
system reaches a steady state �to a good approximation as
shown below� and the charge cloud aligns itself at a finite
angle to the polarization direction of the laser.

A further consequence of the effects of the magnetic field
is that there is a loss of coherence in the excited P state. The
condition for loss of coherence is given by

tr�J=1
2 − �tr�J=1�2 = 	tr�t� , �33�

where 	tr�t��0.
Figure 2 shows dynamical results from Eq. �30� for exci-

tation of calcium under the conditions where the magnetic
field is �a� set to zero and �b� is 20 G and with a laser inten-
sity of 25 mW /mm2. The detuning is set to 0 MHz and the
lifetime of the upper state is �21

−1=�41
−1=4.6 ns. Oscillations

can be seen in the populations and atomic coherences due to
only optical pumping in Fig. 2�a� and for both optical pump-
ing and the magnetic field in Fig. 2�b�. In particular, the
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FIG. 2. �Color online� Calcula-
tion of the relative populations
and atomic coherences of the up-
per 4 1P1 state of calcium excited
using linearly polarized laser ra-
diation with �a� zero magnetic
field and �b� with a B field of
20 G. The laser detuning is set to
�L,31=0 in this example, and so
�22=�44. The population is nor-
malized, so that �11+�22+�44=1.
For details, see text.
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atomic coherence �24=Re��24�+ i Im��24� clearly shows the
effect of the B field in the imaginary term. After �50 ns the
system reaches a steady state, the oscillations are damped
out, and the populations and coherences become stable.

Figure 3 shows the effect on �24�t� when rewritten as
�24= ��24�ei�24. The phase angle �24 remains constant at �24
=0° when the B field is zero �Fig. 3�a�� and demonstrates a
complex variation when the B field is applied �Fig. 3�b��.
The phase angle �24 directly relates to the angle �P of the
P-state charge cloud through the relationship �24=2�P �see
below�. Thus the variation of the charge cloud angle is di-
rectly related to this parameter.

Figure 3 further shows the effect of the B field on the
coherence of the state as represented by 	tr�t�. When no B
field is applied, 	tr�t�=0 and the state is fully coherent. By
contrast, upon application of a B field, 	tr�t��0 and there is
a loss of coherence. It can be shown that this is true in
general when �B1�0.

The solutions to Eq. �30� as presented in Figs. 2 and 3
allow the angular “shape” of the charge cloud W�� ,�� to be
determined as a function of time, since we may write

W��,�� = �
mJ,mJ�

�mJmJ�
YJmJ

��,��YJmJ�
* ��,�� , �34�

where YJmJ
�� ,�� is a spherical harmonic �15�. Figure 4

shows an example of this procedure at selected times be-
tween 0 ns �turn on of the laser field� and 50 ns �where
steady-state conditions are reached�. The results clearly show
how the state oscillates and evolves around the quantization
axis, reaching a steady-state angle which differs by �10°
from that initially created by the laser beam �along the
E-field direction�. This is in accordence with the results in
Fig. 3�b�. A selection of movie files of the evolution of the
state as a function of time over 50 ns for zero detuning, a
laser intensity of 25 mW /mm2, and B fields of 20 and 100 G
can be seen in the supplementary material �23�.

C. Steady-state conditions for S to P transitions

The steady-state solutions of the equations of motion, �ij
SS,

are derived by setting the time dependence in Eq. �25� to
zero,

A>
>
�
>

SS = 0, �35�

and the equations become simultaneous linear equations that
can be solved using standard formalisms. For circular exci-
tation �see Eq. �27�� the steady-state solutions are given by

�22
SS =

4
21
2

8
21
2 + �21

2 + 4��L,31 + �B1�2 ,

�11
SS =

4
21
2 + �21

2 + 4��L,31 + �B1�2

8
21
2 + �21

2 + 4��L,31 + �B1�2 ,
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FIG. 3. �Color online� Calculation of the atomic coherence of the upper state �24 and the coherence parameter 	tr�t� with �a� zero
magnetic field and �b� with a B field of 20 G. The laser detuning �L,31=0 for a calcium target. The state is fully coherent with no B field,
and the alignment angle is along the polarization vector. When a B field is applied, the P state oscillates around the B field, and there is a
loss of coherence in the system.
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~10°

FIG. 4. �Color online� Examples of the angular shape of the P
state for a B field of 20 G, derived from the results shown in Fig. 2.
The state is seen to oscillate as a function of time, until it reaches a
steady state �50 ns after initial excitation. The steady-state align-
ment angle is �10° from the direction of the exciting laser polar-
ization vector.
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�21
SS =

4
21��L,31 + �B1� − 2i
21�21

8
21
2 + �21

2 + 4��L,31 + �B1�2 , �36�

where the population is normalized to unity: �11�t�+�22�t�
=1.

