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Possible signatures are discussed of a super-Tonks-Girardeau gas in bosonic systems of trapped quasi-one-
dimensional dipoles at zero temperature. We provide an estimation of the frequency of the lowest compres-
sional mode and compare it to analytical results derived using the harmonic approach in the high-density
regime. We construct an exact mapping of the ground-state wave function of a one-dimensional dipolar system
of bosons, fermions, and a Bose-Fermi mixture and conclude that the local properties and energy are the same
at zero temperature. The question as to what extent the dipolar potential can be treated as long or short range
is discussed.
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I. INTRODUCTION

The recent realization of chromium condensates �1� has
attracted much interest to the unusual properties of dipolar
condensates. The use of chromium has proved to be very
advantageous as it has a very large permanent dipolar mo-
ment of �=6�B. Other possible realizations of dipolar gases
include polar molecules �2–4� and laser-induced dipoles
�5,6�. The study of collective oscillations is a very sensitive
tool for the investigation of cold gas properties �7�. Dipolar
forces compete with the short-range s-wave scattering inter-
action. Although in the first experiments the s-wave interac-
tion gave the dominant contribution to the energy, the effects
of dipolar interactions have been detected in the shape of an
expanding cloud �8�. During the expansion of an initially
trapped gas, dipolar forces might lead to an anisotropic shape
of the expanding cloud �9�. Use of the Feshbach resonance
technique has brought the experiments to a new level. In-
deed, by means of the Feshbach resonance technique, it is
possible to reduce s-wave isotropic contact interaction, such
that the anisotropic magnetic dipole-dipole interaction be-
tween 52Cr atoms becomes comparable in strength �10�. This
induces large changes of the aspect ratio of the cloud, and,
for strong dipolar interaction, the inversion of ellipticity dur-
ing expansion can even be suppressed �10�. Chromium atoms
also have a fermionic 53Cr isotope and Bose-Fermi cold mix-
tures have recently been realized �11�.

Furthermore, dipolar interactions are very interesting as
they contain both repulsive and attractive parts. Having at-
tractive interactions between bosonic particles at tempera-
tures so low that a condensate is formed might lead to insta-
bility and a violent collapse process �12–14�. Collapse of
large dipolar condensates in traps has been studied using
nonlocal Gross-Pitaevskii �15–19� theory and the more pre-
cise diffusion Monte Carlo �DMC� �17� approach. Study of
repulsive dipolar gases in one-dimensional optical lattices
within the Bose-Hubbard model using the density matrix
renormalization group approach has revealed �20� that an
unusual insulator phase described by highly nonlocal string
correlations might be formed in dipolar systems in different
phases.

One-dimensional �1D� cold systems have received great
attention in recent years �21–23�. The role of quantum fluc-
tuations is increased in reduced dimensionality, sometimes
leading to very different behavior. For example, a peculiarity
of the one-dimensional world is the absence of a true Bose
condensate in 1D homogeneous systems even at zero tem-
perature �24�. There is a certain trend to study low-
dimensional systems in recent years.

At the same time, the past years have brought new devel-
opments in experimental tools, thus permitting very precise
measurements of cold gas properties to be made. One of the
most precise techniques, which can be used for testing the
equation of state, is the measurement of the frequency of the
“breathing” mode produced by a sudden change of the fre-
quency of the harmonic trapping. We note that differences of
several percent can be resolved in present high-precision ex-
periments with cold gases �see, for example, Ref. �25��.

