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Exactly solvable coupled-channel potential models of atom-atom magnetic Feshbach resonances
from supersymmetric quantum mechanics
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Starting from a system of N radial Schrodinger equations with a vanishing potential and finite threshold
differences between the channels, a coupled N X N exactly solvable potential model is obtained with the help
of a single nonconservative supersymmetric transformation. The obtained potential matrix, which subsumes a
result obtained in the literature, has a compact analytical form, as does its Jost matrix. It depends on
N(N+1)/2 unconstrained parameters and on one upper-bounded parameter, the factorization energy. A detailed
study of the model is done for the 2 X 2 case: a geometrical analysis of the zeros of the Jost-matrix determinant
shows that the model has zero, one, or two bound states, and zero or one resonance; a compact formula for the
open-channel scattering length is obtained. As a first physical application, exactly solvable 2 X 2 atom-atom
interaction potentials are constructed, for cases where a magnetic Feshbach resonance interacts with a bound or
virtual state close to threshold, which results in a large background scattering length.
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I. INTRODUCTION

Coupled-channel quantum-scattering models are today
experiencing a strong renewal of interest, mainly thanks to
the impressive experimental progress in the field of ultracold
gases. Actually, an indispensable tool to control the atom-
atom interactions in these systems relies on the coupling be-
tween channels defined by different hyperfine states of the
atom-atom pairs. When dipped in a magnetic field, these hy-
perfine states have threshold energies that vary linearly with
the field. At ultracold temperatures, the lowest-threshold
state is the only open channel, while states with higher
thresholds are closed. When the field is varied in a well-
chosen range, quasibound states of the closed channels can
appear as resonances in the open channel, a phenomenon
known as a “Feshbach resonance” and first studied in nuclear
physics [1,2]. When a Feshbach resonance crosses the open-
channel threshold, due to magnetic-field variation, the scat-
tering length a, which effectively controls the atom-atom in-
teraction, goes through infinite values, switching from
positive to negative sign [3-5]. This very spectacular phe-
nomenon is now known as a magnetic-field-induced Fesh-
bach resonance, or just magnetic Feshbach resonance.

The practical importance of magnetic Feshbach reso-
nances has motivated various theoretical models, which can
be classified in three categories: (i) microscopic models,
which should in principle deduce magnetic-Feshbach-
resonance properties from many-electron calculations; (ii) ef-
fective potential models, which reduce the complexity of the
many-electron problem to a two-atom coupled-channel prob-
lem (usually two channels are enough), where the interaction
between the two atoms is modeled by a symmetric (2 X 2 for
a two-channel model) potential matrix; (iii) effective
scattering-matrix models, which reduce the role of the under-
lying interactions to its impact on the atom-atom open-
channel scattering matrix. Present-day theoretical descrip-
tions of ultracold gases require only the knowledge of the
atom-atom scattering length, which is directly related to the
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open-channel scattering matrix. As far as practical applica-
tions are concerned, the third category of models is thus
sufficient. There, a magnetic Feshbach resonance is de-
scribed as a pole of the scattering matrix in the complex
wave-number planes, like any resonance [6], and the whole
complexity of the many-electron or atom-atom problem is
reduced to a few parameters of the scattering-matrix Padé
expansion [7]. These parameters can be numerically ob-
tained, e.g., with the help of the reaction-matrix method [8],
from a given microscopic or effective-potential model.

In several contexts, the use of effective-scattering-matrix
models is, however, increasingly felt to be insufficient. This
is the case, for instance, when a magnetic Feshbach reso-
nance occurs with a large background scattering length, due
to a bound or virtual state in the open channel, close to its
threshold [7]. Such an open-channel state is also called a
“potential resonance” because it naturally occurs in a poten-
tial model, even in a single-channel case. Other situations
where a more detailed knowledge of the atom-atom interac-
tion than just the scattering length might be necessary are
cases where molecules can be formed, as in crossovers be-
tween a Bardeen-Cooper-Schrieffer superfluid and a Bose-
Einstein condensate, or in Bose-Einstein-condensate col-
lapses. None of these cases probably requires solution of the
full many-body electronic problem; effective-potential mod-
els, on the other hand, look like a reasonable approximation,
as they allow for a realistic description of the atom-atom
interaction in terms of the accessible channels and as a func-
tion of the radial coordinate r between atoms.

There is thus an interest in obtaining exactly solvable
coupled-channel potential models with threshold differences.
The first example coming to mind is probably the coupled
square-well potential, which can display both potential and
Feshbach resonances, as well as bound states [9]. This model
has, however, two drawbacks: first, despite its simplicity and
exactly solvable character, its scattering-matrix poles are
given by rather complicated implicit equations. Second, its
discontinuous form factor is rather limiting and very differ-
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ent from the known long-range atom-atom polarization inter-
action. The next choice for realistic atom-atom interactions is
thus a purely numerical resolution of the coupled-channel
Schrddinger equation with smooth phenomenological poten-
tials. This lack of exactly solvable potentials can be related
to the poor knowledge of the scattering inverse problem (i.e.,
the construction of a potential in terms of its bound- or
scattering-state physical properties) in the coupled-channel
case with threshold differences [10]. In Ref. [11], however,
Cox derives an exactly solvable coupled-channel potential
with threshold differences, two remarkable features of which
are the compact expressions provided both for the potential
and for its Jost matrix. Since the Jost matrix completely de-
fines the bound- and scattering-state properties of a potential
model [12,13], such an analytical expression seems very
promising in the context of the scattering inverse problem.

The work of Cox has, however, received little attention,
probably because it appears to have two problems. First, the
method of getting the potential is rather complicated: the
paper mostly consists of a check that the provided analytical
expression for the solutions satisfies the coupled-channel
Schrodinger equation with the provided analytical expression
for the potential. Not much information is given on how
these expressions were obtained, which makes any generali-
zation of the method difficult. The second problem, already
discussed in Ref. [11], is that, despite the compact expression
of the Jost matrix, calculating the corresponding bound- and
resonant-state properties is a difficult task because these
states correspond to zeros of the determinant of the Jost ma-
trix in the intricate structure of the energy Riemann sheet,
which has a multiplicity 2" for N channels.

The first problem was solved recently, when it was
realized that the Cox potential, at least in its simplest form
(g=1 in Ref. [11]), can be obtained by a single supersym-
metric transformation of the zero potential [14,15]. This
leads to a much simpler derivation of this potential and natu-
rally enables several generalizations of it; in particular, the
initial potential is now arbitrary. The transformation used to
get this result belongs to a category of supersymmetric trans-
formations not much used up to now, namely, transforma-
tions that do not respect the boundary condition at the origin
(the so-called nonconservative transformations; see, e.g.,
Ref. [14]): a solution of the initial potential vanishing at the
origin is transformed into a solution of the transformed po-
tential which is finite at the origin. This feature makes the
transformation of the Jost matrix more complicated to calcu-
late than for usual conservative transformations but it is also
the key to getting potentials with nontrivial coupling. In Sec.
II below, we give several alternative expressions for the Cox
potential and explicitly make the link between the supersym-
metric derivation and the expressions found in Ref. [11], for
an arbitrary number of channels N. With respect to Refs.
[14,15], this result is new as these references mostly concen-
trate on generalizations of the Cox potential allowed by su-
persymmetric quantum mechanics and on N=2 examples.
We also show in Sec. II that the Cox potential contains the
maximal number of arbitrary parameters allowed by a single
nonconservative supersymmetric transformation, which
makes it the most interesting potential from the point of view
of the scattering inverse problem; we also derive a necessary
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and sufficient condition for the regularity of the potential.