These equations are identical to those for a closed two-
state system in the steady state, with additional detuning due
to the B field. The force on the atom during laser cooling can
then be calculated from the optical coherence �21

SS in the usual
way �1�.

The steady-state solutions for 
 excitation are more in-
volved, as Eq. �30� must now be solved setting the time
dependence to zero. The solutions are given by

�11
SS =

A

X
, �22

SS =
B

X
, �44

SS =
C

X
, �24

SS =
D + iE

X
,

where A = �4�B1
2 �3�4 + 64�L,31

2 
2 + 16�2
2 + 16
4

+ 16�L,31
4 � + 16�B1

4 �3�2 − 8�L,31
2 � + 64�B1

6

+ 16
2�4�2�L,31
2 + �4� + 16
4�4�L,31

2 + 5�2�

+ 128
6

+ �2�16�L,31
4 + 8�L,31

2 �2 + �4�� ,

B = �4
2
„− 8�B1�2�L,31 + 8�B1

2 ��2 + 2�L,31
2 + 4
2�

− 32�B1
3 �L,31 + 16�B1

4 + 8
2�2 + 16
4

+ 4�2�L,31
2 + �4

…� ,

C = �4
2
„8�B1�2�L,31 + 8�B1

2 ��2 + 2�L,31
2 + 4
2�

+ 32�B1
3 �L,31 + 16�B1

4 + 8
2�2 + 16
4

+ 4�2�L,31
2 + �4

…� ,

D = �− 4
2�16�B1
2 �L,31

2 − 16�B1
4 + 8
2�2

+ 16
4 + 4�2�L,31
2 + �4�� ,

E = �− 16�B1
2���2 + 4
2 + 4�B1
2 �� ,

X = �4�B1
2 �3�4 + 96�L,31

2 
2 + 32�2
2 + 80
4 + 16�L,31
4 �

+ 16�B1
4 �3�2 − 8�L,31

2 + 8
2� + 64�B1
6

+ 24
2�4�2�L,31
2 + �4� + 16
4�4�L,31

2 + 9�2�

+ 256
6 + �2�16�L,31
4 + 8�L,31

2 �2 + �4�� , �37�

where 
=

31


x

�2
, �=�21=�41, and the total population has

again been set to unity: �11�t�+�22�t�+�44�t�=1. These equa-
tions reduce to the equivalent two-state solutions if the B
field is set to zero �ie �B1=0� as required.

The advantage of using the steady-state solutions given in
Eqs. �36� and �37� is that these yield analytic solutions to the
populations and coherences of the system under study. Since
in an experiment the interaction with the laser may occur
over a time period far longer than it takes the system to reach
equilibrium, these solutions often prove to be an accurate
representation. As an example, for calcium effusing from an

atomic beam oven at 1000 K, the average velocity of the
atoms is �720 m /s. If the atoms enter a laser beam of di-
ameter 1 mm, the interaction time is �1400 ns—far longer
than the 50 ns required to reach dynamic equilibrium. In this
case, Eqs. �36� and �37� give an accurate description of the
atomic system under the influence of the laser and magnetic
fields.

Finally note that the coherence parameter 	tr and angle of
the P state �P can also be directly derived in the steady state.
In this case,

	tr
SS = �24

SS�42
SS − �22

SS�44
SS =

D2 + E2 − BC

X2 , tan 2�P
SS =

E

D
.

�38�

From these expressions it can be shown that 	tr
SS=0; �P

SS=0
when �B1=0 �i.e., when �B�=0�. Further, it can be shown for
high B fields �within the approximations of the model� that

�P
SS →

�B1→�
�




2
. �39�

The P state therefore tends to align orthogonal to the laser
polarization vector when the B field is high.