In this paper, we address properties of a quasi-one-
dimensional dipolar system at zero temperature. We provide
an explicit mapping of the fermionic ground-state wave
function and a wave function of the Bose-Fermi mixture to a
bosonic wave function in one dimension. Due to this map-
ping, the energy of dipolar systems containing fermions can
be predicted using results previously obtained for bosons. We
calculate the frequency of the lowest breathing mode in the
trap and compare it to analytic predictions obtained in the
high-density limit. Measurement of the frequencies of collec-
tive oscillations can provide the signature of a super-Tonks-
Girardeau �STG� regime �26,27� described by very strong
correlations �stronger than in the Tonks-Girardeau gas �28� in
which the coupling constant is infinitely large�. It is very
difficult to reach the STG regime in systems with short-range
interactions, while its realization is feasible in dipolar sys-
tems. We address the problem of superfluidity in one-
dimensional systems and discuss the question of to what ex-
tent the dipolar interaction is short or long range.

II. MODEL

A system of N dipoles in one-dimensional geometry is
described by the following model Hamiltonian:
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Here we assume that all dipoles are polarized and are ori-
ented perpendicularly to the one-dimensional line. This sta-
bilizes the system �as only the repulsive part of dipolar in-
teractions is relevant� and avoids collapses due to attraction.
The expression for the coupling constant Cdd depends on the
nature of the dipolar interaction. For example, the following
realizations are possible.

�1� Cold bosonic atoms, with induced or static dipole mo-
menta, in a transverse trap so tight that excitations of the
levels of the transverse confinement are not possible and the
system is dynamically one dimensional. The longitudinal
confinement is described by the frequency �z of the har-
monic trapping potential. The dipoles themselves can be ei-
ther induced or permanent. In the case of dipoles induced by
an electric field E, the coupling has the form Cdd=E2�2,
where � is the static polarizability. For permanent magnetic
dipoles aligned by an external magnetic field one has Cdd
=m2, where m is the magnetic dipole moment. We suppose
that the s-wave scattering length is tuned to zero by applying
the Feshbach resonance and only dipolar forces are relevant.

�2� Spatially indirect excitons in two coupled quantum
wires. A quantum wire is a semiconductor nanostructure
where an electron or a hole is allowed to move only in one
direction and excitations of the transverse quantization levels
are negligible. In two parallel quantum wires, one containing
only holes and the other only electrons, holes and electrons
couple, forming indirect excitons. If such a system is dilute
enough, it constitutes a 1D set of dipoles. In this case, Cdd
=e2d2 /�, where e is an electron’s charge, � is the dielectric
constant of the semiconductor, and d is the distance between
the centers of the quantum wires. This system is the 1D
counterpart of a 2D indirect exciton system in coupled quan-
tum wells.

III. SUPER-TONKS-GIRARDEAU REGIME

The properties of a homogeneous system ��z=0� have
been studied numerically in �29� by means of the diffusion
Monte Carlo method. The equation of state and correlation
functions have been calculated as a function of the guiding
parameter nr0, where

r0 =
MCdd

4��2 �2�

is a characteristic length, n being the linear density. It has
been found that the system is extremely correlated and shows
crystal-like properties as the strength of dipolar interactions
nr0 is increased. This behavior is very different from that of
systems with short-range potentials, like the ones recently
realized experimentally �30,31�. One-dimensional gases with
short-range interaction potential are conveniently described
by the �-interaction Lieb-Liniger Hamiltonian �32�

ĤLL = −
�2

2M
�
i=1

N
�2

�zi
2 + g1D�

i�j

��zi − zj� , �3�

where the one-dimensional coupling constant g1D is in-
versely proportional to the one-dimensional scattering length
a1D: g1D=−2�2 /ma1D. The correlation functions of dipolar
systems, Hamiltonian �1�, have completely different behavior
from those described by the short-range Hamiltonian �3�
which in this case �33,34� are much more similar to those of
a weakly interacting Bose gas. For example, a typical shape
of the static structure factor S�k� is a smooth function which
goes from zero for k=0 to an asymptotic constant value
S�k�=1 for large �k�. In the most strongly interacting limit of
the Lieb-Liniger system g1D→ +	 �Tonks-Girardeau regime
�28��, the static structure factor is equal to that of an ideal
Fermi gas and has a discontinuity in the derivative at mo-
mentum �k�=2kF=2�n. Even stronger correlations might be
achieved in a system with short-ranged potential by quickly
crossing the confinement-induced resonance �35� as pro-
posed in �26�. In this resulting super Tonks-Girardeau re-
gime, bosonic atoms will interact with attractive potential
g1D→−	. The true ground state in this regime is a soliton-
like state with large and negative energy �36� �“attractive
collapse” of the system�. Instead, if the sweep across reso-
nance is fast and does not significantly perturb the position
of the particles, the system will still remain in a gaslike state
�which is metastable�. As shown in Ref. �26�, this state is
dynamically stable if the gas parameter na1D is relatively
small. In the following we will say that a system is in the
super-Tonks-Girardeau regime if correlations are stronger
than in the Tonks-Girardeau regime. The static structure fac-
tor in the STG regime has a peak at �k�=2kF, and the height
of the peak increases for larger values of the gas parameter
na1D. The super-Tonks-Girardeau regime also exists in a
number of one-dimensional systems �bosonic and fermionic�
with infinite strength potentials, namely, hard rods �37� and
the Calogero-Sutherland model �38�. So far this regime has
never been observed experimentally, with the best candidate
for its observation being a system of dipoles. The advantage
of dipolar systems is that they are long living in the super-
Tonks-Girardeau regime, as it is a true ground state and not a
metastable state as in systems with short-range interactions.
In addition, any restriction on the gas density nr0 is removed,
contrary to the requirement na1D
1 in the case of short-
range gases. An experimental signature of the STG regime in
a trapped system is the frequency of the lowest compres-
sional mode �z larger than 2�z �26�. In Sec. V we calculate
explicitly the dependence of �z on the parameters of a trap.

The super-Tonks-Girardeau regime is expected to have
quite unusual properties. It has been shown �39–41� for the
Lieb-Liniger model �3� that the dynamic form factor has a
power law at the point where the excitation spectrum touches
zero, S�� ,2kF���−2 , �→0, where =2�kF /mc. In the re-
gime of repulsive � interaction �2 and S�0,2kF�=0. For
the marginal case of the Tonks-Girardeau regime S�� ,2kF�
=const. Instead, for attractive � interaction �i.e., in the super-
Tonks-Girardeau regime� this expression predicts a weak
�power law� divergence in the dynamic form factor
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S�� ,2kF�→	 , �→0. For additional information on singu-
larities in the dynamic structure factor for different values of
momenta, see Refs. �42,43�.

IV. SUPERFLUID VS NORMAL BEHAVIOR
IN ONE-DIMENSIONAL SYSTEMS

The problem of superfluidity has peculiarities in a one-
dimensional system. While the different ways of defining the
superfluid part in three- and two-dimensional systems are
consistent, this is not the case in a one-dimensional world.
Indeed, its calculation as the response of a liquid to sample
boundary motion �winding-number method �44�� for the
highly correlated states described by a translationarily invari-
ant gaslike wave function �for example, the exact wave func-
tion for the Tonks-Girardeau �28�, Calogero-Sutherland
�45,46�, and hard-rod �28� systems; and DMC evaluation for
Lieb-Liniger �33� and dipolar �29� systems� would provide
the result that such systems are completely superfluid. This
argument would apply even to the TG regime, where the
bosonic system has many similar properties to an ideal Fermi
gas. At the same time, one should keep in mind that exposure
of a one-dimensional ideal Fermi gas to a tiny perturbation
will change the ground-state wave function in a dramatic
way: the overlap of the new wave function and the old is
essentially zero. This effect, known as the orthogonality ca-
tastrophe �see, for example, the textbook �47��, shows that in
a one-dimensional system stability to external perturbations
has to be carefully checked. Contrary to the winding-number
approach, the Landau argument would lead to the exactly
opposite result, classifying systems as completely normal.
Indeed, in one-dimensional Luttinger liquids the excitation
spectrum always touches zero at a finite value of momentum,
�k�=2kF �see, for example, Ref. �41�; for the Lieb-Liniger
model �3� the “type II” excitation �48� that touches zero can
be identified as a dark soliton �49��. Another way to calculate
the superfluid density by the response to a transverse probe
�transverse current-current response� is not applicable within
the one-dimensional description as no transverse direction is
included in the model. Contradictions in the results arise
from the different definitions of the superfluid part and re-
flect the nonstandard nature of the system. Probably the most
natural and appropriate way to test the superfluidity in a 1D
world is by dragging a small impurity �perturbation� through
the system and seeing if this leads to energy dissipation. The
force FV, experienced by the system, depends on the interac-
tion parameter  as FV�V−1 �40�, where V
1 a.u. is the
velocity with which a small � perturbation moves through
the system. Thus in the mean-field limit →	 the force is
vanishing, and from the practical point of view the system
behaves analogously to a superfluid. On the contrary, in the
Tonks-Girardeau limit FV�V and the system behaves, from
the point of view of friction, as a normal system, where the
drag force is proportional to the velocity. In between there is
a smooth crossover. The dipolar one-dimensional systems are
expected to behave like normal ones.