The second problem, i.e., the calculation of bound- and
scattering-state properties from the analytical Jost function,
is touched upon in Sec. III. There, the discussion is limited to
N=2 (a case complicated enough from the mathematical
point of view but very rich already from the physical point of
view). First, the number of bound and resonant states is stud-
ied geometrically in terms of the potential parameters, as
well as the necessary and sufficient condition for a regular
potential (several mistakes made in Ref. [11], in particular
regarding the number of bound states, are corrected in pass-
ing). Second, the low-energy behavior of the open-channel
scattering matrix is studied, with ultracold gases in mind.
This discussion makes possible a first practical use of this
potential as a schematic model of atom-atom magnetic Fes-
hbach resonances, which is described in Sec. IV. There, an
exactly solvable model is established in cases where a mag-
netic Feshbach resonance interplays with a potential reso-
nance, which results in a large background scattering length,
either positive (interplay with a bound state) or negative (in-
terplay with a virtual state). This physical context is mostly
inspired by Ref. [7]. Section V finally summarizes our find-
ings and discusses possible extensions of them, in particular
to other fields of physics where coupled-channel models are
known to play an important role.

II. THE COX POTENTIAL FROM SUPERSYMMETRIC
QUANTUM MECHANICS

Let us first summarize the notations used below for
coupled-channel scattering theory [6,12,13]. We consider a
multichannel radial Schrodinger equation that reads in re-
duced units

Hylk,r) = K*y(k,r), (1)
with
d2
H=- ﬁ +V, (2)

where r is the radial coordinate, V is an N X N real symmet-
ric matrix, and ¢ may be either a vector-valued solution or a
matrix-valued solution with linearly independent columns.
By k we denote a point in the space CN, k={k,,... ky},
k; € C. A diagonal matrix with nonvanishing entries k; is writ-
ten as K=diag(k)=diag(k,, ...,ky). The complex wave num-
bers k; are related to the center-of-mass energy E and the
channel thresholds A, ..., Ay, which are supposed to be dif-
ferent from each other, by

ki2=E_Al" (3)

For simplicity, we assume here that the different channels
have equal reduced masses, a case to which the general situ-
ation can always be formally reduced [12]. We also assume
potential V to be short ranged at infinity and to support a
finite number M of bound states. Under such assumptions,
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the Schrodinger equation has two N X N matrix-valued Jost
solutions which allow one to construct the Jost matrix F(k)
defining both scattering and bound-state properties. The scat-
tering matrix, which is symmetric, reads

S(k) — K—I/ZF(_ k)F—](k)Kl/Z - KI/Z[F—I(k)]TFT(_ k)K_l/z,
(4)

with T meaning transposition and —k={-k,...,—ky}. The
zeros of the determinant of the Jost matrix, which are defined
by det F(k)=0, thus correspond to poles of all the elements
of the scattering matrix. Bound states correspond to such
zeros k,,, with m=1,...,M, lying on the positive imaginary
k; axes for all channels: k,,;=ik,; with «,;=0 and
i=1,...,N. The corresponding energies Em=—K51i+ A, lie be-
low all thresholds. For simplicity, we call a virtual state any
other zero of the Jost-matrix determinant corresponding to a
real energy below all thresholds, but not lying on all the
positive imaginary k; axes. Finally, we call a resonance any
zero of the Jost-matrix determinant not lying on the imagi-
nary k; axes, hence corresponding either to a complex energy
or to a real energy above at least one threshold. Note that for
a resonance to have a visible impact on the physical scatter-
ing matrix it should be located sufficiently close to the en-
ergy real axis above the first threshold.

Let us then summarize the main results from supersym-
metric quantum mechanics in the coupled-channel case
[16,17]. Starting from an initial potential V and its solutions
¢, a supersymmetric transformation allows the construction
of a new potential

V(r)=V(r) -2U'(r) (5)

with solutions

Wk,r) = (- % + U(r)> Wk,r), (6)

where the so-called superpotential U is expressed in terms of
a square matrix o by

U =o' (ne'(r). ()

Here the prime denotes the derivative with respect to r. The
matrix o is called the factorization solution; it is a solution of
the initial Schrodinger equation

Ho(r) == K?o(r), (8)

where K=diag(k)=diag(x,,...,ky) is a diagonal matrix
called the factorization wave number, which corresponds to
an energy & lying below all thresholds, called the factoriza-
tion energy. The entries of K thus satisfy 8=—K?+Ai; by
convention, we choose them positive: «;>0. Note that the
columns of matrix o are linearly independent vector-valued
solutions of Eq. (8), none of which needs to be regular at the
origin. Equation (6) implies that all the physical properties of
the transformed potential can be expressed in terms of those
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of the initial potential, in particular its Jost and scattering
matrices.

Let us now apply these results to a vanishing initial po-
tential V=0, for which the Jost and scattering matrices are
the identity, S(k)=F(k)=1I. For a given factorization energy,
the most general real symmetric superpotential depends on
an N-dimensional real symmetric matrix of arbitrary param-
eters, i.e., on N(N+1)/2 real arbitrary parameters [15]. When
V=0, the corresponding factorization solution can be written
as

o(r) = cosh(kr) + K~! sinh(kr)U, (9a)

=(2KC)[exp(kr)(K + Up) + exp(— kr)(K = Uy)],  (9b)

which ensures that the resulting potential Vis regular at the
origin, and where the arbitrary parameters explicitly appear
as the value of the (symmetric) superpotential at the origin,
Uy=U(0); exp(£kr), cosh(kr), and sinh(kr) are diagonal
matrices with entries exp(=* k;r), cosh(x;r), and sinh(x;r) re-
spectively. According to Ref. [15], when K+ Uj is invertible,
the transformed Jost matrix reads

F(k) = (K - iK)" (U, - iK). (10)

This is the Jost function obtained by other means in Ref. [11]
in the case g=1. However, it was not realized there that the
corresponding potential could be simply expressed in terms
of a solution matrix o, using Egs. (5) and (7). In that refer-
ence, a compact expression for the potential is found [see Eq.
(18) below] but writing (9a), (9b), and (7) is much more
elegant because both the potential (5) and its Jost function
(10) are expressed in terms of the same parameter matrix U,.
Nevertheless, this procedure also presents several disadvan-
tages: calculating the potential requires several matrix opera-
tions (inversion, product, derivations); moreover, the param-
eters in U should be chosen so that the factorization solution
is invertible for all 7, a condition not easily checked on Eqgs.
(9a) and (9b).