IV. EXAMPLE: APPLICATION TO SUPERELASTIC
SCATTERING IN A B FIELD

Superelastic scattering of electrons from laser prepared
atoms is a powerful technique which can measure excitation
cross sections for inelastic electron scattering �4,16–22�. This
is possible since superelastic scattering can be considered as
the time inverse of coincidence methods which time-
correlate the electron that excites an atom with the photon
emitted during relaxation. Figure 5 shows the principle of the
superelastic scattering method. A laser beam of well-defined
polarization and energy �1� excites the atom and an electron
of energy Einc and momentum kinc �2� then scatters super-
elastically from the excited P-state target. The electron scat-
ters at an angle �e with momentum kout, thereby defining a
scattering plane. This electron is detected by an analyzer �3�,
and the rate of scattered electrons is determined as a function
of the laser polarization and scattering angle.

Incident
Electron

detected
electron

Eout

Scattering Plane

Ein

Laser Beam

λ/4 plate

Electron Gun
θe

Linear Polarizer

L⊥

l

w γ

1

2

Laser

3

Electron
Analyzer

P =lin
l - w
l + w

Polarization
Control

Eout > E in

k in

kout

FIG. 5. �Color online� The superelastic scattering geometry,
showing the scattering plane, the direction of the laser beam, and
the natural frame parameters that are used to define the state.

MURRAY, MACGILLIVRAY, AND HUSSEY PHYSICAL REVIEW A 77, 013409 �2008�

013409-8



From these results, the excitation cross section is deter-
mined. The superelastic signal as a function of the laser po-
larization Spolzn��e� is given by �16�

Spolzn��e� = �
mJ,mJ�

�mJ,mJ�
laser

�mJ,mJ�
deexc ��e� = �

mJ,mJ�

�mJ,mJ�
laser

�mJ�,mJ

exc ��e� ,

�40�

where �mJ,mJ�
laser is the density matrix for the upper state created

by the laser in the B field, �mJ,mJ�
deexc ��e� is the density matrix for

electron deexcitation of this state, and �mJ,mJ�
exc ��e� is the den-

sity matrix for the equivalent excitation process.
By choosing a quantization z axis given by the direction

of the B field and by taking measurements where the scatter-
ing plane is orthogonal to the z axis, the excitation density
matrix can be defined in the natural frame. In this case, as-
suming no electron spin flip occurs, we may write

�mJ,mJ�
exc ��e� =

1

2� 1 + L���e� 0 − Plin��e�e+2i�e��e�

0 0 0

− Plin��e�e−2i�e��e� 0 1 − L���e�
� ,

�41�

where L���e� defines the angular momentum transferred to
the atom orthogonal to the scattering plane during the colli-
sion, Plin��e� defines the “length” to “width” ratio of the
charge cloud, and �e��e� defines the angle of the charge
cloud with respect to the scattered electron, as in Fig. 5.

A. Case 1: Circularly polarized laser excitation

As an example of the use of Eq. �40�, consider circular
excitation prior to the electron collision. In this case,

��mJ,mJ�
laser ��+

= ��22 0 0

0 0 0

0 0 0
�, ��mJ,mJ�

laser ��−
= �0 0 0

0 0 0

0 0 �44
� ,

�S�+
��e� = �

mJ,mJ�

�mJ,mJ�
laser

�mJ�,mJ

exc ��e� =
1

2
�22�1 + L�� ,

�S�−
��e� = �

mJ,mJ�

�mJ,mJ�
laser

�mJ�,mJ

exc ��e� =
1

2
�44�1 − L�� . �42�

The superelastic scattering signal determines the pseudo-
Stokes parameter P3

S��e� �16�, and so

P3
S��e� =

S�+
��e� − S�−

��e�

S�+
��e� + S�−

��e�
=

��22 − �44� + L���44 + �22�
��44 + �22� + L���22 − �44�

.

�43�

Under steady-state conditions the relative populations are
given by

�22
SS =

4
21
2

8
21
2 + �21

2 + 4��L,31 + �B1�2 ,

�44
SS =

4
21
2

8
21
2 + �21

2 + 4��L,31 − �B1�2 . �44�

To determine L� directly from experiment, it is therefore
necessary to tune the laser to resonance with states �2	 and �4	
prior to measuring the scattering rates. In this case,

�22
SS →

��+�B1�=0

4
21
2

8
21
2 + �21

2 , �44
SS →

��−�B1�=0

4
21
2

8
21
2 + �21

2 = �22
SS,

�45�

and so

L� = P3
S��e� . �46�

This is equivalent to that derived for a conventional super-
elastic experiment which does not use a B field. The differ-
ence between experiments arises since upon application of a
B field �as from a MAC device�, the laser frequency must be
adjusted to be on resonance with each selected state as the
laser polarization switches from �+ to �− �4�.