Although Bose-Einstein condensation is absent in a one-
dimensional system even at zero temperature, its reminis-
cence can still be observed in the divergence of the momen-

tum distribution for k=0. This divergence is present in a
homogeneous system of bosons in the Tonks-Girardeau re-
gime. From the Luttinger liquid theory, it is possible to show
that deep in the super-Tonks-Girardeau regime this diver-
gence will be removed. This happens for =1 �similarly to
the Calogero-Sutherland �38� and hard-rod �37� systems� or,
in terms of the Luttinger parameter, K=1 /2. The Luttinger
parameter can be extracted from the equation of state or from
the phononic part of the static structure factor and is explic-
itly given in Ref. �50�.

V. FREQUENCIES OF COLLECTIVE OSCILLATIONS

The equation of state obtained in �29� can be used to
predict properties of a trapped one-dimensional gas within
the local density approximation �LDA� �see, for example,
�52�� by assuming that the chemical potential in a trap is the
sum of the local chemical potential, taken to be the same as
in a homogeneous system �hom�n�, and the external har-
monic potential: �=�hom(n�z�)+ �1 /2�M�z

2z2. Within the
LDA number of particles N and oscillator length az

=�� /M�z come in a single combination, Nr0
2 /az

2. The LDA
is expected to describe correctly the properties of a gas in the
trap if the size of the cloud is large compared to az. From the
knowledge of the density profile n�z�, one can obtain the
mean square radius of the cloud �z2	=
−R

R n�z�z2dz /N and
thus, making use of the result �53� �z

2=−2�z2	 / �d�z2	 /d�z
2�,

to calculate the frequency �z
2 of the lowest breathing mode.

Figure 1 shows the square of the lowest breathing mode
frequency, �z

2, as a function of the coupling strength Nr0
2 /az

2.
In the regime of small densities, Nr0

2 /az
2
1, the distance

between particles is large and the potential energy due to
particle-particle interactions is small. At the same time, the
wave function vanishes when two particles meet. This be-
havior is similar to that of the Tonks-Girardeau or ideal
Fermi gas. Indeed, in the regime, Nr0

2 /az
2
1, the frequency

reaches the typical result of an ideal Fermi gas �z=2�z. The
observation of a breathing mode with a frequency larger than
2�z would be a clear signature of the super-Tonks-Girardeau
regime.

