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We present a closed-form expression for the infinity of high-order partial waves and symmetry classes
required to converge differential cross sections for vibrationally elastic or inelastic electron scattering from a
linear molecule. This expression combines correction terms based on the first Born approximation with terms
that contain T-matrix elements from accurate, non-Born scattering calculations such as those of body-frame
fixed-nuclear-orientation theory. The equations for analytic Born completion reduce the convergence require-
ments for a differential cross section from several potentially infinite sums over angular-momentum quantum
numbers to a single parameter that determines the partial-wave order at which the switch to the Born approxi-
mation occurs. We demonstrate the efficacy and accuracy of these equations for low-energy collisions of
electrons with H2 and N2.
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I. INTRODUCTION

Calculation of a differential cross section �DCS� usually
begins with calculation of theoretical scattering quantities—
phase shifts for scattering from a central potential, scattering
matrices for a nonspherical interaction, and/or scattering
from a target with internal structure. Computing such quan-
tities often takes so much effort that difficulties involved in
the final step—using the computed quantities to evaluate the
cross section—may be marginalized. Yet, this final step pre-
sents its own numerical and practical difficulties, especially
for electron-molecule scattering, where internal target struc-
ture is always important, the interaction is never spherically
symmetric and, strictly speaking, there are no phase shifts.
Foremost among these difficulties are matters of conver-
gence, the concerns of this paper.

Expressions for electron-molecule DCS contain compli-
cated interference among elements of the transition �T� ma-
trix �see Eqs. �6a�–�6c� below�. For a closed-shell, linear
target, for example, one must converge seven infinite sums
�1,2�: four over values of the quantum number l for the scat-
tering electron’s orbital angular momentum, two over the

quantum number � for the projection of l̂ along the axis of
spatial quantization, and one in the Legendre expansion of
the DCS. Because most molecules are highly aspherical, and
because the slowly decaying electron-molecule interaction
typically influences the scattering function even at very large
distances from the target, the number of terms required to
converge each of these sums may be huge. This problem is
especially acute at the low scattering energies.

This potentially serious situation is greatly ameliorated by
the applicability of the first Born approximation �FBA� for
scattering quantities of high partial-wave order �3–11�. The
accuracy of the FBA, which increases with partial-wave or-
der l, derives from terms in the radial scattering equations
that result from the electron’s angular kinetic-energy opera-

tor. These centrifugal-barrier terms effectively “exclude”
high-order components of the scattering function from the
strong-potential region near the target. These components are
therefore determined entirely by the region far from the tar-
get, where the potential is comparatively weak. For suffi-
ciently high partial-wave orders, elements of the scattering
matrix can be accurately approximated by a weak-scattering
theory such as the FBA �see Ref. �9� and citations therein�.
The accuracy of the FBA for a given partial-wave component
actually improves as the electron’s incident energy decreases
toward threshold: the smaller the energy, the lower the order
of partial wave at which the FBA attains a given degree of
accuracy.

This underlying physics justifies the idea of “Born
completion” �6,8,9,11�, which some authors call “Born clo-
sure” �6–8�. One chooses a partial-wave order lB and, for all
l� lB, calculates contributions to the DCS �4,6,9,11� �or scat-
tering amplitude �3,7,8�� in the FBA, using as the potential
the simple, closed-form asymptotic �“long-range”� multipole
expansion �see Eq. �8a� below�. In principle, this gambit al-
lows completion to infinity of all angular momentum sums
without the need to calculate scattering-matrix elements by
more demanding means such as solution of close-coupling
equations.

In both electron-atom and -molecule scattering, Born
completion is often implemented via a purely numerical pro-
cedure �see, for example, Refs. �12–17��. At each scattering
energy, one includes more and more FBA terms—that is,
terms which, for l� lB, are calculated using the FBA—until
the DCS converges to the desired precision at all angles. This
procedure, which we shall call numerical Born completion
�NBC�, requires careful, sometimes extensive convergence
studies, as truncating infinite sums over partial-wave order at
too small a value can induce artificial, unphysical oscillations
in the DCS, especially at scattering angles less than a few
tens of degrees �see, for example, Sec. III of Ref. �14��. In
Sec. III we use NBC to illustrate the usefulness and accuracy
of the alternative, analytic Born completion presented in this
paper.

The equations of analytic Born completion �ABC�, which
are derived for vibrationally inelastic �and elastic �9�� scat-
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tering in Sec. II, simplify convergence and eliminate the
need to calculate the many FBA T-matrix elements required
for numerical Born completion. Here as in other applications
of analytic Born completion, the objective is a closed-form
expression one can add to a finite sum of non-Born, low-
order contributions to complete to infinity all sums in the
DCS �18�.

The idea of using the first Born approximation to analyti-
cally complete a DCS predates the modern era of computa-
tional electron-molecule physics. In 1966, Thompson �3�,
noting the weak scattering of high-order partial waves in
low-energy collisions, used the closed-form �analytic� ex-
pression for the FBA to complete the infinite the sum over
partial-wave order in the scattering amplitude for elastic scat-
tering from Ne and Ar. Thompson’s idea was subsequently
developed �see, for example, Refs. �19� and �20�� and re-
mains in wide use in modern electron-atom calculations �see,
for example, Ref. �21��.