Let us now derive an alternative form for the factorization
solution, which solves both these inconveniences. In Ref.
[15], the possibility of rank (C+ U,) <N in Eq. (9b) has been
studied, which leads to an interesting asymptotic behavior of
the superpotential but which reduces the number of param-
eters in the model. Here, in order to keep the maximal num-
ber of arbitrary parameters in the potential, we choose
K+ U, invertible. The factorization solution (9b) can then be
multiplied on the right by 2(KC+ U,)~'KC!/2, which leads to the
factorization solution

o(r) = K~ exp(kr) + exp(= kr)X,]. (11)

According to Eq. (7), the superpotential, and hence the trans-
formed potential, is unaffected by this multiplication. The
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symmetric matrix X, now contains all the arbitrary param-
eters. The link between the two sets of parameters is given
by

XO = IC_UZ(]C - Uo)(K: + U())—l]cl/Z’ (12)

Ug=K"2(I-Xo)(I+X,) 'K, (13)
Equation (11) can also be written as

o(r) = K~V I+ X(r) lexp(«r), (14)
where

X(r) = exp(— kr)X, exp(— «r). (15)

With respect to writing (9a) and (9b), Eq. (14) presents sev-
eral advantages. First, it allows for a simple calculation of
the superpotential

U(r) =K -2K"X(n[I1+ X(n]'K"?
=— K+ 21+ X(n] 'KV (16)

The last expression is particularly convenient since the r de-
pendence is limited to one factor of the second term; the
potential can thus be explicitly written as

V(r) =421+ X)X ([T + X(n) ]2
= — 42 (" + Xpe ) (XK + KX)
X (" + e X)) 2. (17)

The last expression is exactly equivalent to Eq. (4.7) of Ref.
[11] for g=1, which reads

V(r) =271 - AQK)'e 2T (AK + KA)
X[I-e 2 (2K) AT e, (18)
provided one defines matrix A as
A==2KV2X KV == 2(K = Up)(K+ Up)™'KC. (19)

The second advantage of writing (14) is that it easily leads to
a necessary and sufficient condition on the parameters to get
a potential without singularity at finite distances. This condi-
tion is positive definiteness of matrix /+Xj:

I+X,>0. (20)

The potential has a singularity when o(r) is noninvertible,
i.e., when det[/+X(r)] vanishes for some r. Using Eq. (15),
we find that this is equivalent to the existence of ro=0 such
that det Y(ry)=0 with Y(r)=exp(2«r)+X,. Assume now that
det Y(r)#0 V r=0. Since det Y(r)=l'[fi]y,»(r) where y,(r)
are the eigenvalues of Y(r), we conclude that for all
i=1,...,N and r=0. But, since for sufficiently large r, X
becomes a small perturbation to exp(2«r), all eigenvalues of
Y(r) should be positive for r=0 and in particular at r=0,
thus proving the necessary character of the above condition.

The sufficiency follows from the observation that Y(r) is
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positive definite for any r=0, together with Y(0)=I+X,.
Indeed, if Y(r) is positive definite, the inequality
(q|Y(r)|g)>0 holds for any q € Ly. Here {p|q)=3 piq; is
the usual inner product in the N-dimensional complex linear
space Ly, with p; and ¢; being coordinates of the vectors
p,qELy with respect to an orthonormal basis. But,
since  (q|Y(r)lqy={qlXolq)+(glexp(2xr)|q) = (q|Xo|q)+(q|q)
=(q|Xy+1|q) [we recall that r=0, x,>0, and exp(xr) is a
diagonal matrix with entries exp(«;r)], positive definiteness
of I+X, implies positive definiteness of Y(r) for r=0.

Having established this condition on X, one can get the
condition in terms of Uy, using Eq. (12). Since

I+ Xy=2KY2(IC+ Uy)~'KV2, (21)

the necessary and sufficient condition to get a regular poten-
tial is positive definiteness of the matrix K+ Uy:

K+Uy>0. (22)

Since the (diagonal) elements of K are positive and increase
when the factorization energy decreases, this condition has a
simple interpretation: it just puts some upper limit on the
factorization energy.

Finally, Eq. (19) shows that the condition det A #0 re-
quired in Ref. [11] is not required here. In Cox’s paper, this
condition does not appear in the potential expression, which
is valid in the general case, but only in the derivation of the
proof; the fact that this condition is not required here illus-
trates the efficiency of the supersymmetric formalism. Equa-
tion (19) also implies that the rank (K+U,) <N corresponds
to det A=, a case also not considered in Ref. [11]. The
supersymmetric treatment, on the contrary, allows this case
[14,15]; our approach thus subsumes the results of Ref. [11]
in several respects.

III. GENERAL PROPERTIES OF THE 2X2 COX
POTENTIAL

Having established a connection between the Cox poten-
tial and supersymmetric quantum mechanics, we now pro-
ceed to a more detailed analysis of its properties for the
simplest particular case N=2. As it happens, this case is not
only complicated enough to deserve a dedicated analysis, but
also sophisticated enough to make the solution of several
interesting inverse problems possible [18].

A. Explicit expression of the potential

For N=2, the arbitrary parameters entering the Cox po-
tential are the entries of the superpotential matrix at the ori-

gin,
P ) (23)

Uy=U(0)=| "
0 ()(,6’ o

and the factorization energy &£. The corresponding factoriza-
tion wave number k=(k,k,) is made up of two positive
parameters «; and «, which are not independent of each
other: they should satisfy the “threshold condition” [see Eq.

3]
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K- Kki=A. (24)

Here and in what follows we put for convenience A;=0,
Az = A > 0

In terms of these parameters, the necessary and sufficient
condition for a regular potential, i.e., KC+ U, positive definite,
can be written, for instance,
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2

Ky > (25b)

K+ ay “

This puts an upper limit on the factorization energy in terms
of the parameters appearing in U,,.

Two explicit expressions for the superpotential are given

in Ref. [15]. Using Egs. (5) and (16), one gets what is prob-

ably the simplest possible explicit expression for the poten-

K > - ay, (25a)  tial itself:
|

x11K1 + [ 20 Xk — x5 (K + k) ]e29 + X (0 X0y — X2, K42
D =—8K1e_2"1’ 11K 11%22K] 12\K1 T K 20X 1X22 = X p) Ky (26a)

" [14+x11€72917 + Xy0e ™2+ (x12000 — X7, e 2RI P2 ’

_ _ 2 _
5= — Ao e+ + Ky + X1 (K = K1) + Xy = Kp)e™2 2 = (33000 = X7) (i) + Kp)e 2Ry (26b)
V12 =~ X2 VK Kpe -2Kyr —2Kyr _ 22\ 2k k)2
[1+x,e + Xpe + (1 1x00 — x7))e ]
|

The element 775, is obtained from Eq. (26a) by the replace- (k+ia))(p+iay) +B2=0, (31b)

ment k; < Kk, and x| <> Xx»,. Here, we have used the symmet-
ric matrix

X X
on( 11 12), 27)
X2 X2

which is related to matrix (23) by Egs. (12) and (13). In the
following, as we are mostly interested in the Jost-matrix
properties, we shall rather use matrix U,,.