FIG. 1. Square of the lowest breathing mode frequency, �z
2, as a

function of the coupling strength Nr0
2 /az

2. Solid line, using equation
of state of one-dimensional dipoles �data are taken from �51�, Fig.
6.5�; dashed line, high-density expansion, Eq. �5�.
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The attempt to calculate analytically the equation of state
in the regime nr0
1 in terms of the s-wave scattering length
and to obtain the expansion for the frequencies of collective
oscillations encounters problems, as will be explained in Sec.
VII. Instead, some analytical results can be obtained in the
regime of high densities nr0�1. In this regime, the dipolar
system has crystal-like properties �29�. At the same time the
difference in the energy between gaslike and crystal-like de-
scriptions is extremely small. This justifies an attempt to de-
rive in a perturbative way the equation of state of a crystal
and use it for an approximate description of the gaslike phase
at the same density. We use the classical crystal harmonic
approach to calculate the equation of state in a perturbative
manner. Details of the calculation are provided in the Appen-
dix. The result for the equation of state is

E

N
= ��3�

�2

Mr0
2 �nr0�3 + C

�2

Mr0
2 �nr0�5/2 + ¯ , nr0 � 1,

�4�

with C=2.26. . .. Application of the LDA to “perturbative”
equations of state has been studied in detail in �52�. The
density profile and total and release energy are easily ob-
tained by using expansion �4� in the high-density Nr0

2 /az
2

�1 regime. Here we report the frequency of the lowest com-
pressional mode:

�z
2

�z
2 = 5 −

1.1358. . .

�Nr0
2/az

2�1/5 + ¯ . �5�

The obtained dependence is shown in Fig. 1 as a dashed line
and provides a good description for large densities.

VI. BOSE-FERMI MAPPING FOR THE GROUND-STATE
WAVE FUNCTION

In a previous paper �29� we calculated the zero-
temperature equation of state for the homogeneous Hamil-
tonian �1� with �z=0 for bosonic particles and sampled cor-
relation functions over the ground-state wave function
�B�z1 , . . . ,zN�. As in experiments dipoles can be not only
bosons but also fermions, or even a mixture of bosons and
fermions, we note that the equation of state we have obtained
is applicable also to systems containing fermions. In order to
prove that, we construct an exact mapping of the wave func-
tion of bosonic dipoles to a fermionic wave function by anal-
ogy to what Girardeau did in his classical work �28�. For
simplicity we start with a system of same-spin fermions.
Such a system is described by the Hamiltonian �1�. The main
difference from the bosonic case is that the fermionic wave
function must be antisymmetric with the respect to exchange
of any two particles. This can be obtained as

�F�z1, . . . ,zN� = �
i�j

sgn�zi − zj��B�z1, . . . ,zN� . �6�

It is easy to check that the symmetry of wave function �6� is
correct. Furthermore, due to the Pauli exclusion principle,
two fermions are not permitted to stay in the same place
�F�z1 , . . . ,zN�=0 if zi=zj. This is already satisfied in the con-

struction of the bosonic wave function �B�z1 , . . . ,zN� due to
divergence of the 1 / �z�3 interaction for small z. This means
that the diffusion Monte Carlo calculation performed for
bosons is equivalent to the fixed-node diffusion Monte Carlo
calculation for fermions with exactly known nodal structure
as far as the energy and local quantities �pair correlation
function, static structure factor, etc.� are concerned. The trick
�6� has been successfully used for study the fermionic
Calogero-Sutherland model in Ref. �38�.

Another system that will have a similar zero-temperature
equation of state is a system of two-component fermions,
where the mass M� of different-spin atoms �= ↑ ,↓ is the
same. The Hamiltonian of such a system is given by

Ĥ = −
�2

2M
�

�;i=1

N�

�2

�zi,�
2 +

1

2
M�z

2 �
�;i=1

N�

zi,�
2

+
Cdd

8�
��

i�j

N↑
1

�zi
↑ − zj

↑�3
+ �

i�j

N↓
1

�zi
↓ − zj

↓�3
+ �

i,j

1

�zi
↑ − zj

↓�3
 .

