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The formation of near-threshold structures in the angle-resolved photoelectron spectrum, the cusp in the
transverse electron momentum distribution, and the forward-backward asymmetry is influenced by the residual
Coulomb potential of the remaining atomic core acting on the electron detached by strong short-laser pulses.
We show that an improvement beyond the strong-field approximation—the Coulomb-Volkov distorted wave
approximation—is capable to reproduce these features found in the exact solution of the time-dependent
Schrödinger equation in the multiphoton regime and the transition from the multiphoton to the tunneling
regime.

DOI: 10.1103/PhysRevA.77.013401 PACS number�s�: 32.80.Rm, 32.80.Fb, 03.65.Sq

I. INTRODUCTION

Recent advances in laser technology have resulted in the
availability of intense, phase-stabilized and phase-controlled
few-cycle infrared laser pulses �1�. The interaction of such
short and strong pulses with matter is a topic which has
attracted much interest recently. Many experimental �see, for
example, �2,3�� and theoretical studies have been performed
along these lines. Calculations employ different methods: ab
initio solutions of the time-dependent Schrödinger equation
�TDSE� �4,5�, quantum methods of different degrees of ap-
proximation, such as the first Born and the strong-field ap-
proximations �SFA� �6–12�, and quasiclassical trajectory
Monte Carlo methods, where Hamilton’s equations of mo-
tion are solved by means of a classical trajectory Monte
Carlo approach that includes tunneling �CTMC-T� �13,14�.

Stringent tests of the theory became possible with the ad-
vent of the COLTRIMS technique, which allows the imaging
of the vectorial momentum distribution of the reaction frag-
ments. A recently measured �15,16� complex emission pat-
tern near threshold in the two-dimensional momentum
plane—parallel and perpendicular to the laser polarization
axis—for rare-gas atoms revealed diffraction oscillations as a
result of the interference of classical paths of electrons re-
leased at different times but reaching the same Kepler as-
ymptote in the Coulomb field �17�. For the case of single
photodetachment from negative ions, i.e., H−, near-threshold
angular distributions were intuitively explained with a
double-slit interference model �18–21�.

Another test of ionization theories is provided by the mo-
mentum distribution transverse to the polarization axis since
the �nonrelativistic� electric field of the laser does not trans-
fer momentum in this direction to leading order. First experi-
ments �22� were in accord with a smooth Gaussian transverse
distribution predicted by the tunneling theory of Delone and
Krainov �DK�, which treats Coulomb interactions as a weak
perturbation �23�. Methods involving the SFA also exhibit a
Gaussian-like transverse momentum distribution �14,23,24�.
However, recent high-resolution experiments for single ion-
ization of rare-gas atoms �25� showed spectra exhibiting a

sharp cusplike structure around zero transverse momentum,
differing from the DK or SFA predictions. Quasiclassical
CTMC-T simulations reproduce the cusp shape when the
Coulomb interaction of the active electron with its parent ion
is taken into account �14�. In contrast, when the Coulomb
interaction is neglected after tunneling, a Gaussian distribu-
tion is recovered in accordance with the DK theory.

A few years ago Paulus et al. �26� found a right-left �also
called forward-backward� asymmetry of photoelectron spec-
tra produced by short laser pulses. Several theoretical works
�27–29� have addressed this topic. By means of a classical
model Chelkowski and Bandrauk �28� showed that the Cou-
lomb attraction by the remaining core is responsible for such
an asymmetry for pulses with a cosinelike envelope. Chen et
al. �24� studied the importance of the long-range Coulomb
interaction and showed that calculations based on the SFA
fail to properly reproduce both the correct shape pattern near
the threshold in the doubly-differential momentum distribu-
tion and the cusp at origin in the transversal momentum dis-
tribution. Inclusion of Coulomb effects into the final state
was found to be important for total ionization rates and pho-
toelectron spectra �30�.

In the present work we study the performance of the
Coulomb-Volkov distorted-wave approximation �CVA� to
describe the complex near-threshold energy region of photo-
emission spectra. The CVA is a time-dependent distorted-
wave theory �9,10� that allows to include into the final state
the effect of the remaining core at the same level of approxi-
mation as the laser field. In this way, we can directly probe
the effect of the core potential on the dynamics of the de-
tached electron. We employ the CVA to determine the near-
threshold emission pattern, the transversal cusp, and the
forward-backward asymmetry for a few-cycle linearly polar-
ized laser field. Results are compared with values derived
from the SFA and with full numerical results of the TDSE
�17,31�, which can be considered as the exact solution. We
show that the inclusion of the Coulomb potential within the
CVA leads to the appearance of near threshold bouquet-shape
patterns in doubly-differential momentum distributions and
the formation of the cusp in transverse momentum distribu-
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tions. Much of the forward-backward asymmetry of the mea-
sured distributions can be accounted for. Furthermore, by
selectively switching-off certain contributions of the distor-
tion produced by the residual ion, their relative importance
can be assessed. For example, the reduction of the Coulomb
effect to a multiplicative preexponential factor �32�, while
improving the absolute emission rate, does not improve the
two-dimensional distribution pattern.