B. Zeros of the Jost-matrix determinant

Let us denote for convenience the channel wave numbers
as k;=k and k,=p, with the threshold condition

K —-p*=A. (28)

Then, according to Eq. (10), the Jost matrix for the Cox
potential reads (see also Refs. [11,14,15])

k+ia1 lﬁ
~ k+iKl k+iK1
Flkp)=| . R B (29)
i ptia,
p+iky, p+iky

The determinant of the Jost matrix coincides with the Fred-
holm determinant of the corresponding integral equation
[12]; it reads here

. . 2

flkop) = det Fih,p) = ELONR LIV 5
(k+ix)(p+iky)

The zeros of this Jost determinant in the k and p complex

planes, which correspond to bound, virtual, or resonant

states, are functions of the parameters «;, a,, and S only.

From this and the threshold condition (28) follows the sys-
tem of equations for finding the zeros of f(k,p),

k2_p2:A’

(31a)

which is equivalent to the fourth-order algebraic equation:

k4+ia]k3+a2k2+ia3k+a4=0, (32)
where
a,=2aq, (33a)
1 1
a2=a§— af—A, (33b)
as= 2[011(0@ -A) - B, (33¢)
ay=—at(a5—A) + 2,80, - B (33d)

We notice that, after the substitution k=i\, Eq. (32) becomes
an algebraic equation in N with real coefficients. Its four
roots are thus either real numbers, which correspond to real
negative energies (bound or virtual states), or mutually con-
jugated complex numbers, which correspond to mutually
conjugated complex energies (resonant states). Based on this
property, we will use in what follows a geometric represen-
tation of the system of equations which allows for a visual-
ization of the zeros of f(k,p) in the parameter space.

Let us first consider bound and virtual states, which cor-
respond to solutions of system (31a) and (31b) with k and p
purely imaginary. After the substitutions k=i\, p=ip, with \
and p real, these equations define two hyperbolas in the
(\,p) plane,

pP-Nr=A, (34a)

N+ a)(p+ay) =, (34b)

the positions of which are defined by the values of the pa-
rameters «;, a,, B, and A. The roots of system (34a) and
(34b) that correspond to bound and virtual states are the in-
tersection points of these hyperbolas. Different possibilities
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Im k Imp
l Re k # Rep
Im & Imp
# Re k L Rep
Im k Imp
¢ ARek Rep
Im & Imp
Re k Rep
@ ";

FIG. 1. Geometrical representation of Eqgs. (34a) (first column, solid lines) and (34b) (first column, dashed lines), and positions of the
corresponding roots of system (31a) and (31b) in the complex k (second column) and p (third column) planes. Various values of the
parameters «; and a;, are chosen, which imply various numbers of bound, virtual, and resonant states: (a) a; <0, ap < —\e“Z, two bound states
(star and diamond), two virtual states (square and triangle), no resonance; (b) a; >0, a,<—VA, one bound state (star), one virtual state
(square), appearance of a resonance (diamond); (¢) a; >0, a; >0, no bound state, two virtual states (star and square), one resonance (triangle
and diamond, not seen in the first column); (d) a; >0, @, > A, no bound state, no resonance, four virtual states. Increase of either a; or a,
leads to (a) (thin dashed lines) disappearance of a bound state; (b) appearance of the resonance.

of hyperbola locations are shown in Fig. 1. The solid-line
hyperbola corresponds to the threshold condition (34a); its
semimajor axis is VA and its slant asymptotes are given by
p= * \. The dashed-line hyperbola corresponds to Eq. (34b);
its asymptotes are given by A\=—a; and p=—a,. The abscissa
(ordinate) of a crossing point in the (\,p) plane gives the
position of the corresponding zero on the imaginary axis in
the k plane (p plane), as shown in the second (third) column
of Fig. 1. Bound states correspond to \,p>0, i.e., to inter-
section points lying in the first quadrant of the (X, p) plane,
while virtual states correspond to intersections in the second,
third, and fourth quadrants. In both cases, their energy with
respect to the first threshold is given by

E=k>=-\% (35)
It is clearly seen on Fig. 1 that the two hyperbolas (34a) and
(34b) cross in either two or four points. Moreover, they can
have zero, one, or two intersections in the first quadrant,

which means that the potential has either zero, one, or two
bound states. This contradicts Ref. [11], where it is said that
the potential never supports bound states. Since Eq. (32) is
fourth order, when the hyperbolas cross in four points, the
Jost determinant does not have any other zero; on the other
hand, when the hyperbolas cross in only two points, the Jost
determinant has two other zeros, which have to form a mu-
tually conjugated complex pair, as seen above. This last case
corresponds to a resonance, as illustrated by Fig. 1(c), where
the hyperbolas have only two intersection points in the (\, p)
plane and a pair of complex roots appears in the complex k
and p planes. The potential thus has either zero or one reso-
nance. The intermediate case of three intersection points for
the hyperbolas [Fig. 1(b)] corresponds to the presence of a
multiple root of Eq. (32), which lies in an unphysical sheet
(Im k<0, Imp>0 or Im k>0, Im p<0) of the Riemann
energy surface; this case corresponds to a transition between
a one-resonance and a two-virtual-state situation.
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One sees that the parameters «; and «, determine the
position of hyperbola (34b) and, hence, the number of bound
states n,, (0, 1, or 2) and of resonances n, (0 or 1). Let us now
determine, for fixed values of B and A, the domains in the
plane of parameters A=(a;,a,) with constant values of n,
and n,. To find domains in A where the system (34a) and
(34b) has two complex conjugated roots (one resonance), we
consider the case where the hyperbolas have a common tan-
gent point, as illustrated by Fig. 1(b). One can see that the
decrease of either a; or «, leads to the disappearance of the
resonance, while the increase of either a; or a, leads to the
appearance of the resonance. We define the parametric
curves [a;(Ng, po) » @(Ng, po)] in plane A by shifting the tan-
gent point (\y,p,) along the hyperbola p>—~\>=A. These
curves limit domains in A with either zero or two complex
roots. To find them, we use the two conditions corresponding
to the common tangent point (\y, pg),

2

p0=)\0+a1—a2= N +A, (36a)
dp __ L =+ Ao (36b)
d\lo, (ot ap)? WG+ A

The upper signs correspond to \g<O (tangent point in the
second quadrant) while the lower signs correspond to A
>0 (tangent point in the fourth quadrant). We can solve
system (36a) and (36b) with respect to a; and a;,:

/m()\z + A)]/4 Ao, (373)
ﬁw’m NN
a,(N\) = * ()\2 NE +sgn(Ng)VAG+A.  (37b)

It should be noted that the Schrédinger equation with the
Cox potential has the following scale invariance:

@y — ya,, A— YA, (38a)
Kip— YKi2, B—YB, (38b)
r—rly, (38¢)

which leaves A,=A/[? invariant. Hence, we may put A=1
without losing generality. This choice is equivalent to mea-
suring energies in units of A. It is convenient to express Egs.
(37a) and (37b) in terms of dimensionless variables «;/(,
A =A7 B2 Ng— N/ B

B ()\o) /m()\z + Ad)1/4 = No» (39a)
I -
6;32( 0= * ﬁ +sgn(N\g)AG+ A, (39b)

These four solutions [taking into account sgn(\)] can be

considered as four parametric curves in the plane A
=(a,/B,a,/B), which separate the plane into five regions
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/B
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5

n =0 n =0
25 ' i
/0 n =1 /B
=25
_5 n, =0 n =0

-7.5
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FIG. 2. Parametric curves in terms of dimensionless parameters
defined by Eqs. (39a) and (39b) in the plane A=(ay/B,a,/p) for
A/B?=1.2. The left-hand-side curves correspond to the lower signs
in the equations, while the right-hand-side curves correspond to the
upper signs. The number of resonances, n,, is indicated in each
domain of the plane.