�7�

The ground-state wave function of a system with totally N
=N↑+N↓ atoms is then mapped onto a system of N bosons
with a Hamiltonian �1� as

�F�z1
↑, . . . ,zN↑

↑ ,z1
↓, . . . ,zNw↓

↓ �

= �
i�j

N↑

sgn�zi
↑ − zj

↑��
i�j

N↓

sgn�zi
↓ − zj

↓��B�z1
↑, . . . ,zN

↑ ,z1
↓, . . . ,zN

↓ � .

�8�

Thus we conclude that a system of one-dimensional fermi-
onic dipoles has the same ground-state equation of state as a
system of bosonic dipoles. Consequently, the LDA density
profile in a trap is the same. This means that the frequencies
of the lowest breathing mode for fermions follow the depen-
dence shown in Fig. 1 with N being the total number of
dipoles. The limit Nr0

2 /az
2→0 corresponds to ideal fermions

and ideal fermions have the spherical breathing mode �
=2�ho in any dimension �see, for example, �52��. For a finite
value of Nr0

2 /az
2 the frequency is increased due to repulsive

interactions. Similar effects have been predicted in Ref. �54�
using Bethe-ansatz theory for systems of two-component fer-
mions with �-pseudopotential attractive �55,56� and repul-
sive �57� interactions between atoms of different spin. While
a homogeneous system of bosons collapses if the interaction
is attractive, this is not the case for fermions, where the Pauli
principle stabilizes the system. Adding weak attraction be-
tween atoms leads to softening of the breathing mode �z
�2�z �54�.

The Bethe-ansatz method permits us to find the ground-
state energy and, thus, study collective oscillations within the
LDA in a mixture of one-dimensional bosons and fermions
with �-pseudopotential repulsive interactions and arbitrary
boson-fermion density ratio �58�. Such a mixture was found
to be always stable against demixing �58�. The ground-state
wave function of a mixture of one-dimensional bosons and
fermions can be obtained with the same reasoning as for �6�
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and �8�, thus leading to the same frequency of oscillations as
in Fig. 1. This kind of mapping turns out to be quite general.
Indeed, it works for one-dimensional systems where the one-
dimensional interaction potential diverges when two particles
meet and shows that the energy and local quantities �pair-
correlation function, three-particle correlation function, etc.�
are the same for bosons and fermions at zero temperature.

VII. ARE DIPOLAR INTERACTIONS LONG
RANGE?

It is common to oppose long-range dipolar interactions to
short-range interactions described by the s-wave scattering
length. But are dipolar interactions really long range? Or to
what extent are they long range? There are at least two ways
to approach this question.

The first way is to classify the potential Vint�r� as long or
short range depending if the chemical potential is an exten-
sive or intensive quantity. If the homogeneous properties of a
large system can be defined by density n only �in appropriate
units�, �=��n�, the potential is short range. If instead the
number of particles N has to be explicitly specified, �
=��N ,n�, due to strong �diverging� dependence on N, the
potential is of long range. This can be immediately checked
by testing the convergence of the potential energy at large
distances:

I = �
Lmin

	

Vint�r�rD−1dr , �9�

where Lmin is some cutoff length and D is the dimensionality.
Following this definition, the potential is short range if it
decays at large distances faster than r−D in D dimensions
�see, for example, �59��. From this point of view, the 1 / �r�3
potential is long range in 3D, while it is short range in 1D
and 2D.

Alternatively, short-range potentials can be defined as po-
tentials that can be described by an asymptotic phase shift.
This means that a short-range potential of range R can be
approximated at large distances r�R by a free wave with an
appropriate phase shift, or, which is the same, the s-wave
scattering length a. At sufficiently small densities naD→0,
the only relevant length is a and properties �for example,
energy� can be expressed in terms of the gas parameter naD.
We use the definition of the s-wave scattering length as the
position of the node of analytic continuation of the scattering
solution from distances larger than the range of the potential
in the zero-energy scattering limit. This definition works well
in three-dimensional systems, but also it is applicable to low-
dimensional systems.