In 1971, Crawford and Dalgarno �4� extended this idea to
low-energy elastic scattering and rotational excitation from
CO; in contrast to Thompson, Crawford and Dalgarno ap-
plied the analytic FBA directly to the lab-frame differential
cross section, written as an infinite sum over Legendre poly-
nomials. In 1982, Norcross and Padial �6� combined this use
of the FBA with complete sums over partial-wave orders in
the lab-frame rovibrational DCS using low-order T-matrix
elements calculated in the adiabatic-nuclear-rotation approxi-
mation �Ref. �1�, and references therein�. The resulting
“multipole-extracted adiabatic-nuclei approximation” was
subsequently extended and applied by Norcross and collabo-
rators to several systems �for a review and citations, see Sec.
V.A.1 of Ref. �22��.

At about the same time, this idea was extended to elec-
tronic excitation. In 1980, Fliflet and Mckoy �5� treated elec-
tronic excitation of H2, using the FBA and expansions of the
target electronic orbitals in Cartesian Gaussian functions �see
Ref. �5�, Appendix� to develop closed-form �analytic� ap-
proximations to the high-order fixed-nuclei dynamical coef-
ficients that appear in the scattering amplitude in the angular-
momentum-transfer formulation �23�. In a 1992 application
of the complex Kohn variational method �24� to the ��
→��� excitation of ethylene, Rescigno and Schneider �Ref.
�7�, Sec. III� numerically constructed lab-frame cross sec-
tions from partial-wave T-matrix elements by applying Born
closure idea to the scattering amplitudes.

That same year, in complex-Kohn calculations of low-
energy electronically elastic scattering from NH3, Rescigno
et al. �8� used a similar hybrid treatment to rectify the noto-
rious divergence at all angles of the partial-wave expansion
of body-fixed T matrix from adiabatic-nuclei calculations.
These authors emphasized the advantages for polar targets of
applying their closure formula to the scattering amplitude.

Building on these conceptual and formal foundations,
Isaacs and Morrison �9,10� developed and implemented
the present analytic Born completion �ABC� procedure.
Their development was, however, restricted to vibrationally
elastic scattering. Subsequently, this development was ela-
borated and used by others �see, for example, Refs. �25–33��.
In 2000, Itikawa �11� derived an analytic completion tech-
nique for polar molecules �11�, as we discuss in the context
of Sec. II.

The present paper derives �Sec. II�, a generalization of the
work of Isaacs and Morrison that removes the restriction to
vibrationally elastic scattering. These equations apply not
only to diatomic targets but also to such polyatomic targets
as CO2 and acetylene provided the excitation of interest is in
a “nonpolar” mode �e.g., symmetric stretch excitations of
CO2�, and the cross sections of interest is not influenced by
coupling to “polar” modes �asymmetric stretch and bending�
�34�. To explore the utility and accuracy of this analytic pro-
cedure and to compare it to numerical Born completion, we
present in Sec. III applications to two paradigmatic homo-
nuclear diatomic systems e-H2 and e-N2. Unless otherwise
indicated, we use atomic units throughout.

II. THEORY

A. Context

The theoretical context for this work is the body-frame
�BF� formulation of electron-molecule scattering in the
fixed-nuclear-orientation �FNO� approximation �35–37�. In
BF-FNO theory, vibrational dynamics are not treated adia-
batically; this theory is therefore not beset by the sometimes
appreciable error that can appear in adiabatic-nuclear-
vibration cross sections �38,39�. Furthermore, the BF-FNO
formulation ensures proper inclusion of nonadiabatic effects,
which here involve energy transfer between the kinetic en-
ergy of the electron and the vibrational energy of the mol-
ecule. We thus calculate low-order non-Born T-matrix ele-
ments using the now-standard BF vibrational close-coupling
method �also called the “hybrid theory” �40,41��. Details
and further citations appear in reviews by one of the present
authors: for the underlying physics, see Ref. �42�; for the
formal theory, Ref. �22�; and for practical implementation,
Ref. �2�.

B. Differential cross sections for electron-molecule scattering

If the scattering energy is large compared to the mol-
ecule’s rotational constant, then the treatment of inelastic
scattering can be simplified via the aforementioned FNO ap-
proximation without significant attendant error �1,14,22�.
The scattering amplitude f�kv ,k0 ; R̂� then depends on R̂ only
parametrically. The measured differential cross section
�DCS� is obtained via an average over angles

d�

d�
�kv,k0� =

1

4�

kv

k0
� �f�kv,k0;R̂��2dR̂ , �1�

where k0 and kv are the initial and final wave vectors for the
scattering electron. We define the scattering amplitude as
�43�

f�kv,k0;R̂� � −
me

2��2 �v,kv�T̂�E + i0��v0,k0	 , �2�

using v0 and v for the vibrational quantum numbers in the

entrance and exit channels, respectively. Here, T̂�E+i0� is
the on-shell T operator �Refs. �44� and �45�, Sec. III� for total
energy
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E =
�2kv

2

2me
+ �v �3�

for a channel with the molecule in a �Born-Oppenheimer�
vibrational state of energy �v and the electron with wave
number kv. We denote quantities that signify the entrance
channel �initial vibrational quantum number v0� by the single
subscript 0, as k0 rather than kv0

.
In single-center formulations �46�, the scattering ampli-

tude is transformed from momentum space to a basis of
angular-momentum eigenstates as �see Sec. 2 of Ref. �22��

f�kv,k0;R̂� = 

l,l0



m,m0

�kv�Evlm	fvlm,v0l0m0
�kv,k0;R̂�

��E0l0m0�k0	 , �4�

where Ev��2kv
2 /2me, and the expansion coefficients of a

plane-wave-normalized free-particle plane-wave state �kv	 in
the energy-normalized basis ��Evlm	� are �Ref. �45�, Sec.
VII.B�

�Evlm�kv	 = il �2

me
�1/2

kv
−1/2Yl,m

� �k̂� . �5�

�Throughout this paper, formal sums over orbital angular
momentum quantum numbers l run from 0 to 	 and sums

over m and � run from −l to +l.� In Eq. �4� the quantum
numbers �l ,m� refer to the orbital angular momentum of the
scattering electron, where m corresponds to the space-fixed
�“lab frame”� z axis. The partial-wave scattering amplitudes

fvlm,v0l0m0
�kv ,k0 ; R̂� defined by Eq. �4� are thus inherently

lab-frame quantities and must be related to the body-frame
T-matrix elements via Euler angle rotations �2�.

These rotations, followed by a good deal of algebra, result
in an equation for the DCS of Eq. �1� as a sum over Leg-

endre polynomials of the lab-frame scattering angle 
� r̂ · R̂
�see Ref. �1�, and references therein�:

d�

d�
�kv,k0� =

�2

k0


L=0

	

BL�v0 → v�PL�cos 
� . �6a�

The BF-FNO T-matrix elements Tvl,v0l0
� appear in the expan-

sion coefficients

BL�v0 → v� � 

l,l0



l�,l0�



�,��

dL�ll0,l�l0�;�,���Tvl,v0,l0
�� Tvl�,v0,l0�

�� .

�6b�

This definition collapses the effects of the transformation to
an angular-momentum basis �Eq. �5��, followed by rotation
into the BF, into the coefficients

dL�ll0,l�l0�;�,��� � il0�−l�−l0+l��2l + 1��2l0 + 1��2l� + 1��2l0� + 1��1/2

��2L + 1� l l� L

0 0 0
�l0 l0� L

0 0 0
� l l� L

� − �� �� − �
� l0 l0� L

� − �� �� − �
� . �6c�

For Wigner 3j symbols we use the notation of Ref. �47�; for
notation and conventions of other authors and for relations
required to derive Eq. �6c�, see Chap. 8 of Varshalovich et al.
�48�. The quantum number � corresponds to the projection
of the electron’s orbital angular momentum along the inter-
nuclear axis, the z axis of the BF frame �49�. For given l and
l0, the sums over � run from −l to +l, where l�min�l , l0�.

C. The Born approximation in low-energy
electron-molecule scattering

The first Born approximation �FBA� to the exact scatter-

ing amplitude f�kv ,k0 ; R̂�, as used in the derivation of Sec.
II D, follows from the definition �2�. One first relates the
on-shell T operator to the interaction potential energy V, then
neglects scattering effects in the entrance channel by replac-
ing the plane-wave scattering state in this channel by a free
wave to obtain �Ref. �45�, Sec. IV.A�

fB�kv,k0;R̂� = − 4�2me

�2 ��v,kv�V�v0,k0	 , �7a�

=−
1

2�
� eiqv,v0

·r�v�V�v0	dr , �7b�

where qv,v0
�k0−kv is the momentum transfer vector, and

the vibrational matrix element �v�V�v0	 implies integration
over the internuclear separation R. Validity of the FBA for
low-energy electron scattering is assured by using in Eqs.
�7a� and �7b� the long-range �LR� multipole expansion of the
potential. For a linear target the first three terms in this ex-
pansion are

VLR�r,R� = −
�0�R�

2r4 −
d�R�

r2 P1�cos 
�

− �Q�R�
r3 +

�2�R�
2r4 �P2�cos 
� . �8a�

The terms in Eq. �8a� include four properties of the target: its
permanent dipole and quadrupole moments d�R� and Q�R�,
and its induced spherical and nonspherical polarizabilities
�0�R� and �2�R� �50,51�. For some highly aspherical sys-
tems, such as e-CO2, calculations of DCS require higher-
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order terms �e.g., permanent octupole �52��. In the ABC re-
sults of Sec. II D, we allow for this possibility by using the
generic multipole expansion

VLR�r,R� = 

�,

b�,�R�
r P��cos 
� . �8b�

The sum over � runs from �=0 �the spherical-polarizability
term in Eq. �8a�� to a finite upper limit chosen to include all
necessary permanent and induced moments; for homonuclear
molecules only even values of ��0 appear in this sum. The
second index  controls the dependence of each term on r
and allows for the inclusion in a particular Legendre projec-
tion in Eq. �8b� of both a permanent and an induced moment,
as is necessary for �=2 in Eq. �8a�. In this notation the
moments in Eq. �8a� are b1,2�R�=−d�R�, b2,3�R�=−Q�R�,
b0,4�R�=−�0�R� /2, and b2,4�R�=−�2�R� /2.

When this long-range potential is used in vibrational
close-coupling calculations, there result potential matrix ele-
ments in the coupled scattering equations that contain vibra-
tional matrix elements �v��b�,�R��v	 for all coefficients
b�,�R� one includes in Eq. �8b�. Explicit expressions for
these matrix elements and details regarding their calculation
appear in Ref. �2� and in Sec. III.A of Ref. �17�.