(one inner region and four outer regions; see Fig. 2).

In the inner region, the Jost determinant has two complex
roots k; ,= * k,+ik; and, hence, these values of parameters
a;,a, correspond to one resonance (n,=1). In this case, we
define the resonance energy with respect to the first threshold
E, and the resonance width I" by

K3, =E, = il/2. (40)

In the four outer regions, the Jost determinant has purely
imaginary roots; hence n,=0. The curves in Fig. 2 tend as-
ymptotically to straight lines which are defined as the limits
for A\g—0 and Ny— *. As a result, one finds for all
branches two horizontal asymptotes a,/ 8=+ VA, and three
slant asymptotes defined by a,/B=-a,/B (for the curves in
the second and fourth quadrants) and «,/B=—a;/B*+2 (for
the curves in the first and third quadrants, respectively).

Consider now the case where the hyperbolas cross at the
point Ag=0, py=1A [see the thin dashed lines in Fig. 1(a)].
After a small decrease of either «; or a,, the number of
positive roots, i.e., of bound states, increases by one unit.
Hence, assuming Ay=0 and py= VA in system (34a) and
(34b), we get the curves

ay(ay +VA) - B2 =0, (41)

which define three domains in the plane of parameters A,
where Eqgs. (34a) and (34b) have different numbers of posi-
tive roots (see Fig. 3). One can directly check that the num-
ber n; of bound states may be calculated as a function of the
parameters as

1
ny, = 1+ 5(11 - 1)12, (42)

where the quantities

I, =sgn(B* - ay \“"Z— aja)l, (43a)

L =sgn(a, + VA1 (43b)

may be considered as invariants. For n,=0, one has /;=-1
and I,=1; for n,=1, one has ;=1 and I,=*1; for n,=2,
one has I1=I,=—1.
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/B

7.5

2.5
/B 0 n, =1

=25
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/B

/B

FIG. 3. Curves (41) in plane A in terms of dimensionless pa-
rameters for A/B?=1.2. The number of bound states, n,, is indi-
cated in each domain of the plane.

Let us now summarize our findings on the number of
bound states and resonances of the 2 X2 Cox potential, by
combining Figs. 2 and 3 in Fig. 4, where both n;, and n, are

given for all the possible regions of plane A. The border lines
of these regions, as already discussed, correspond to the
parametric curves defined by Egs. (37a), (37b), (39a), and
(39b), and to the curves given by Eq. (41). From the
asymptotic behavior of these curves, it is easy to see the
global structure of the zones. For instance, for the case of
two bound states, the hyperbolas in Fig. 1 have to have four
intersection points, which implies that no resonance is
present. This is the reason why the boundary lines between
the zones of bound and resonant states do not cross in the

lower half A plane. Moreover, one can see that the topologi-
cal structure of these zones does not depend on a particular
choice of the parameter A,=A//%. A change of this param-
eter leads only to a deformation of zones, namely, the dis-
tance between horizontal asymptotes changes, but does not
make any new intersection point or new boundary line ap-
pear.

The case of B=0, A,=% corresponds to uncoupled chan-
nels. In this case there are no resonances. Only bound or
virtual states located in different channels may appear (see
Sec. IV A).

Up to now, we have excluded the factorization energy
from our analysis because Egs. (34a) and (34b) are indepen-
dent of k ,, but conditions (25a) and (25b) put an upper limit
on k; (k). The allowed values of «; should be such that
K >N\|E ol» where E, is the ground-state energy if it is present
and E,=0 otherwise (for details, see Ref. [18]). The neces-

/B

75 (1,0
5
2.5 (1,0) 0,0

/B 0 (1, 1) 0, 1) /B

-2.5
_s (2,0) (1,0)
=15 (1,0)

-15 -10 -5 0 5 10 15
/B

FIG. 4. Regions of the A plane with different numbers of bound
states and resonances, (np,n,), for the Cox potential with
A/BP=12.
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sary and sufficient condition for a regular potential can thus
be simply stated: the factorization energy should be negative
and lower than the ground-state energy, if any.

To conclude our consideration of the zeros of the Jost
matrix determinant we note that, for solving a realistic two-
channel scattering inverse problem, it is necessary to express
the Cox potential in terms of physical data such as the
threshold energy, bound-state energies, resonance energy and
width, or scattering data. While the threshold energy explic-
itly appears in the expression of the Cox potential as the
parameter A, the other data are directly related to the posi-
tions of the zeros of the Jost-matrix determinant, as seen
above. Ideally, one would thus like to directly express pa-
rameters «;, a,, 3, and &, which define the Cox potential, in
terms of the roots of Eq. (32). Certainly, there exist general
formulas for the roots of the fourth-order algebraic equation
(32), but they are very involved and cannot help much in
realizing the above program. Therefore, we propose an inter-
mediate approach (for details, see Ref. [18]) and, with the
cold atom in mind, prefer to focus on the low-energy scat-
tering in the following section.

C. Low-energy scattering matrix

In this section, we analyze the S matrix given by Eq. (4)
for energies close to the lowest threshold, the energy of
which we have chosen equal to zero. From Egs. (29) and
(30), one finds the Cox-potential S matrix

—2igkp
S(k,p) Sk K+ K (44)
p)=""—" —
k)| —2i8Y
f(k,p) 2iBVkp fhp)

PR

When the second channel is closed, i.e., for energies 0 <E
<A, the physical scattering matrix is just a function S(k,p),
which coincides with the first diagonal element of S matrix
(44). It reads

k+in [i(k—ia) (VA= K2 + o) — B2]
ke—iry [i(k+ia) (VA -2+ ay) + B2

S(k,p) = (45)

From here one finds the scattering amplitude A(k)

=[S(k)—1]/2ik, which reads

(ay+ VA - kz)(al - K) — Bz

A(k) = , ., (46)
itk —ir)i(k +io)) (VA = K + o) + 7]
and the scattering length a=—A(0), which reads
=
1 IA +
g=—4———22 (47)

ki Br- al(\’/K+ az).