B. Case 2: Linearly polarized laser excitation

Calculation of the superelastic signal for linear laser ex-
citation in the B field is more complex than for circular ex-
citation. The density matrix in the laser frame of reference is
defined with the x axis aligned along the laser polarization
vector, which is assumed to make an angle � to the x axis in
the natural frame. It is therefore necessary to align both
frames using rotation operators prior to application of Eq.
�41� to determine the superelastic scattering signal rates.
Steady-state conditions are assumed in the following deriva-
tion.

Alignment of the laser frame to the natural frame requires
a rotation through Euler angles ��E ,�E ,�E�= �� ,0 ,0�—i.e.,
rotation around the z axis through an angle �. The density
matrix for laser excitation in the natural frame is then given
by

�ij
L�nat� =

1

X� C 0 Me−2i��P
SS+��

0 0 0

Me+2i��P
SS+�� 0 B

� ,

M = �D2 + E2, tan 2�P
SS =

E

D
. �47�

Application of Eq. �40� allows the superelastic signal to be
derived for 
-polarized light. In this case,

S���e� =
�B + C� + L���e��B − C�

2X

−
�D2 + E2

X
Plin��e�cos 2����e� + �P

SS + �� . �48�

Note that the superelastic signal contains terms in L���e� as
well as in Plin��e� and ���e�. This is expected, as the detun-
ing �L,31 will favor excitation of the state closest to reso-
nance with the laser, producing both alignment and orienta-
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tion of the target. Equation �48� simplifies when �L,31=0
�i.e., the laser is resonant with state �3	�, since under these
conditions B=C. In this case,

S���e� →
�L,31=0

B

X
−

�D2 + E2

X
Plin��e�cos 2����e� + �P

SS + �� .

�49�

Determination of the alignment angle ���e� can therefore be
achieved by varying the laser polarization angle � and fitting
Eq. �49� to the data. The resulting phase shift then directly
relates to ���e�+�P

SS, where �P
SS is a constant set by the laser

and B-field parameters. �P
SS can be determined by comparing

S���e� with and without the B field, thus establishing the
constant offset �P

SS �which is independent of the scattering
angle �e�.

Plin��e� can be measured either by fitting experimental
data to Eq. �49� or by determining the pseudo-Stokes param-
eters P1,2

S ��e� �16�. In either case, the fitted parameter is
scaled by a factor that depends on the laser and B fields.
When fitted to Eq. �49�, Plin��e� can be determined from the
maximum and minimum of the function:

Smax
� ��e� =

B

X
+

�D2 + E2

X
Plin��e� ,

Smin
� ��e� =

B

X
−

�D2 + E2

X
Plin��e� ,

⇒Plin��e� = �
Smax

� ��e� − Smin
� ��e�

Smax
� ��e� + Smin

� ��e�
,

where

� =
B

�D2 + E2
. �50�

Note that when the B field is zero, D=−B, E=0, and so �
=1. Hence the value of � can be determined by taking ex-
perimental data with and without the B field operating so as
to determine Smax

� ��e�, Smin
� ��e�, and Plin��e� in both cases. �

is then given by the ratio of these measurements. Since �
does not depend on the scattering angle �e, the value of � can
be used throughout all measurements of Plin��e� when the B
field is present �e.g., in regions where it is not possible to
measure the superelastic signal using a conventional spec-
trometer�. Experiments of this type have now been carried
out and results are discussed in Refs. �4,22�.

V. CONCLUSIONS

In this paper a QED model for the interaction of laser
radiation with a target immersed in a magnetic field has been
derived where the B field is assumed to produce a small
perturbation to the energy levels. The model yields a set of
three general equations of motion that relate to the popula-
tions of the states and their relative phases �coherences�. The
quantization axis was chosen along the B-field direction and

the equations derived with respect to this axis.
Examples of the use of these equations applied to actual

experimental geometries were then given, specifically when
the laser beam was circularly and linearly polarized. The
equations were solved under these conditions for an S-state
to P-state transition, the dynamics being studied using cal-
cium as an example. For circular excitation, it was shown
that the model is identical to a two-state system with appro-
priate choice of detuning. For linear excitation, the model
shows that the state oscillates around the quantization axis
before coming to rest at a set angle to the polarization vector
of the laser beam. The coherence of the state was also seen to
reduce with application of the magnetic field.