In Sec. II we summarize the different levels of the time-
dependent distorted-wave theory: �i� the well-known Volkov
�V�, Keldysh-Faisal-Reiss or strong-field approximations
�33�, and �ii� the CVA, which includes the influence of the
atomic core on the ejected electron �9,10,34�. We also briefly
describe the ab initio method to solve the time-dependent
Schrödinger equation and the projection onto outgoing Cou-
lomb states with well-defined asymptotic momenta. In Sec.
III we discuss results for the formation of the low-energy
structures in the doubly-differential electron momentum dis-
tributions, the appearance of the cusp in the transverse
momentum distribution, and the carrier-envelope phase de-
pendence of the forward-backward asymmetry of the longi-
tudinal distribution. Atomic units �a.u.� are used throughout.

II. THEORY

We consider the interaction of a target atom with an ul-
trashort laser pulse, which is described through a time-
dependent electric field along the ẑ direction. The field F�t�
reads

F�t� = f�t�cos��t + �CE�ẑ , �1�

where � is the laser frequency, �CE the relative carrier-
envelope phase, and f�t� is the envelope function of the
pulse,

f�t� = �F0 cos2��t

�
� for − �/2 � t � �/2,

0 otherwise,
� �2�

with total duration �. As a consequence of the interaction,
one electron initially bound to the target nucleus in the state
	�i
 is emitted with momentum k and energy � f =k2 /2 upon
conclusion of the pulse into the final unperturbed state 	� f
,
where k= 	k	. The evolution of the electronic state 	��t�
 is
governed by the time-dependent Schrödinger equation for
the Hamiltonian H�t�=H0+V�t�, where H0 is the atomic
Hamiltonian and V�t�=r ·F�t� is the interaction with the laser
field in the length gauge.

We confine our study to a hydrogen atom initially in its
ground state. Thus, the process possesses cylindrical symme-
try around the polarization axis and the azimuthal angle is
cyclic. Electron momentum distributions can be calculated
from the transition matrix as

dP

dk
= 	Tif	2, �3�

where Tif is the T-matrix element corresponding to the tran-
sition �i→� f. In this work, Tif will be computed using three

different methods, namely �i� the SFA; �ii� the CVA; and �iii�
the numerical solution of the TDSE, considered to be the
exact solution and used as a benchmark for assessing the
reliability of the previous approximations. We also discuss
the eikonal-Volkov approximation �EVA�, which is a variant
of the CVA.

A. Time-dependent distorted-wave methods

Within the time-dependent distorted wave theory �35�, the
transition amplitude in the post form is expressed as

Tif = − i�
−�

+�

dt�	 f
−�t�	V�t�	�i�t�
 , �4�

where 	 f
−�t� is the final distorted-wave function. In the

present case

i
�

�t
	�i�t�
 = H0	�i�t�
 = � p2

2
+ VC�	�i
 = �i	�i
 , �5�

where VC is the atomic core potential.
Different distorted-wave approximations result from dif-

ferent choices of the distortion potential to be included in
		 f

−
:
�a� Choosing identical Hamiltonians for the entrance-

channel Hamiltonian and exit-channel distorted Hamiltonian,
		 f

−
= 	�k
−
, which corresponds to

Hf		 f
−
 = H0	�k

−
 = � f	�k
−
 . �6�

In this case, Eq. �4� reduces the first Born approximation,
which is clearly insufficient in the strong-field regime. In Eq.
�6�, �k

− is the unperturbed final state given by

�k
−�r� = e−i�ft

exp�ik · r�
�2��3/2 DC�ZT,k,t� , �7�

where DC�ZT ,k , t�=NT
−�k� 1F1�−iZT /k ,1 ,−ik r− ik ·r�. The

Coulomb normalization factor NT
−�k�=exp��ZT /2k�
�1

+ iZT /k� coincides with the value of the Coulomb wave func-
tion at the origin, 1F1 denotes the confluent hypergeometric
function, ZT is the electric charge of the parent ion.