From the argument of S(k)=e2ok)

shift &(k), which reads

, one deduces the phase
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k k(VA - K +
(k) = arctan— + arctan (v @)

, . (48
Ky B - ay (VA - I* + ay) (48)

One can check in Egs. (47) and (48) that the scattering length
is the slope of the phase shift at zero energy, as it should be.
Note that Eq. (48) is equivalent to

_a (k) iy + k*
k cot 8(k) = —%1 ) (49)

where ag(k)=a;~ B?/(NA=I*+a,). In the uncoupled case
(B=0), this expression reduces to the phase shifts of the
simplest Bargmann potential (see, e.g., Ref. [12]), which de-
pends on the parameters «; and ag= ag-o= ;. Therefore, the
Cox potential may be considered as a coupled-channel defor-
mation of the Bargmann potential, resulting in an energy
dependence of one of its parameters, ag.

The scattering length is an important physical quantity. In
many-body theories for instance, it is often used to describe
interactions in the s-wave regime. Let us thus study in detail
the scattering length of the Cox potential, as given by Eq.
(47). When considered as a function of «; ,, it has a singu-
larity located at the boundary of the single-bound-state re-
gion provided by Eq. (41). Such infinite values of the scat-
tering length happen when a zero of the Jost determinant,
which corresponds to an S-matrix pole, crosses the first
threshold: a bound state is then transformed into a virtual
state, in agreement with the general theory [12].

IV. TWO-CHANNEL MODEL OF ALKALI-METAL
ATOM-ATOM COLLISIONS IN THE PRESENCE
OF A MAGNETIC FIELD

A. Magnetic Feshbach resonance

Ultracold collisions of alkali-metal atoms play a key role
in applications of laser cooling such as Bose-Einstein con-
densation (BEC) and the BEC-BCS crossover. The analysis
of such experiments is commonly based on the coupled-
channel method [19], i.e., on solving numerically a set of
coupled differential equations.

In this paper, we reduce the low-energy scattering prob-
lem of two alkali-metal atoms to an effective two-channel
problem with a single Feshbach resonance, as in Ref. [8].
The model consists of a single closed channel Q containing a
bound state, which interacts with the scattering continuum in
the open channel P, so that the whole scattering problem is
reduced to the two-channel scattering described by the
2 X2 Hamiltonian

H= d_2 (VP(”)

_ + Vint(r) )
dr* ’

Vin(r)  Vo(r)

where Vp is the uncoupled open-channel potential, V,, is the
uncoupled closed-channel potential, and potential V;, de-
scribes the coupling between the open and closed channels P
and Q. These channels describe atoms placed in a magnetic
field and occupying different energy sublevels, which can be
shifted with respect to each other with a change of the mag-
netic field (Zeeman effect). For each value of the magnetic

(50)
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field, the zero of energy is chosen as the energy of the dis-
sociated atoms in channel P.

Even in the simplest case of a homogeneous magnetic
field, the potential-energy matrix of Hamiltonian (50) de-
pends on the magnetic field. We will assume that the external
field changes slowly enough so that we can take advantage
of the adiabatic approximation, assuming that the stationary
Schrodinger equation may be applied for describing the scat-
tering process and the magnetic field enters the Hamiltonian
as a parameter only. Moreover, the known observation that,
when the scattering length is much larger than the range of
the interaction, the general behavior of the system is nearly
independent of the exact form of the potential [20], suggests
that we use the Cox potential with large scattering length for
describing the interatomic scattering. We thus replace the
potential matrix in Eq. (50) by the Cox potential. In this case,
the parameters of the Cox potential should carry a depen-
dence on the magnetic field. Below, we show that, to get a
good agreement with available experimental data, it is suffi-
cient to impose a linear field dependence on the threshold
difference A only, keeping all other parameters field indepen-
dent. Thus, inverting known scattering experimental data,
one can find all the parameters defining the Cox potential,
obtaining in this way a simple analytical model of the atom-
atom scattering process in the presence of a magnetic field.

The position of the highest bound (or virtual) state is cru-
cial in describing the resonance phenomena of interatomic
collisions. In an s-wave single-channel system, the scattering
process becomes resonant at low energy when a bound or
virtual state is located near the threshold, a phenomenon
known as potential resonance. In a multichannel system, the
incoming channel (which is always open) may be coupled
during the collision process to other open or closed channels,
corresponding to different spin configurations. When a
bound state in a closed channel lies near the collision energy
continuum, a Feshbach resonance [1,2] may occur, giving
rise to scattering properties that are tunable by an external
magnetic field. In Ref. [7], some interesting examples of the
interplay between a potential resonance and a Feshbach reso-
nance are considered. Below, we adjust the analytically solv-
able model based on the Cox potential for describing the
same phenomena.

Typically, the coupling between the closed and open chan-
nels is rather small; we thus consider first an uncoupled limit
of the Cox potential, i.e., Vi, (r)— 0, which corresponds to
B—0. In this case, the Jost determinant (30) has the follow-
ing zeros:

kl’2=—ia1, p]‘zz + i\'a%'i'A, (51)
and
. N
Pia=—lay, kyu==* l\r'a%—A. (52)

According to Eq. (35), the energies of these unperturbed (i.e.,
with zero coupling) states (called bare molecular states in
Ref. [7]) with respect to the first threshold are

Ep=E ,=-a (53)

and
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EQ=E3’4=—C¥§+A. (54)

It should be noted that in this case Ep belongs to channel P
while E, belongs to channel Q. Hence, «; is associated with
the potential resonance, while «, is associated with the Fes-
hbach resonance. Due to the Zeeman effect, the difference
between the thresholds is a linear function of the magnetic
field,

A(B)=A0+:u“mag(B_B0)s (55)

where B, can be arbitrarily chosen in the domain of interest
and A, is the value of the threshold corresponding to B. If
a1, <0 and the coupling is absent, then the two bound states
cross at A=a§—a$. Note that E, crosses the threshold at
A= a%. When there is a coupling between channels, the levels
Ep and E avoid crossing (see below).

Let us consider the behavior of the scattering length in the
presence of the Feshbach resonance. It is described by the
following formula [5]:

r
a=abg<1—B_";0>. (56)

Here, By, is the position of the magnetic Feshbach resonance
and 'y is its width (in terms of magnetic field).

In particular, Eq. (47) shows that such an infinite value of
the scattering length occurs for the Cox potential at a thresh-
old A, defined by

2
A -B-aw
0— .
@

(57)

Let us now assume for the Cox potential a threshold differ-
ence given by Eq. (55) with such a value of A,. Expanding
Eq. (47) near this resonance one gets
A-A —
2[1+ 0+"']K1V/A_Q(\’A0+a2)
| — K 2A0

a= 1+ s
Ky (a;—K)(Ag—A)

(58)
which has the form (56) with the width
26V Ag(VAg + @)

lu'mag(al - Kl)

B s (59)

and the background scattering length

11
Apg=——"—. (60)

Koo
As shown in Ref. [7], the background scattering length
ay, is due to the open-channel potential. Indeed, Eqs. (47)
and (60) show that, for our model, ap,=limg o a. When
there is a bound or virtual state close to threshold, it can be
further decomposed as a sum of two contributions: a stan-
dard potential part, which depends on the potential range,
and a potential-resonance part, which depends on the bound-
or virtual-state energy. This decompostion clearly appears in
our model: in formula (60), the first term is proportional to
1/ kK, the parameter that defines the range of the open-
channel potential [see Egs. (26a) and (26b)]; it may thus be
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FIG. 5. Energies of bare (dashed lines) and dressed (solid lines)
states as functions of the magnetic field B for the Cox potential
defined by parameters (61a)—(61d). The transition between a Fesh-
bach resonance, a virtual state, and a bound state is shown in the
inset for the @ solid line. The dressed ground state is shown by the
B solid line.

considered as the standard potential part of the background
scattering length. The second term is associated with the
P-channel bound (or virtual) state in the uncoupled limit.
Hence, it may be interpreted as the potential-resonance part
of the background scattering length. Let us further consider
two different possibilities giving rise to a large (either posi-
tive or negative) background scattering length.