D. The equations of analytic Born completion

Following the strategy of previous work discussed in Sec.
I, we now add to and subtract from the exact scattering am-

plitude f�kv ,k0 ; R̂� its Born approximate, viz.,

f�kv,k0;R̂� = 

l,l0



m,m0

�kv�Evlm	fvlm,v0l0m0
�kv,k0;R̂�

��E0l0m0�k0	 + �fB�kv,k0;R̂�

− 

l,l0



m,m0

�kv�Evlm	fvlm,v0l0m0

B �kv,k0;R̂�

��E0l0m0�k0	� , �9a�

where fvlm,v0l0m0

B �kv ,k0 ; R̂� is a lab-frame partial-wave scatter-
ing amplitude in the Born approximation. If all sums in Eq.
�9a� could be evaluated to their maximum upper limits, this
equation would reduce to a trivial tautology: the quantity in
braces would equal zero and the expression would collapse
to the usual partial-wave expansion of Eq. �4�. The goal of
ABC is to perform the sums over l and l� only up to a finite
upper limit lB yet include all contributing partial waves in the
DCS.

Deriving the ABC equations for the vibrationally inelastic
DCS from Eq. �9a� requires a good deal of algebra, none of
which we reproduce here. �A detailed derivation is available
as a MATHEMATICA notebook from the authors.� Instead we
briefly summarize key steps.

We first rewrite Eq. �9a� as

f�kv,k0;R̂� = fB�kv,k0;R̂� + 

l,l0

lB



m,m0

�kv�Evlm	

� �fvlm,v0l0m0
�kv,k0;R̂� − fvlm,v0l0m0

B �kv,k0;R̂��

� �E0l0m0�k0	 . �9b�

�In practice we choose the incident wave vector k0 to lie

along the lab-frame z axis so that m0=0, k̂0= �0,0�, and all

spherical harmonics of k̂0 are constants.� The FBA scattering
amplitude is given in terms of the momentum transfer by Eq.
�7b�. Note that the angles �
q ,�q� associated with qv,v0

can
be related to the angles �
k ,�k� associated with kv via

cos 
q =
k0 − kv cos 
k

qv
, �10a�

�q = �k + � , �10b�

where for clarity we omit vibrational subscripts from all
angles. The FBA partial-wave scattering amplitudes in Eq.
�9b� are

fvlm,v0l0m0

B �kv,k0;R̂� = − 8��kvk0� jl�kvr�Ylm
� �r̂�Vv,v0

LR �r;R̂�

� jl0
�k0r�Yl0m0

�r̂�dr , �11�

where jl�kvr� is the spherical Bessel function �44�, and

Vv,v0

LR �r ; R̂�= �v�VLR�v0	 is the vibrational matrix element of
the long-range interaction potential �8b�.

Two special cases are noteworthy. First, setting lB=−1 in
Eq. �9b� generates pure-Born cross sections, which assume
weak scattering in all partial waves and incorporate only the
long-range interactions of Eq. �8b�. Second, setting lB in
Eq. �9b� to 	 reduces the right-hand side to the standard
result for the scattering amplitude in terms of partial waves
�Ref. �1�, Sec. II.E�. In the ABC procedure, however, we
choose a finite lB�0 so that for l� lB the differences

fvlm,v0l0m0
�kv ,k0 ; R̂�− fvlm,v0l0m0

B �kv ,k0 ; R̂� are negligible to the

desired precision. Contributions to f�kv ,k0 ; R̂� for l� lB are
thus included in the FBA; those for l� lB are generated in
non-Born calculations—here, via BF vibrational close
coupling—that take account of the strong short- and
intermediate-range electron-molecule interactions.

Inserting the long-range potential Eq. �8b� into Eq. �7b�,
we obtain

fB�kv,k0;R̂� = − 2

�,

i��v�b�,�v0	P��q̂ · R̂�I�
�qv,v0

� .

�12a�

Here we have introduced the integral
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I�
�qv,v0

� � �
0

	

j��qv,v0
r�r2−dr , �12b�

which is defined only for �1 and ���3. For these
values, this integral equals the function

M�
�qv,v0

� � ��21−qv,v0

−3��3 + � − 

2
�

�� + 

2
� � , �12c�

where the reason for a separate symbol for M�
�qv,v0

� will
become apparent in discussion of Eq. �17� below. �The re-
strictions on � and  affect the integral I�

�qv,v0
� that arises

from the spherical term �=0 in Eq. �8b�, which for =4 is
undefined—a point we will discuss further in conjunction
with Eqs. �16a� and �16b� below.�

Similarly, inserting the long-range potential �8b� into Eq.
�11� gives

fvlm,v0l0m0

B �kv,k0;R̂� = − 16�3/2�kvk0

�,

�v�b�,�v0	
�l + 1

2� + 1

� c��lm,l0m0�Ill0
 �kvk0�Y�,m−m0

� �R̂� .