�b� Choosing the Hamiltonian of a free electron in the
time-dependent electric field as the exit-channel distorted
Hamiltonian,

i
�

�t
		 f

−�t�
 = Hf		 f
−�t�
 = � p2

2
+ V�t��		 f

−�t�
 . �8�

The solutions are the Volkov states �36�

	k
�V�−�r,t� =

exp�ik · r�
�2��3/2 e−i�texp�iD−�k,r,t�� , �9�

with

D−�k,r,t� = A−�t� · r − k · �
+�

t

dt�A−�t�� −
1

2
�

+�

t

dt��A−�t���2

�10�

the so-called Volkov phase, and A−�t��=−+�
t dt� F�t�� the

vector potential of the field multiplied by the speed of light.
Inserting Eq. �9� into �4� leads to the SFA.
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�c� Combining the final-channel wave functions of Eqs.
�6� and �8� in a product form results in the Coulomb-Volkov
final state �34�

	k
�CV�−�r,t� = �k

− exp�iD−�k,r,t�� = 	k
�V�−�r,t�DC�ZT,k,t� .

�11�

Inserting the distorted wave function �Eq. �11�� into Eq. �4�
we arrive at the CVA, which can be evaluated in a closed
form �9,10�. Obviously, the two former approximations are
limiting cases of Eq. �11�. The Born approximation results
from Eq. �11� in the limit D−→0, while the SFA corresponds
to the limit ZT→0. The CVA, for laser-atom interactions first
proposed by Jain and Tzoam �37�, is a member of the class
of approximations originally proposed by Cheshire �38� and
Vainstein et al. �39� for ionizing charged particle collisions.
There, the simultaneous Coulomb interactions of the released
electron with the residual ionic core and the charged projec-
tile are taken into account in terms of a product of two two-
body Coulomb functions, which leads to a distorted wave
function called the continuum-distorted wave �CDW�. The
CDW allows to include the effect of the two Coulomb fields
non-perturbatively yet approximately.

�d� A further variant of a distorted wave approximation
can be derived by invoking the asymptotic expansion of the
Coulomb wave function for large arguments,

DC�ZT,k,t� →
r→�

exp�iZT/k ln�k · r + kr�� . �12�

This asymptotic approximation to the full Coulomb function
corresponds to the inclusion of the Coulomb phase accumu-
lated along straight-line trajectories, while neglecting deflec-
tions in the Coulomb field. This observation is of signifi-
cance when applied to the near-threshold behavior of the
strong-field ionization spectrum. Inserting Eq. �12� into Eqs.
�11� and �4� leads to the eikonal-Volkov distorted wave ap-
proximation �EVA�.

For the electric field of Eq. �1� with a carrier-envelope
phase �CE=0, the vector potential fulfills the relation:
A−�t�=−A−�−t�. Hence, the Volkov phase �Eq. �10�� fulfills
D−�k ,r , t�=−D−�−k ,r ,�− t�. Therefore, the final Volkov
state behaves as

	k
�V�−�r,t� = exp�− i� f���	−k

�V�−�r,� − t���. �13�

By inserting Eq. �13� into Eq. �4� and assuming the initial
state to be of even parity, �i�r��=�i�−r��, it is easy to derive
the following property for the transition amplitude in the
SFA: Tif

SFA�k�=exp�i�� f −�i����Tif
SFA�−k���. Consequently, the

final momentum distribution is an even function in the lon-
gitudinal momentum,

dP�kz�
dk

=
dP�− kz�

dk
. �14�

This symmetry, which is an artifact of the SFA, is broken by
the Coulomb distortion in the exit channel. The degree of
forward-backward asymmetry is therefore a direct measure
of the influence of the Coulomb field on the receding elec-
tron.

B. TDSE calculations

The time-dependent Schrödinger equation can be solved
by means of the generalized pseudospectral method �5�. This
method combines a discretization of the radial coordinate
optimized for the Coulomb singularity with quadrature meth-
ods to achieve stable long-time evolution using a split-
operator method. It allows for an accurate description of both
the unbound as well as the bound parts of the wave function
	��t�
. Emission of an electron with wave vector k is deter-
mined by the projection of the evolved wave packet onto
Coulomb scattering states �4,40,41�. Therefore, after the la-
ser pulse is turned off, the wave packet is projected onto
outgoing Coulomb wave functions, which gives the transi-
tion amplitude

Ti,k =
1

�4�k
�

l

ei�l�k��2l + 1Pl�cos ��k,l
	����
 , �15�

where �l�k� is the momentum-dependent Coulomb phase
shift,  is the angle between k and the polarization direction
of the laser field �taken to be along ẑ�, Pl is the Legendre
polynomial of degree l, and 	k , l
 is the eigenstate of the free
atomic Hamiltonian with positive eigenenergy �=k2 /2 and
orbital quantum number l. The Coulomb projection is needed
since k is not a constant of motion of the free evolution
�once the external field is turned off� unlike the photoelec-
tron energy spectrum, as the energy is a constant of motion
of the free evolution.