B. Interplay between a bound state and the Feshbach resonance

The first possibility occurs when the highest bound state
is located near the threshold, i.e., when a;=<0. In Fig. 5, we
show energies as functions of the magnetic field when chan-
nel P has a bound state just below the threshold, for

B=0.05, (61a)

@ ==\, =—-0.103, (61b)
a,=-05, 61c)

Kk =1. (61d)

Without coupling between the channels (8=0), the energies
E=k? of the bare bound states with respect to the first thresh-
old are shown in Fig. 5 by the dashed horizontal [see Eq.
(53)] and slanted [see Eq. (54)] lines respectively, as func-
tions of the magnetic field B. We are using arbitrary units and
choose A(B)=0.35-B in Eq. (55).

For the coupled case, the B-behavior of the (dressed)
ground state is shown by the M solid line and it now avoids
crossing with the (dressed) excited state (cf. [7]) which is
shown by the @ solid line.

For the fields B>0 and up to a value B=B; (which we
define below), the excited bare state in Q space becomes a
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FIG. 6. Phase shifts and graphical representation of Eqgs. (34a) and (34b) for the Cox potential defined by parameters (61a)—(61d). The
B corresponds to the position of the dressed ground state. The @ corresponds to the virtual state which transforms into a bound state. The
O corresponds to the virtual state. The columns correspond to different values of the magnetic field: B= (a) 0.05; (b) 0.1; (c) 0.1235; (d)

0.125; (e) 0.24.

resonance and the corresponding Jost determinant zero shifts
from the real axis in the k plane to the lower half of the
complex k plane and from the imaginary axis in the p plane
it shifts to the upper half plane. Recall that, according to our
convention (40), we show the real part of k> for the reso-
nance in Fig. 5, which may be negative. For any complex
zero of the Jost determinant there exists another zero with the
opposite sign of the real part. With the growth of B, these
two zeros move toward each other, approaching the imagi-
nary axis from different sides, where they merge, thus defin-
ing the point B=B;=0.12. At this point the zeros become
purely imaginary [@ and O in Figs. 6(c)-6(e)] which corre-
sponds to appearance of two virtual states and the discon-
tinuous slope of the real part of the energy clearly visible in
Fig. 5. With further increase of the magnetic field, one of
these virtual states (@ solid line in Fig. 5 and @ in Fig. 6)
tends to the threshold, while the other virtual state (not rep-
resented in Fig. 5, O in Fig. 6) goes down along the imagi-
nary axis. At By=0.124, the virtual state crosses the threshold
and becomes a bound state; the scattering length thus goes
through infinite values at that field: this is the magnetic-
Feshbach-resonance phenomenon itself. Above B, the model
has two bound states, the energies of which tend to the bare-
state energies when the field continues to increase.

Following Ref. [7], we stress that, although the behavior
of the dressed states shows some resemblance to the two-
level Landau-Zener description, this model does not include
the threshold effects shown in Fig. 5 and, hence, cannot be
used to properly describe the interplay between a potential
resonance and a Feshbach resonance. With respect to Ref.
[7], our model displays a slightly more sophisticated behav-
ior for the state energies (compare our Fig. 5 with their Fig.
4). A more significant difference of our description is the
direct knowledge of the coupled-channel potential corre-
sponding to these energies. This potential is shown in Fig. 7
for B=0.1. The potential form factor changes slowly with the
change of the magnetic field, which is mainly responsible for
the variation of A.

The value of «; chosen in Eq. (61d) is arbitrary. However,
the necessary and sufficient condition to get a Cox potential
without singularity requires then that the bound-state ener-
gies of the model should be larger than —1. Figure 5 shows

that this condition will be satisfied for a limited range of
magnetic field only. For higher fields, a larger «; should be
chosen.

The phase shifts of the same Cox potential, as well as a
graphical representation of Egs. (34a) and (34b), are shown
in Fig. 6 for different values of B. The first and the last
columns correspond to a large positive background scattering
length (ape~ 1/N\;,~10), due to a bound state close to the
threshold.

Physically, this occurs for the 13Cs atom-atom interaction
[21], for instance. Figure 6(b) illustrates the case where the
scattering length is close to zero. The calculation or measure-
ment of the zero of the scattering length plays an important
role in determining the resonance width [22]. The phase-shift
behavior for the virtual state and bound state close to thresh-
old is shown in Figs. 6(c) and 6(d), respectively. In this case,
the scattering length is very large and its sign changes while
the energy of the zero of the Jost-matrix determinant crosses
the threshold. Recalling that the intersection points in the
graphical representation of Egs. (34a) and (34b), shown in
the second row of Fig. 6, give the positions of bound and
virtual states, one may establish a correspondence between
the second row of Fig. 6 and the motion of the corresponding
zeros in the complex plane described above.

C. Interplay between a virtual state
and the Feshbach resonance

Another interesting possibility occurs when there is a vir-
tual state close to the threshold, i.e., when a;=0. This is the

V(r)
—————— e
F r
1 3 4 5
-0.5
-1
-1.5
-2

FIG. 7. Cox potential defined by parameters (61a)—(61d) for B
=0.1; Vp and V+A are represented by solid lines, Vj, by a dashed
line.
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FIG. 8. Cox potential describing the Feshbach resonance in S°Rb, defined by parameters (64a)—(64e), plotted at B=14.5 mT

(A=0.059 036 3a,°).

case of the **Rb atom-atom interaction, for example. We will
use rubidium scattering data [7,23] in this example, and work
with units =2u=1, where w is the reduced mass of the two
atoms. The length unit is chosen as the Bohr radius a; en-
ergies are thus expressed in units of aaz. According to Ref.
[7], the bare virtual state is located at A,=—1.78 X 10‘3a61,
but this value is associated with the model they used in their
calculations. We just consider A, ~—107%a;" and set Eq. (60)
as a constraint between a;=-\, and k. In order to fit the
scattering-length ~ behavior  (56) with — ap,=-443 ay,
By=15.5041 mT, and ';=1.071 mT, we use Eq. (47). The
value of B defines, in particular, the position of the Feshbach
resonance, i.e., the magnetic field B, for which the bound
state crosses the threshold. According to Eq. (41), one has

B=Nan(ar+\Ay),

where A is the value of the threshold corresponding to B,
The value of «,, defining the width of the Feshbach reso-
nance I'g, should be found from the condition a(By+1"5)=0.
Then, according to Eq. (47), we find

(62)

_a[VABy + Tp) = VA
K1

where A(=2471.386 MHz and p,n,,=—36.4 MHz/mT [7].
To get that value of A, we have used the known value of the
threshold at zero magnetic field [23] and assumed that Eq.
(55) is valid down to that field.