�13a�

The integral

Ill0
 �kvk0� � �

0

	

jl�kvr�jl0
�k0r�r2−dr , �13b�

is defined provided l0+ l−+3�0, and �0. For these val-
ues, this integral equals the function

Mll0
 �kvk0� �  �

2� kv
l

k0
l−+3� � l0 + l −  + 3

2
�

� l0 − l + 

2
��l + 3

2��
� 2F1 l0 + l −  + 3

2
,
l − l0 −  + 2

2
,l +

3

2
;
kv

2

k0
2� ,

�13c�

where 2F1�a ,b ,c ;z� is the hypergeometric function in the
notation of Ref. �53�. Finally, the angular-momentum coeffi-
cient in Eq. �13a� is

c��lm,l0m0� � �− 1�m−m0��2l0 + 1��2� + 1�

�  l l0 �

m 0 − m
� l l0 �

m0 − m0 0
� . �14�

The partial-wave scattering amplitude can be written in
terms of BF-FNO T-matrix elements as

fvlm,v0l0m0
�kv,k0;R̂� = − 4�2


�

Dm,�
l �R̂�Tvl,v0l0

� Dm0,�
l0� �R̂� ,

�15�

where Dm,�
l �R̂� are Wigner rotation matrices in the conven-

tions of Ref. �54�. Inserting Eqs. �12a�, �13a�, and �15� into
Eq. �9b�, using the result in Eq. �1�, and carrying out various
tiresome algebraic simplifications, we obtain the final ABC
expression, here written in a form that facilitates encoding:

d�

d�
�kv,k0� =

1

4�
 kv

k0
�


�



m=−�

�

g�,m
� �
�g�,m�
�

+ 2��kv

k0
3


l,l0

lB



�,�



m=−�

�

c��lm,l0��Yl,m�k̂�

� Re�il0−lg�,m
� �
�Tvl,v0l0

� �

+
�2

k0
2 


l,l0

lB



l�,l0�

lB



�,��



L

dL�ll0,l�l0�;�,���

� Tvl,v0,l0
�� Tvl�,v0,l0�

�� PL�cos 
� , �16a�

where dL�ll0 , l�l0� ;� ,��� is defined in Eq. �6c� and
c��lm , l0m0� in Eq. �14�. The only previously undefined
quantity in this equation is

g�,m�
� � i� 8�

2� + 1
�Y�,m�q̂�




�v�b�,�v0	M�
�qv,v0

�

−  8�

2� + 1
�


l,l0

lB

il0−lYlm�k̂���2l0 + 1��2l + 1�

� c��lm,l0 0�



�v�b�,�v0	Mll0
 �kvk0� , �16b�

The sum over L in Eq. �16a� runs from L=0 to L=2lB, the
maximum value allowed by the angular-momentum coupling
coefficients in this expression. Since the lab-frame azimuthal
angle � is arbitrary for linear systems, we choose �=0,
which implies that �q=� in Eq. �10b�. With this choice all
spherical harmonics in Eqs. �16a� and �16b� are real. For
vibrationally elastic scattering, with v=v0, and for long-
range potentials for only �=0 and �=2, Eqs. �16a� and �16b�
reduce to those of Isaacs and Morrison �10�.

The physical content of the three terms in Eq. �16a� and
�16b� is different. The first term involves only the long-range
interaction and is purely Born in character. If one chooses
lB=−1, then the second and third terms vanish and one re-
gains the pure Born approximation to the DCS. The third
term involves no Born approximations; it is due solely to
T-matrix elements for l� lB, which incorporate short- and
intermediate-range interactions and make no weak-scattering
approximations. If one sets lB to 	, then the sum of the first
two terms vanishes and one regains the usual equation for
the DCS in terms of BF-FNO T-matrix elements �see Ref.
�2�, and references therein�. Finally, the second term intro-
duces interference between non-Born T-matrix elements for
l� lB and Born elements for l� lB.

ANALYTIC BORN COMPLETION IN THE CALCULATION ... PHYSICAL REVIEW A 77, 012726 �2008�

012726-5



The practical advantage of the ABC strategy is that all
sums over partial-wave order in the ABC DCS �16a� and
�16b� terminate at lB, the value of which is much smaller
than the maximum values of l, l�, l0, and l0� that would be
required to numerically converge the DCS �6a�–�6c�. This
termination also limits the sums over the projection quantum
number �. The sums over � �in Eq. �16a�� and  �in Eq.
�16b�� include only those terms chosen for the truncated mul-
tipole expansion �8b�.

The integrals I�
�qv,v0

� and Ill0
 �kvk0�, which lead to the

functions M�
�qv,v0

� and Mll0
 �kvk0� in Eq. �16b�, are defined

in Eqs. �12b� and �13b�. As we remarked in conjunction with
the closed-form expressions �12c� and �13c�, these integrals
are formally undefined for one case that always arises in
electron-molecule scattering. The spherically symmetric term
in the long-range potential �8a�, which contains the spherical
polarizability �0�R� and which corresponds to �=0, =4,
and b0,4�R�=−�0�R� /2, produces I0

4�qv,v0
� and I00

4 �kvk0�, nei-
ther of which is defined. But, in Eq. �16b� only the difference
of the two integrals appears and this integral is defined. It
evaluates to

�
0

	

�j��qv,v0
r� − jl�kvr�jl0

�k0r��r2−dr

= − �qv,v0

4
+

kv
2 + 3k0

2

12k0
� �17�

which is the same result as that obtained from evaluating
M0

4�qv,v0
�−M00

4 �kvk0�. This makes it possible to use the ex-
pressions for M�

�qv,v0
� and Mll0

 �kvk0� in derivations without
having to worry about the special cases mentioned in con-
junction with Eqs. �12b� and �13b�.