III. RESULTS AND DISCUSSION

A. Structures in the two-dimensional electron
momentum distribution

A detailed analysis of the electron yield for atomic ion-
ization produced by an external laser field can be performed
in terms of the doubly-differential momentum distribution.
Time-dependent distorted-wave theories of Sec. II A provide
us with an excellent tool to analyze the relative importance
of the two competing fields, the optical and ionic Coulomb
fields on the wave packet of the released electron.

We start with a laser pulse with a peak field F0
=0.05 a.u., frequency �=0.25 a.u., and total duration �
=151 a.u., corresponding to six complete optical cycles. The
resulting Keldysh parameter �=5 indicates the dominance of
the multiphoton process ��= �� /F0��2Ip, where Ip is the ion-
ization potential of the atom �33��; at least two photons are
needed to reach the continuum. Except in Sec. III C, we con-
sider always cosinelike pulses �zero carrier-envelope phase,
i.e., �CE=0�. In Fig. 1, the doubly-differential momentum
distribution, d2P /dk�dkz, as a function of the final longitudi-
nal �kz� and transverse �k�=�kx

2+ky
2� components of the elec-

tron momentum is shown. Both approximations reproduce
�Figs. 1�a� and 1�b�� the overall above threshold ionization
�ATI� ring pattern of the exact ab initio calculation �Fig.
1�c��. However, the near-threshold bouquet structure, which
results from the dominance of a single partial wave �17� �in
the present case l=2, �	Y2

0��	2�, is only reproduced by the
CVA and not by SFA. Such failure of the SFA has also been
observed in �24�.
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We now inquire into the relative importance of different
contributions due to the Coulomb field, that is, the Coulomb
normalization factor NT

−�k�, which has been employed in the
past as a correction factor to the SFA �33�, and the Coulomb
wave function factor 1F1 �see Eq. �11��. For this purpose we
compare results obtained by including in DC either only the
Coulomb factor NT

−�k� �Fig. 2�a�� or only the hypergeometric
function 1F1 �Fig. 2�b��. The distribution of Fig. 2�a� re-
sembles very much the SFA distribution �Fig. 1�a��, which
shows that the inclusion of the Coulomb factor NT

−�k� in the
Coulomb-Volkov final function of Eq. �11� increases the total
ionization probability �in the present case by a factor 2� but
does not change the emission pattern near the threshold pre-
dicted by the SFA. This is to be expected since the Coulomb

factor depends only on the absolute value of the momentum
of the electron and not on the emission angle relative to the
polarization direction. On the other hand, the argument of the
hypergeometric function 1F1, ikr�1−cos �, depends on the
emission angle. Therefore, incorporating the hypergeometric
function 1F1 of the Coulomb wave without the normalization
factor �Fig. 2�b�� yields an emission spectrum more closely
resembling the exact pattern 	Y2

0��	2. In view of the subtle
effects the different pieces of the Coulomb wave functions
have on the two-dimensional �2D� momentum distribution, it
is instructive to inquire into the corresponding result for the
EVA �Eq. �12��. In the eikonal limit of the Coulomb function
both the normalization factor and the 1F1 have disappeared
and are replaced by a -dependent rapidly oscillating phase
factor �11�. The resulting 2D emission pattern �Fig. 2�c��
resembles that of the TDSE �Fig. 1�c��. However, even
though the eikonal wave function has the same asymptotic
behavior as the full Coulomb function of Eq. �7� at large
distances, the eikonal approximation underestimates the ab-
solute emission probability of slow electrons by several or-
ders of magnitude. The success of the CVA is therefore due
to the correct behavior of the wave function at both small
and large distances r from the nucleus.