From Eq. (60), we may fix xj=a;/(1+ana;) at ay,
=-443q, and find the values of all parameters defining the
potential at the given position of the Feshbach resonance and
with the given value of the background scattering length:

—VA(By+Tp), (63)

ap

B=10.020 236 6a;', (64a)

a ==\, =22 X 1073q;", (64b)
a, =—0.239 343qa;", (64c¢)

Ky = 0.0866a,", (644)

Ky =i + A =0.078 966 8 — 0.856 899Ba;'. (64¢)

The value a;=2.2X 10‘3a61 was chosen to get a smooth po-
tential Vp without a repulsive core. This potential is shown in

Fig. 8 and, once again, has a form factor rather independent
of the field, except for the threshold.

In Fig. 9, we show that, with these parameters, the Cox-
potential scattering length (47) reproduces the Feshbach-
resonance scattering length (56) with good precision.

The behavior of the phase shifts in the region with the
resonant and virtual states is shown in the first row of Fig.
10. A similar discussion to that of Fig. 6 can be made here,
except that here the large negative background scattering
length results in a large positive slope for the phase shift at
the origin.

Exactly at By=15.5041 mT, when the bound state trans-
forms into a virtual state, the phase shift starts from 77/2. The
second row of Fig. 10 shows the corresponding behavior of
the bound- and virtual-state zeros on the wave-number
imaginary axes, confirming the above analysis.

Similarly to the interplay between the ground state and
the Feshbach resonance discussed in detail in the previous
section, Fig. 11 shows the interplay between the virtual state
and the Feshbach resonance, where the corresponding ener-
gies E=k? are plotted as functions of the magnetic field B (as
in the previous section, for the resonance we show Re k% in
Fig. 11). The bare bound state of channel Q is represented by
the slanted dashed line. The bare virtual state of channel P,
which is located at A\,=—2.2 X 10~3a;", is not shown in Fig.
11. The dressed states are indicated by solid lines. When
B<By=15.5041 mT, there exist both a virtual state [l in
Fig. 10(a)] and a Feshbach resonance, the energies of which
tend to the bare-state energies for small B. The virtual state

1000

a (in units of ay)

—-1000

—-2000

B (mT)

FIG. 9. Solid line: Feshbach-resonance scattering length (56) for
the ®Rb parameters [7,23]. Dots: Cox-potential scattering length
(47) for the parameters (64a)—(64e).
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FIG. 10. Phase shifts and graphical representation of Egs. (34a) and (34b) for the Cox potential defined by parameters (64a)—(64¢). The
symbols @, O and B label positions of the Jost-determinant zeros. The columns correspond to different values of the magnetic field: (a)
B= (a) 14.454; (b) 15.504; (c) 15.854; (d) 19.0 mT. In the last column, O and B correspond to the zeros, which are not visible in that scale.

becomes a bound state at B=B,, [see B solid line in the inset
in Fig. 11 and Fig. 10(b)]. With increasing B, the real part of
the resonance energy decreases and at B=16.657 mT it
crosses the threshold. Finally, at B=16.9 mT, the two reso-
nance zeros collapse and produce two virtual states, one of
which stabilizes at \,=—-2.2 X 10_3“61 (® in Fig. 10; the
other one has a much larger negative energy and is not rep-
resented, as it does not affect the low-energy scattering prop-
erties). The behavior of the curves in Fig. 11 is very similar
to those of Fig. 5, in particular regarding the transformation
of the Feshbach resonance into a virtual state. The only dif-
ference between the present case (avoided crossing between
a virtual state and a Feshbach resonance) and the previous
case (avoided crossing between a bound state and a Feshbach
resonance) is that here a virtual state transforms into a bound
state before the crossing, while there a virtual state trans-

'
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I

virtual state

bound state

E (10%ag%)

0.002 resonance
0.001
g .
@ 15 16 w7
= T X virtual state
virtual state e
—-0.001 bound state
L] <
—0.002

B (mT)

FIG. 11. B dependence of the energies of the bare (dashed lines)
and dressed (solid lines) states for the Cox potential defined by
parameters (64a)—(64¢). The M solid line corresponds to the trans-
formation from the virtual into the bound state. The @ solid line
corresponds to the transformation from the resonance into the vir-
tual state.

forms into a bound state after the crossing. Another interest-
ing comparison is between our Fig. 11 and Fig. 5 of Ref. [7];
it would be instructive to perform a detailed comparison of
the two models to explain the differences between these two
figures.

As for the interplay with a bound state, Fig. 11 also shows
some limit on the range of magnetic field on which our
model can be used: since «; is fixed in Eq. (64d) and the
bound-state energy should be larger than —/<%~—O.OO75aa2
(otherwise the potential becomes singular for some value of
r), the field should be lower than 24.5 mT.

V. CONCLUSION

In this work, we have derived the exactly solvable
N-channel Cox potential from a supersymmetric transforma-
tion of the vanishing potential and we have established dif-
ferent parametrizations of this potential, as well as a neces-
sary and sufficient condition for its regularity. In the N=2
case, a full analysis of the corresponding Jost matrix has
been carried out. In particular, the structure of the zeros of
the Jost determinant has been presented geometrically. With
ultracold gases in mind, we have also studied the low energy
S matrix and the scattering length of the Cox potential. Using
the independence of scattering properties from interaction
details in the regime with a large scattering length, a model
of alkali-metal atom-atom scattering has been constructed.
This provides interesting exactly solvable schematic models
for the interplay of a magnetically induced Feshbach reso-
nance with a bound or a virtual state close to threshold.

We consider the development of supersymmetric transfor-
mations as a very promising tool for the multichannel inverse
scattering problem and for the construction of more ad-
vanced exactly solvable coupled-channel models. In particu-
lar, iterations or chains of transformations might lead to more
complicated Jost functions, with arbitrary numbers of bound
states and resonances, hopefully still with a tractable connec-
tion between potential parameters and physical observables.

As far as physical applications are concerned, atom-atom
interactions are both very interesting today, due to the active
research field of ultracold gases, and rather simple with re-
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spect to supersymmetric quantum mechanics, as only s
waves have to be considered and as the interaction is short
ranged (no Coulomb term). We foresee applications of the
present model to other systems presenting these simple fea-
tures, namely, coupled s-wave baryon-baryon interactions,
with at least one neutral baryon. In the longer term, we hope
to generalize our method to higher partial waves and to Cou-
lomb interactions. This should allow us to construct useful
models in the context of low-energy nuclear reactions, the
field that first motivated the work of Feshbach [1,2] on
coupled-channel resonances, leading to possible applications
in nuclear astrophysics and exotic-nuclei low-energy reac-
tions.
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