III. RESULTS

To illustrate the efficacy and accuracy of the ABC proce-
dure, we have chosen two paradigmatic homonuclear sys-
tems: e-H2 and e-N2. No other systems have been so exhaus-
tively studied both experimentally and theoretically �see, for
example, Refs. �17,55–61�, and references therein�, and the
high accuracy of cross sections for these systems has estab-
lished them as benchmarks in the field. Calculating DCS for
e-H2 scattering should offer the fewest challenges, as H2 is
nearly spherical compared to other linear molecules. More-
over, only for e-H2 do there exist converged BF-FNO, close-
coupling T-matrix elements using a parameter-free interac-
tion potential and including exchange effects exactly
�56,62,63�. By contrast, the N2 molecule is quite aspherical,
and, as demonstrated in Ref. �17�, a converged NBC calcu-
lation of low-energy e-N2 DCS requires very many partial
waves and symmetry classes. Moreover, e-N2 scattering at
energies between about 1.5 and 4.0 eV is dominated by an
intermediate-duration shape resonance in the �g symmetry
�17,41,64–68�. This resonance induces highly oscillatory be-
havior in differential and integral cross sections in this en-
ergy range and so offers a quite different physical context for
calculating DCS.

A. ABC DCS for e-H2 scattering

To illustrate the need for high-order partial waves and to
illuminate the angles at which they play the greatest role in a
DCS we show in Fig. 1 elastic �upper panel� and inelastic
�v0→v�= �0→1� �lower panel� DCS for e-H2 collisions at
10.0 eV as calculated using numerical Born completion us-
ing Eqs. �6a�–�6c�. �Equations for the FBA scattering matrix
elements required for such a numerical treatment are given in
Sec. III.A of Ref. �17� and the Appendix in Ref. �14�.� As a
benchmark for assessing convergence of these NBC cross

FIG. 1. �Color online� Convergence in partial-wave order and
symmetry class of e-H2 elastic �upper panel� and 0→1 inelastic
�lower panel� DCS in numerical Born completion calculations at
10.0 eV. In each panel, the solid curve is the fully converged ABC
DCS with lB=3 �see Fig. 2�, shown for comparison. The other
curves correspond to increasing maximum values of ���, the pro-
jection quantum number for the electron’s orbital angular momen-
tum in the exact DCS of Eqs. �6a�–�6c�: ���=1 �dotted�, ���=2
�dash-dot�, ���=3 �short dash�, and ���=4 �long dash�. For each
value of �max we include partial-wave contributions in Eq. �6b� up
to lmax=�max. The inset figure in the upper panel expands the ver-
tical scale for large-angle elastic scattering.

ANDREW N. FELDT AND MICHAEL A. MORRISON PHYSICAL REVIEW A 77, 012726 �2008�

012726-6



sections we show the �fully converged� ABC cross sections,
which include all T-matrix elements and are based on Eqs.
�16a� and �16b�.

In the long-range e-H2 potential of Eq. �8a� we included
permanent quadrupole and induced spherical and nonspheri-
cal polarizability terms; this choice determined the values of
� and  in these equations. Values of vibrational matrix ele-
ments of these moments for excitations considered in this
section are given in Table I. At each energy we included
Legendre polynomials of all required orders: L=0 to L=2lB
in Eq. �16a�; this integer controls the shape of the DCS, Eq.
�1�. Because these e-H2 DCS vary weakly with angle, only
the first few Legendre polynomials contribute appreciably.
Finally, we computed the non-Born, BF-FNO e-H2 T-matrix
elements using the linear-algebraic method �69� including
exact exchange, as described in Ref. �56�.

Figure 1 illustrates the variation with scattering angle of
the rate at which NBC DCS approach convergence. At small
angles, by which we mean 
�30° and, for elastic scattering
at large angles 
�150° �shown in the inset�, the approach to
convergence is very gradual. The smaller the scattering
angle, the more T-matrix elements must be included in the
DCS. It may be surprising, considering the nearly spherical
character of H2, that inclusion even of matrix elements for
l�4, which correspond to the ���=4 curve in the figures,
fails to converge the small-angle DCS to graphical accuracy.
In the far more aspherical e-N2 system, partial waves of
these and much higher orders are far more important �see
Sec. III B�.

To illustrate the need for only a few low-order non-Born
T-matrix elements, we show in Fig. 2 inelastic 0→1 DCS
for e-H2 collisions at 1.0 and 10.0 eV. At each energy, we
calculated ABC DCS for increasing values of lB in Eqs. �16a�
and �16b�, the partial-wave order such that contributions
from all T-matrix elements with l� lB are included via the
FBA.

The presence in both plots in Fig. 2 of the pure-Born
result, obtained by setting lB=−1 in Eqs. �16a� and �16b�,

dramatically demonstrates the need for some non-Born con-
tributions at these energies. At 1.0 eV, the most significant of
these non-Born contributions for reshaping the DCS into
something resembling the converged result are those for l
=0, from the �g symmetry class. At 10.0 eV, these l=0 ma-
trix elements alone do not do the job. At both energies, how-
ever, including non-Born l=1 matrix elements �from �g and
�u symmetries� gives a qualitatively correct DCS; further
including l=2 elements �from �g and �g� gives DCS con-
verged to experimental accuracy �56�; and including l=3 el-
ements gives convergence to graphical accuracy. Consistent
with the physical mechanism of centrifugal-barrier effects
discussed in Sec. I, the importance of non-Born T-matrix
elements with l=3 is larger at 10.0 eV than at 1.0 eV, a point
that is obscured by the scale of the vertical axis in Fig. 2. The
trends in these plots exemplify behavior we found at many
other energies between threshold and 10.0 eV, not only for
0→1 excitations but also 0→2 and 1→2 �not shown�. For
e-H2 scattering and for nonresonant scattering in e-N2 �Sec.
III B�, we find the choice of lB that guarantees a particular
precision in a particular DCS to be quite insensitive to scat-
tering energy and excitation.