It is possible to solve the two-body scattering problem for
a 1 / �r�3 potential at zero energy and find the scattering solu-
tion f�r�. One needs to look for a regular solution �f�0�=0�
of the following differential equation:

−
�2f�r�
�r2 −

D − 1

r

� f�r�
�r

+
f�r�
r3 = 0, �10�

where length is expressed in units of r0, Eq. �2�, and energy
in units of �2 /Mr0

2. Solutions of �10� can be written explic-

itly as f3D�r��r1/2K1�2r−1/2�, f2D�r��K0�2r−1/2�, and f1D�r�
�r−1/2K1�2r−1/2�, where Kn�r� denotes the modified Bessel
function of the second kind. In order to find the s-wave scat-
tering length one has to expand f�r� far from the range of the
potential �r→	� and compare it to the similar expansion of
a plane wave in an appropriate number of dimensions:
f free

3D �r��1−a3D /r, f free
2D �r�� ln�r /a2D�, f free

1D �r��r−a1D. Ex-
panding the solutions of Eq. �10�, we find f3D�r��1+ �2�
−1� /r− �ln r� /r+O�r−2�, f2D�r��2�−ln r+O�r−1�, and
f1D�r��r+ �2�−1�−ln r+O�r−1�, where �=0.577. . . is Eul-
er’s constant. There are logarithmic terms appearing in all
dimensions. In a two-dimensional system such a term is
compatible with the asymptotic behavior of a free-wave so-
lution and it is possible to define a finite scattering length
a2D=e2�r0=3.172. . .r0. Indeed, numerical evaluation of the
equation of state in a two-dimensional dipolar system �60� is
in agreement with the equation of state for hard disks with
the same values of a2D �61�. Also, Bogoliubov theory at
small na2D

2 provides correct predictions for the correlation
functions and condensate fraction. Thus, in two dimensions
the dipolar 1 / �r�3 potential can be treated as a short-range
one. Due to the large spatial extent of the dipolar interaction
potential, the universal description �in terms of the gas pa-
rameter na2D

2 � starts being precise at larger values of the gas
parameter for a dipolar potential than for the “usual” short-
range potentials �for example, soft disks �61��

Instead, in a one-dimensional system the free-wave solu-
tion does not contain a logarithmic term and this makes the
dipolar solution incompatible with it. For example, for short-
range potentials the s-wave scattering length can be calcu-
lated through the limit limr→	�r− f�r� / f��r��=a1D. As it is
easy to see, the corresponding expression diverges in the
case of a dipolar interaction potential. This means that it is
not possible to describe the properties of a one-dimensional
dipolar system by a short-range potential. The same conclu-
sion can be reached by comparing the ground-state energy of
a repulsive dipolar system �29,50� to the ground-state energy
of the repulsive short-range � pseudpotential �32� in the di-
lute regime na1D
1. The leading term in the energy E is that
of the Tonks-Girardeau gas ETG /N=�2�2n1D

2 /6M �28�. The
first correction should include �if the short-range description
is possible� terms na1D. Instead, it is clear that this is not the
case, as for a Lieb-Liniger gas a1D�0 and the energy is
lowered E�ETG. By simply neglecting the logarithmic term
for dipoles one would find a negative scattering length a1D
= �1−2��r0=−0.154. . ., and the energy would be lower. But
we definitely know that this is not the case; instead the en-
ergy is higher, E�ETG. Thus we find problems in trying to
describe the dipolar interaction potential by a short-range
model. The same will happen in a three-dimensional system.

VIII. CONCLUSIONS

In conclusion, we have studied possible signatures of a
super-Tonks-Girardeau gas in a system of trapped quasi-one-
dimensional dipoles at zero temperature. This regime can be
entered by exploiting a confinement-induced resonance of
the effective 1D scattering amplitude. Using the previously
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calculated equation of state we provide predictions for the
frequency of the lowest compressional mode. Properties in
the high-density regime are calculated within the harmonic
approximation. We provide an explicit mapping of the
ground-state wave function of a one-dimensional dipolar sys-
tem of bosons; fermions, and a Bose-Fermi mixture and con-
clude that the local properties and energy are the same at
zero temperature. The question as to what extent the dipolar
potential can be treated as long or short range is addressed.
We also discussed different possible definitions of superflu-
idity in one-dimensional systems.