For smaller Keldysh parameters, ionization proceeds by
barrier tunneling or even above-barrier transitions rather than
by multiphoton absorptions �42�. In Fig. 3 we present results
for an eight-cycle ��=1005 a.u.� laser field with a peak am-
plitude F0=0.0377 a.u. and a laser frequency �=0.05 a.u.,
which corresponds to a Keldysh parameter �=1.33 in the
transition from multiphoton to the tunneling regime. The in-
tensity of the ATI rings visible in both the SFA and the CVA
approximations �Figs. 3�a� and 3�b�� decrease much more
rapidly with increasing energy than the exact result. While
the SFA and CVA predict a decrease by approximately two
orders of magnitudes between the first and fifth ATI rings
�Figs. 3�a� and 3�b��, the exact distribution exhibits such a
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decrease only between the first and the ninth ATI rings �Fig.
3�c��. This discrepancy is due to the neglect of rescattering
and resonance processes in both distorted-wave approxima-
tions �43�. Another remarkable feature is the differences in
fringes or nodal line patterns. The SFA predicts a vertical
fringe pattern for the doubly-differential momentum distribu-
tion �31�. In particular, the first ring consists of four symmet-
ric stripes with a minimum at kz=0. In turn, the CVA shows
very clearly the bouquet-shape structure inside the first ring,
resembling exact calculations of Fig. 3�c�. As the Keldysh
parameter is further decreased ��=0.94 in Fig. 4�, the same
qualitative trends are visible, however, the quantitative
agreement between the CVA and the exact result deteriorates.

A closer inspection of the normalized angular distribution
inside the first ATI ring �Fig. 5� at a fixed energy reveals
remarkable differences as a function of the Keldysh param-
eter. In Fig. 5�a�, for the same laser parameters as in Fig. 1,
�=5, the CVA closely reproduces the angular distribution of
the exact result while the SFA yields a different almost struc-
tureless distribution. In Fig. 5�b� ��=1.33, same parameters
as Fig. 3�, the SFA predicts three minima while the CVA
predicts a total number of five minima in agreement with the
exact results. With decreasing �, the agreement between the
CVA and the exact result deteriorates. In Fig. 5�c�, where the
peak amplitude is increased up to F0=0.0533 a.u., and con-
sequently the Keldysh parameter lowers up to �=0.94, the
number of minima predicted by the CVA is six in agreement
with the exact angular distribution. However, the positions of
the minima and maxima do not coincide. Possible reasons
include the neglect of rescattering and depletion of the
ground state as well as excited intermediate states.

It is instructive to analyze the angular distributions of Fig.
5 in terms of path interference �17�. Within the SFA, the
Coulomb potential of the remaining core after electron emis-
sion is completely neglected. Consequently, the path interfer-
ence built into this description is that of photodetachment of
short-range potentials, i.e., negative ions �e.g., H−�, where
electrons recede on straight lines. For that case, it is well
known that the interference of electron emission reduces to
interference from two laser-induced point sources, resem-

bling the two-slit Young experiment �18–21�. In Fig. 5�a� the
doubly-differential momentum distribution of the SFA shows
a maximum at cos =0 �perpendicular direction� as the two-
slit interference picture would predict. The angular photo-
emission of electrons from negative ions near threshold fea-
tures a maximum �minimum� in the direction perpendicular
to the polarization axis, when the minimum number of pho-
tons required to reach the continuum �n� plus the angular
momentum of the ground state, n+ l, is even �odd� �18–21�.
For the case of Fig. 1, since a total of n=2 photons are
needed to reach the continuum and the angular momentum of
the initial state l=0, then n+ l=2 is even, consequently, a
central spot in the first ring of Fig. 1�a� is observed. An
analogous behavior is also observed in Figs. 3�a� and 4�a�,
where the minimum numbers of photons to reach the con-
tinuum are 13 and 16, respectively �18–21,44�. By contrast,
in the CVA the electron propagates in the combined Cou-
lomb and laser fields giving rise to path interferences be-
tween different asymptotic Kepler orbits �17�.