In choosing lB, it is essential to appreciate that, because
T-matrix elements of different symmetry classes and partial-
wave orders commingle in the DCS �6a�–�6c�, not all such
elements must be calculated to the same precision. Choosing
lB by direct comparison of non-Born and Born-T-matrix ele-
ments would be overkill.

Nevertheless, the concerns of this paper raise the question
of how accurately the FBA does approximate key T-matrix
elements of fairly low order. Examining individual matrix
elements for e-H2 �not shown� we find several trends. First,
as partial-wave order increases, the FBA becomes more ac-
curate. Second, as energy increases for a particular excitation
and partial-wave order, the FBA becomes less accurate, ow-
ing to increased penetration of the corresponding compo-
nents of the radial scattering function into the strong near-
and intermediate-target regions �1,22,42�. Consequently, in-
clusion of even fairly inaccurate FBA T-matrix elements in
exact ABC-DCS calculations �Eqs. �6a�–�6c�, �16a�, and
�16b�� does not contaminate the cross sections themselves.

B. ABC DCS for e-N2 scattering

For converging DCS, the most important difference be-
tween the e-H2 and e-N2 systems is the greater strength of
the short- and intermediate-range e-N2 potential; this differ-
ence is largely a consequence of the stronger nuclear attrac-
tion in e-N2. For given quantum numbers �l , l� ;�� of reason-
ably small order, therefore, one would expect the error in the
FBA e-N2 T-matrix element, compared to its BF-FNO coun-
terpart, to be greater than for e-H2. Moreover, one would
expect to need more T matrix elements in a brute-force nu-
merical completion calculation using Eqs. �6a�–�6c�. One
would be right. Examination of individual T-matrix elements
shows the FBA to be far less accurate for N2 than for H2.
Moreover, for high-order partial waves, this inaccuracy is
more severe for N2 than for H2. For sufficiently large values
of l, however, we find good agreement between the FBA and
BF-FNO elements.

TABLE I. Vibrational matrix elements of permanent and in-
duced moments for the e-H2 and e-N2 ABC DCS calculations in
this paper. A description of computation of the e-N2 moments ap-
pears in Sec. III.B of Ref. �17�; see also �32�; the R-dependent
moments used in these computations come from structure calcula-
tions described in citations in these references. All matrix elements
are in atomic units: a0

3 for polarizabilities, ea0
2 for the quadrupole

moment.

e-H2

v0 v �v��0�v0	 �v��2�v0	 �v�Q�v0	

0 0 5.3750 1.4119 0.4704

0 1 0.7970 0.4386 0.0903

0 2 −0.0467 0.0088 −0.0090

1 2 1.1853 0.6913 0.1399

e-N2

v0 v �v��0�v0	 �v��2�v0	 �v�Q�v0	

0 0 10.980 3.0958 −0.9608

0 1 0.4075 0.3027 0.0881
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As remarked above, this decrease in accuracy of FBA
T-matrix elements in the transition from H2 to N2 results
from the far stronger e-N2 short-range interaction potential.
But interpreting the comparison between e-H2 and e-N2 DCS
is not quite this simple. The long-range interaction potential
for e-N2 is appreciably stronger than for e-H2, a dissimilarity
evident in the moments in Table I. To clarify the role of
partial waves in this system, therefore, we must also examine
directly convergence of DCS.

In a detailed study of numerical Born completion for elas-
tic and inelastic e-N2 scattering Sun et al. �17� demonstrated
�see their Sec. III.C� that in the resonance-dominated region
from about 1.5 to about 4.0 eV, T-matrix elements for high-
order partial waves and symmetry classes make negligible
contribution to the DCS. This insensitivity arises from the
approximate localization of the scattering electron’s prob-
ability density near the target in near-resonant scattering
�44�.

Nonresonant scattering is another story. Outside the
resonance region, Sun et al. found T-matrix elements for
����7 to be essential for converging elastic and inelastic
DCS, especially at scattering angles 
�60° �see their Fig.
3�. For 
�45°, Sun et al. required T-matrix elements for
����8 �17 symmetry classes� to converge inelastic DCS. For
other excitations, T matrices from as many as 25 symmetry
classes were required before the effort to converge the DCS
numerically via Born completion was abandoned because of

FIG. 2. �Color online� The contribution of non-Born elements of
the BF-FNO T matrix to e-H2 DCS at 1.0 eV �upper panel� and 10.0
eV �lower panel�. The dot-dashed curves are pure FBA �lB=−1�; the
10.0 eV pure-FBA 0→1 DCS in the lower panel goes off scale to a
maximum value at 180° in units of 1.1 a0

2. The other curves corre-
spond to increasing values of lB: lB=0 �short dash�, lB=1 �long
dash�, lB=2 �dotted�, and lB=3 �solid�. At both energies, the lB=2
and lB=3 curves are indistinguishable, indicating convergence in lB.

FIG. 3. �Color online� Convergence in partial-wave order and
symmetry class of e-N2 DCS for 0→1 vibrational excitation in
numerical Born completion calculations at 10.0 eV. The solid curve
is the fully converged ABC DCS with lB=5. The other curves cor-
respond to increasing maximum values ���=2 �dotted�, ���=4
�dash-dot�, ���=6 �short dash�, ���=8 �long dash�, and ���=10
�dash-dot-dot�.
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numerical problems attendant upon implementing the FBA
for such high-order partial waves. All these problems, as well
as the odious chore of determining the maximum required
value of ���, vanish when one uses analytic rather than nu-
merical Born completion.