The steady-state equations were then derived and solu-
tions presented. These were used in the example of super-
elastic electron scattering from laser prepared calcium where
it was shown that the natural frame parameters can be de-
rived from experiment. The combination of laser and mag-
netic fields was found to change the alignment angle � of the
state by a constant offset angle �P

SS, whereas the alignment
parameter Plin was found to scale by a constant factor �.
Both �P

SS and � can be determined directly from experiment
by comparing the results with and without the B field at a
given scattering angle �e. The orientation parameter L� was
seen to be directly measurable from the data providing the
laser was tuned to resonance for each polarization �� state
of the laser.

The theory presented here should find applicability in a
wide variety of experiments. Since the dynamics of the in-
teraction can be calculated accurately, this opens up the pos-
sibility of carrying out new types of experiments where these
dynamics are exploited. Further, since the model is not con-
fined to the simple two-state system widely adopted by many
researchers, it will allow researchers to understand and opti-
mize their experiments to a higher degree. Derivation of the
equations of motion is straightforward, and solutions can be
found using basic computer systems as located in most re-
search laboratories. The model is presently being used for
both superelastic and atom cooling experiments in Manches-
ter, and it is hoped that other researchers will also benefit
from the results presented here.
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APPENDIX: EXAMPLE OF THE DERIVATION OF THE
EQUATIONS OF MOTION

Circular excitation case

Consider excitation to the �1,−1	= �2	 state using �−

radiation. For the lower state, Eq. �22� reduces to
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�̇gg� = − i��g − �g� + �BJg
mg − �BJg�

mg���gg� + i�
L,e


eg�
L

�ge − i�
L,e


eg
L �eg�

+ �
��,e�,e�

ge�g�
�� ge�g

��*
	��e�g − �����e�e� + �
��,e�,e�

ge�g
��*ge�g�

�� 
	���� − �e�g���e�e� ⇒ �̇11

= − i��1 − �1 + �BJ1
· 0 − �BJ1

· 0��11 + i�
L,e


e1
L �1e − i�

L,e

e1

L �e1

+ �
��,e�,e�

ge�1
�� ge�1

��*
	��e�1 − �����e�e� + �
��,e�,e�

ge�1
��*ge�1

�� 
	���� − �e�1��e�e�

= 0 + i
21
−1�12 − i
21

−1�21 + g21
−1g21

−1*
	��21 − �−1��22 + g21
−1*g21

−1
	��−1 − �21��22

= i
21
−1��12 − �21� + 2�g21

−1�2
	��21 − �−1��22 ⇒ �̇11 = i
21
−1��12 − �21� + �21�22. �A1�

The excited-state population �22 and optical coherences �21=�12
* can be derived in a similar way. This leads to the set of four

coupled differential equations which are given in Eq. �27�.

Linear excitation case

An example is given for the lower state under linear excitation to again illustrate the process. From Eq. �22�,

�̇gg� = − i��g − �g� + �BJg
mg − �BJg�

mg���gg� + i�
L,e


eg�
L

�ge − i�
L,e


eg
L �eg�

+ �
��,e�,e�

ge�g�
�� ge�g

��*
	��e�g − �����e�e� + �
��,e�,e�

ge�g
��*ge�g�

�� 
	���� − �e�g���e�e� � �̇11

= − i��1 − �1 + �BJ1
· 0 − �BJ1

· 0��11 + i�
L,e


e1
L �1e − i�

L,e

e1

L �e1

+ �
��,e�,e�

ge�1
�� ge�1

��*
	��e�1 − �����e�e� + �
��,e�,e�

ge�1
��*ge�1

�� 
	���� − �e�1��e�e�

= 0 + i
21
−1�12 + i
41

+1�14 − i
21
−1�21 − i
41

+1�41 + g21
−1g21

−1*
	��21 − �−1��22 + g41
+1g41

+1*
	��41 − �+1��44

+ g21
−1*g21

−1
	��−1 − �21��22 + g41
+1*g41

+1
	��+1 − �41��44

= i
21
−1��12 − �21� + i
41

+1��14 − �41� + 2�g21
−1�2
	��21 − �−1��22 + 2�g41

+1�2
	��41 − �+1��44

⇒ �̇11 = i
21
−1��12 − �21� + i
41

+1��14 − �41� + �21�22 + �41�44. �A2�

The full set of nine coupled equations can be derived in a similar way, as given by Eq. �30�.
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