B. Formation of the cusp in the transverse electron
momentum spectra

Classical trajectory simulations show that the attraction of
the released electron by the remaining core, also called Cou-
lomb focusing, is responsible for the formation of the cusp at
origin in the transverse momentum distribution �14�. In Fig.
6 three examples of the normalized transverse momentum
distribution are compared with exact calculations for the la-
ser parameters of Fig. 5. In all the cases, the SFA fails to
reproduce the cusp whereas the CVA does predict the cusp at
k�=0 ��=x or y�, resembling the experiments �25�. Despite
the qualitative success of the CVA results, the quantitative
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FIG. 5. �Color online� Normalized doubly-differential momen-
tum distribution as a function of the cosine of the ejection angle of
the electron for a fixed energy � and different laser parameters: �a�
F0=0.05 a.u., �=0.25 a.u., and �=151 a.u., �b� F0=0.0377 a.u.,
�=0.05 a.u., and �=1005 a.u., and �c� F0=0.053 a.u., �
=0.05 a.u., and �=1005 a.u.. The corresponding Keldysh param-
eters are indicated in the figures. �Blue� Dashed line, SFA; �red�
solid line, CVA; �black� thick solid line, exact ab initio results.
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agreement of the exact transverse distribution is less than
perfect. Obviously, some of the differences in the 2D distri-
bution �Figs. 3–5� leave their marks on the transverse distri-
bution after integrating over the longitudinal distribution.

C. Asymmetry of the longitudinal momentum spectra:
Carrier-envelope phase dependence

For a cosinelike pulse ��CE=0�, the SFA yields symmetric
electron momentum distributions with respect to the plane
kz=0 as given by Eq. �14� �see e.g., Fig. 4�a��. This is at
variance with the exact calculation in the transition regime
��1 �Fig. 4�c��, where this symmetry is clearly broken. The
CVA also displays a nonsymmetric forward-backward distri-
bution. Conversely, in the multiphoton regime for �=5 �Fig.
1�, the exact result shows a complete symmetric distribution,
which is reproduced by the CVA.

The forward-backward asymmetry can be quantified by
the asymmetry coefficient defined as �28,45�

A��CE� =
W�CE

�0°� − W�CE
�180°�

W�CE
�0°� + W�CE

�180°�
, �16�

where W�CE
��=dP /d cos =2�0

�k2� dP�k�

dk
�dk is the ejection

probability in the k direction and  is the angle subtended by

k and the direction of polarization ẑ. For a symmetric distri-
bution the forward �=0°� and backward �=180°� probabil-
ity densities must coincide, i.e., W�0°�=W�180°�; thus, the
asymmetry coefficient is zero. For an ultrashort few-cycle
pulse, the asymmetry parameter depends on the carrier-
envelope phase �CE. The �CE dependence of A can be used,
in turn, to determine �CE provided the functional dependence
of Eq. �16� on laser parameters is well understood.

In Fig. 7 the asymmetry coefficient is presented as a func-
tion of �CE for a four-cycle pulse of frequency �=0.05 and
two different field amplitudes; �a� F0=0.0377 and �b� F0
=0.0533. In line with the above symmetry analysis, the SFA
predicts ASFA��CE�=A0

SFA sin��CE�, while the exact as well
as the CVA results give a shift, Aj��CE�=A0

j sin��CE+� j�,
where � j �0 for both j=CVA and TDSE. The value of A
within the CVA at �CE=0 is ACVA��CE=0�=0.39 and 0.24
for Figs. 7�a� and 7�b� while the TDSE results are
ATDSE��CE=0�=0.42 and 0.35, respectively. Overall, the
CVA is in reasonable agreement with the TDSE results al-
though quantitative deviations exist, indicating that the final-
state Coulomb distortion accounts for a considerable portion
of the asymmetry. Other sources that are neglected in the
CVA should be considered as well. They include the deple-
tion of the ground state and the contribution of excited bound
states in the ionization process.

IV. CONCLUSIONS

In conclusion, we have shown that the Coulomb-Volkov
approximation for photoemission by ultrashort laser pulses is
capable to qualitatively, and in part even quantitatively, re-
produce the two-dimensional electron momentum distribu-
tion near threshold. By contrast, we find the strong-field ap-
proximation fails to predict the bouquet-type radial pattern,
in agreement to previous results by Chen et al. �24�. This
failure is due to the neglect of the final-state Coulomb inter-
action. Conversely, photodetachment of negative ions with
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short-ranged final state interaction should be well described
by the SFA. The CVA is shown to provide a considerably
improved description in comparison with SFA results in the
multiphoton ���1� and the transition from multiphoton to
tunneling ���1� regimes. We have explicitly demonstrated
this improvement for �i� the near-threshold doubly-
differential momentum distributions, �ii� the formation of the
cusp in the transverse momentum distribution, and �iii� the
forward-backward asymmetry in the longitudinal distribution
when comparing with TDSE calculations and experiments.

Future directions for applications and extensions are mul-
tielectron processes. It would be highly desirable to extend
this approximation to include the rescattering process, either

on a perturbative level �46� or within a distorted-wave for-
mulation.
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