Recently, a related article �62� studied frequencies of col-
lective oscillations. The findings there for the lowest breath-
ing model are in agreement with ours. In addition frequen-
cies of higher modes are calculated.

ACKNOWLEDGMENTS

The work was partially supported by MEC �Spain� Grant
No. FIS2005-04181, Generalitat de Catalunya Grant No.
2005SGR-00779, and RFBR.

APPENDIX: EQUATION OF STATE IN THE
HIGH-DENSITY REGIME

In the high-density regime, nr0�1, potential energy
dominates and the properties of the system can be compared
to those of a classical crystal with the lattice spacing a de-
fined by the density a=n−1. Several terms of the expansion of
the equation of state can be found using the harmonic ap-
proximation �for a 2D dipolar crystal this has been done in
Ref. �63��. The leading term is given by the potential energy
of a classical lattice,

E�0�

N
=

�2r0

M
�
j=1

	
1

�ja�3 = ��3�
�2

Mr0
2 �nr0�3. �A1�

Particles move close to lattice sites uj =zj − ja
a. The poten-
tial energy can be expanded up to quadratic terms in uj and
the classical equation of motion can be solved by looking for
the wave solution uj =r0ei�kja−�t�. For the dipolar potential
this leads to the following expression for the frequency �:

�2�k� =
12�2r0

M2a5 ��
j=1

	
2

j5 − �
j=1

	
ej�ika�

j5 − �
j=1

	
ej�−ika�

j5 
=

12�2r0

M2a5 �2��5� − Li5�eika� − Li5�e−ika�� , �A2�

where ��z� is the Riemann zeta function and Lin�z� is a poly-
logarithm function. The dispersion relation �A2� is shown in
Fig. 2.

The low-momentum behavior �k�→0 can obtained by ex-
panding exponents in the sums in �A2� and noticing that
zero- and first-order terms get canceled,

��k� ��12�2r0

M2a5 �
j=1

	
k2a2

j3 = 2�3��3�
�

Mr0
�nr0�3/2�k� .

�A3�

The small-�k� behavior corresponds to phonons. The same
result can be recovered by calculating the compressibility in
the system, mc2=n�� /�n, using the leading term in the en-
ergy �A1� to calculate the chemical potential �=�E�0� /�N.
Then the phononic spectrum calculated as ��k�=c�k� exactly
coincides with expression �A3�. In Fig. 2 the phonon excita-
tion spectrum is plotted against the solution �A2�. The latter
solution has a characteristic rounding close to the boundary
of the Brillouin zone. This feature, of course, is missed in the
phononic description which becomes inapplicable for such
large values of �k�.

The contribution E�1� to the lattice energy �A1� is obtained
by summation of the energy of the zero-point motion of at-
oms. Thus, one has to integrate the dispersion �A2� over the
first Brillouin zone �BZ�:

E�1�

N
= �

BZ

���k�
2

dk

VBZ
= C

�2

Mr0
2 �nr0�5/2. �A4�

The contribution obtained is positive, as it adds positive ki-
netic energy and describes displacement of atoms from the
minimum of potential energy. The correction �A4� scales
with density as �nr0�5/2, compared to the �nr0�3 dependence
of the dominant term. The coefficient of proportionality C
=2.26. . . was obtained by numerical integration of �A4� with
the dispersion relation �A2�.

FIG. 2. Dispersion curve ��k� in the first Brillouin zone −� /a
�k�� /a in the high-density limit nr0�1. Solid line, harmonic
approximation, Eq. �A2�; dashed line, phonons, Eq. �A3�.
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