In Figs. 3 and 4 we show 0→1 DCS for collisions with
N2 at 10.0 eV. The shape of this DCS is more complicated
than its counterpart for e-H2 scattering in Fig. 1, primarily
because of greater influence on BF-FNO T matrix elements
of short- and intermediate-range interactions.

Figure 4 shows the 0→1 cross section for increasing val-
ues of lB from e-N2 ABC calculations at two energies chosen
to illustrate near-resonant and nonresonant scattering. At 5.0
eV, above but within the influence of the 2.39 eV shape
resonance, scattering in the 2�g resonant symmetry still
dominates the DCS. On the one hand, one must treat the
resonant l=2 partial wave accurately, not by the FBA; on the
other, having done so, one need not include higher-order par-
tial waves at all.

With increasing energy, the resonance loses potency. By
10.0 eV, converging the nonresonant DCS in Fig. 4 requires
far more partial waves than did the near-resonant DCS. In-
clusion of BF-FNO T-matrix elements for only l=0 and 1
produces a DCS whose shape is only roughly correct, in
contrast to the corresponding e-H2 case in Fig. 2. Another
difference between these two systems is the somewhat
slower convergence with increasing lB for e-N2 than for
e-H2. This difference, similar to the one discussed in con-
junction with Fig. 3, is due primarily to the greater strength
of the short- and intermediate-range e-N2 potential.

For nonresonant e-N2 scattering we found the brute-force
numerical completion procedure to be impractical. Figure 3
shows that, as for e-H2 �Fig. 1�, increasing the maximum
value of � in a numerical e-N2 Born-completion calculation
does eventually converge the DCS expansion �6a�–�6c�. But
for e-N2, convergence is much slower than for e-H2, except
at large angles. At small angles, even an NBC cross section
for �max=10 �21 symmetries� is incorrect in magnitude at
small angles and in shape at intermediate angles.

Higher-order partial waves do contribute to the corre-
sponding integral cross section

�0→1�E� � �
4�

d�

d�
�kv,k0�d� , �18a�

and to the momentum-transfer cross section

�0→1
�m� �E� � �

4�

d�

d�
�kv,k0��1 − cos 
�d� . �18b�

The contribution of high-order partial waves to these inte-
grated cross sections is far less striking than to DCS. Still,
these contributions are material in applications that require
high-precision integrated cross sections. Table II shows con-
vergence of integrated 0→1 cross sections for the e-N2 con-
vergence studies whose DCS appear in Figs. 3 and 4.

IV. CONCLUSION

The key theoretical result of this research is Eqs. �16a�
and �16b� for the vibrationally inelastic DCS in the ABC

FIG. 4. �Color online� The contribution of non-Born elements of
the BF-FNO T matrix to e-N2 DCS at 5.0 eV �upper panel� and 10.0
eV �lower panel�. In each graph, each curve corresponds to a larger
value of lB, as lB=1 �dotted�, lB=2 �dot-dash�, lB=3 �short dash�,
lB=4 �long dash�, and lB=5 �solid�.
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method, together with the attendant definitions of quantities
in this expression. Users will need the functions M�

�qv,v0
�

and Mll0
 �kvk0� �Eqs. �12c� and �13c��. These equations can be

easily encoded, and upon request the authors will supply
either MATHEMATICA notebooks or FORTRAN subroutines that
evaluate them.

The e-H2 and e-N2 calculations reported in Sec. III dem-
onstrate two key points. First, the ABC procedure is an ex-
tremely efficient way to guarantee convergence of DCS com-
pared to numerical Born completion, which, if feasible at all,
requires convergence studies that are obviated by the ABC
approach. Second, the number of non-Born T-matrix ele-
ments required to determine a DCS to a desired accurate is

quite small—smaller than one might expect from a direct
comparison of T-matrix elements.

As illustrated in previous research discussed in Sec. I, the
underlying idea of analytic Born completion is not limited to
the linear molecules considered here. Neither are the equa-
tions of Sec. II D limited to homonuclear targets. For hetero-
nuclear targets, however, implementation of the ABC equa-
tions requires that one deal with a well-known technical
problem that afflicts electron scattering from polar mol-
ecules: the singularity in the body-frame DCS in the zero-
angle limit �70�. This defect, which inheres in the FNO ap-
proximation and has nothing to do with use of the FBA, can
be repaired in various ways �6–8,11,60,71–74�.

As contributions to the economics of electron scattering
calculations, analytic Born completion procedures offer two
practical advantages: they eliminate the need to calculate in-
dividual high-order T-matrix elements and to operationally
converge the DCS with respect to partial waves. Calculating
T-matrix elements of high order in, say, a BF-FNO calcula-
tion is certainly inadvisable: these elements are small so their
calculation is prone to numerical error. Computing high-
order T-matrix elements in the FBA for a numerical Born
completion calculation is more efficient but requires con-
verging several sums over partial-wave order and electron-
molecule symmetry classes �see Eqs. �6a�–�6c��. As illus-
trated for both e-H2 and e-N2 in Sec. III, brute-force
numerical convergence—especially at angles less than about
30°—may be quite hard or even impossible to achieve in
practice.
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