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We have calculated S-wave resonances in the positron-sodium system using the stabilization method in the
framework of hyperspherical coordinates. Resonances below the Ps�n=2� threshold have been investigated. We
have located all the previously known S-wave resonances by Kar and Ho �Eur. Phys. J. D 35, 453 �2005�� and
Ward et al. �J. Phys. B 22, 3763 �1989�� and observed relatively good agreement for the resonance positions.
In addition, two new higher-lying resonances associated with the Ps�n=2� threshold are found to be at energies
of −0.066 56 and −0.063 53 a.u.
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I. INTRODUCTION

There has been continuous interest in the investigation of
atomic resonances involving positrons �1–13�, among which
the positron-alkali-metal atom scattering has attracted con-
siderable attention because of its unique opportunity for
studying the positronium �Ps� formation �11–13�. The pio-
neering work on resonance phenomena in positron-alkali-
metal systems has been performed by Ward et al. �11� using
the close-coupling method with a model potential to describe
the interaction between the active electron and the ionic core.
However, no positronium formation channel has been in-
cluded in their calculations. Recently, Kar and Ho �13� have
studied the resonances in the e+-Na system using the stabili-
zation method with Hylleraas-type basis functions and ob-
tained the resonances associated with the Na�3p� and Na�4s�
thresholds. Although the resonance energies of Kar and Ho
�13� are in reasonable agreement with those of Ward et al.
�11�, the resonance widths determined by these two groups
are in disagreement. Up to now, only these two investiga-
tions on the resonance phenomena in the e+-Na system have
been reported. It should be noted that the resonances associ-
ated with the positronium thresholds have not been explored
in a definitive way for the e+-Na system. Although Kar and
Ho �13� have found the higher-lying resonances converging
to the Ps�n=2� threshold through the stabilization plots, they
have failed to extract the precise resonance parameters. The
attractive interaction between the active electron and the pos-
itron leads to the formation of a positronium cluster in the
outer valence region of the atom, resulting in the slow con-
vergence for the binding energy. Thus an extraction of
higher-lying resonances is not an easy task.

In this paper, we will focus on searching for S-wave reso-
nances in the scattering of a positron from the atomic sodium
using the stabilization method in the framework of hyper-
spherical coordinates. The hyperspherical method has been
successfully applied to resonance calculations by several au-
thors �3–5,14�. However, these calculations have been based
on the scattering approach for the determination of resonance
parameters. The stabilization method, on the other hand, is
one of the simplest and powerful tools for studying reso-

nances, which needs only the diagonalization of a real matrix
with the varying box size L to obtain the stabilization dia-
gram. The flat plateau in the vicinities of avoided crossings
corresponds to the occurrence of a resonance for a particular
system concerned. The physical origin of the flat plateau is
that a resonance scattering wave function is localized at short
range, and as such, the resonance energy is stabilized. By
calculating the density of resonance states in the vicinity of
the avoided crossing, one can obtain the resonance energy Er
and the resonance width � �12,15�. The hyperspherical po-
tential curves, on the other hand, provide a useful means for
locating the resonance positions and for understanding why
they are formed �3,14�.

Recently, we developed a computational scheme to calcu-
late the binding energies and geometrical properties for the
e+-Na and the e+-Li systems using the hyperspherical
method �18�. Our results are in good agreement with the best
calculations using the fixed-core stochastic-variational
method �FCSVM� �19�. In the present study, we will use the
same method to solve the energy eigenvalue equation for
different box size. By adjusting the knot distribution of
B-splines to characterize the behavior of channel functions, a
great improvement over the convergence of potential curves
can be achieved. Therefore highly accurate potential curves
and channel functions can be obtained, which is essential for
extracting higher-lying resonances.

II. THEORY

We treat the e+-Na system as a three-body one which
consists of a core, an electron, and a positron. The core is
assumed to have infinite mass. We use re, rp, and rep to
represent the electron-core distance, the positron-core dis-
tance, and the electron-positron distance, respectively. The
angle between re and rp is denoted by �. The hyper-radius R
and the hyperangle � are defined by

R = �re
2 + rp

2 �1�

and
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tan � =
rp

re
, �2�

respectively. Atomic units are used throughout unless other-
wise stated. Since we consider states with J=0 only, the
Schrödinger equation then involves only the three internal
coordinates R, �, and �. We first rescale the original wave
function � according to �16�

��R,�,�� = ��R,�,��R3/2 sin � cos � . �3�

Then the Schrödinger equation can be recasted into

�−
1

2

�

�R
R2 �

�R
+ Had�R,�,�����R,�,�� = R2E��R,�,�� ,

�4�

where Had is the adiabatic Hamiltonian

Had�R,�,�� =
�2 − 1

4

2
+ R2V�R,�,�� �5�

with

�2 = −
�2

��2 −
1

sin2 � cos2 � sin �

�

��
�sin �

�

��
� �6�

and V�R ,� ,�� is the interaction among the three particles.
The adiabatic potentials and channel functions are defined as
the solutions of the adiabatic eigenvalue equation:

Had�R,�,���	�R,�,�� = U	�R��	�R,�,�� . �7�

The channel functions can be expanded in terms of B-splines
as follows:

�	�R,�,�� = �
i

N�

�
j

N�

ci,j

 Bi���Bj��� , �8�

where N� and N� are the sizes of basis sets in the � and �
directions, respectively. At this stage, the accurate potential
curves and channel functions can be obtained by building up
the behavior of channel functions explicitly into the knot
distribution of B-splines. The details can be found in �17,18�.
Equation �4� can be solved using the slow variable discreti-
zation �SVD� method. We only present the formulas that are
used in the current work. The detailed description of the
SVD method can be found in �20�. The solution ��R ,� ,�� of
Eq. �4� is expanded in terms of pointwise DVR �discrete
variable representation� basis functions � j�R� which are con-
structed from Laguerre polynomials Ln

��R /
� with �=3 and
the scaling factor 
=L /RN, where RN is the Nth zero of
LN

��R� and L is the size of the system:

��R,�,�� = �
j=1

NDVR

�
�=1

N�

cj�� j�R����Rj,�,�� �9�

with NDVR being the number of terms in the DVR basis set
and N� the number of coupled channels. We rewrite the
hyper-radial Schrödinger equation, Eq. �4�, in the form of

�
j=1

NDVR

�
�=1

N�

�Kij − E�ij�Oi	,j�cj� + U	�Ri�ci	 = 0, �10�

where

Kij = 	
0

�

�i�R��−
1

2�

�

�R
R2 �

�R
�� j�R�dR ,

�ij = 	
0

�

�i�R�� j�R�R2dR , �11�

and

Oi	,j� = 
�	�Ri,�,������Rj,�,��� �12�

is the overlap matrix element between two adiabatic chan-
nels defined at different Gauss-Laguerre quadrature points.

To extract the resonance energy Er and the resonance
width �, we first plot the stabilization diagram versus the
varying box size L and then calculate the density of reso-
nance states for two energy levels at the avoided crossing
with the help of the following formula �15�:

�n�E� = 
En�Li+1� − En�Li−1�
Li+1 − Li−1



En�Li�=Ei

−1

, �13�

where the index i indicates the ith value of L. After calculat-
ing the density of resonance states �n�E� with the above for-
mula, we fit it to the following Lorentzian form that involves
the resonance energy Er and the width �:

�n�E� = y0 +
A

�

�/2
�E − Er�2 + ��/2�2 , �14�

where y0 is the baseline offset, A is the total area under the
curve from the base line, Er is the center of the peak, and �
is the full width of the peak of the curve at half height.

III. RESULTS AND DISCUSSION

In order to test the validity of our approach, we first cal-
culate the S-wave resonances below the Ps�n=2� threshold in
the Ps− system and then compare with other more elaborated
calculations �10,14,21–25�.

A. Ps− results

For the Ps− system, we use the Jacobi coordinates which
are different from the hyperspherical coordinates that will be
used for the e+-Na system. The hyper-radius R is defined by
R2= 1

2�1
2+ 3

2�2
2, where �1 is the distance between the two elec-

trons and �2 is the distance between the center of the two
electrons and the positron. We have computed the energy
eigenvalues for 541 different L values within the range of
L=101–155 a.u., in intervals of 0.1 a.u. The basis-set
parameters used are N�=30, N�=50, NDVR=50, and N�

=20, keeping the hyperspherical potential curves to have at
least seven significant digits for the lowest 30 curves. The
calculated ground state energy for this system is
−0.262 005 01 a.u. with L=100 a.u., in comparison with
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the more accurate variational result of Frolov �26�
−0.262 005 070 232 980 107 770 375 a.u.

The stabilization diagram in Fig. 1 clearly shows the sta-
bilization character near the energy Er=−0.076 and
−0.063 a.u., respectively, which are believed to be associated
with the Ps�n=2� threshold energy of −0.0625 a.u. Figures
2�a� show the density of resonance states �n�E� with varying
energy eigenvalue E for the lowest resonance below the
Ps�n=2� threshold. The solid circles are the results of actual
calculations for �n�E� and the solid line is the fitted Lorent-
zian form. The resonance energies are thus determined
to be Er=−0.076 030 3 and −0.063 643 1 a.u. with the
corresponding resonance widths of �=0.000 043 0 and
0.000 011 3 a.u., respectively.

Table I lists a comparison of our results for the S-wave
resonances in Ps− below the n=2 threshold with other more
elaborated calculations. Our calculations are in good agree-
ment with the results of Ho �21�, as well as with the results
of Li and Shakeshaft �24�, which are obtained by the method
of complex-coordinate rotation, except for the width of 2s3s
where the value of Li and Shakeshaft is smaller than the
values of Ho and ours. Similar comparison can be made with
the results of Zhou and Lin �14� using the close-coupling
method in hyperspherical coordinates. In summary, we have
successfully applied our method to the Ps− system for both
bound and resonance states. Let us now shift our attention to
the e+-Na system.

B. e+-Na results

For the e+-Na system, the interaction among the three
charged particles is given by

V�R,�,�� = V−�re� + V+�rp� + V�rep� , �15�

where V−�re� is the model potential describing the interaction
between the valence electron and the core, V+�rp� is the
model potential between the position and the core, and V�rep�
is the model potential between the electron and positron. The
model potential for the valence electron and the core has the
form

V−�r� = −
1

r
�Zc + �Z − Zc�e−a1r + a2re−a3r� −

ac

2r4�W3� r

rc
��2

,

�16�

where

TABLE I. Comparison of the S-wave resonance Er and width � below the n=2 threshold for the Ps− system with other calculations, in
atomic units.

Present work Ho �21� Li and Shakeshaft �24� Papp et al. �6� Zhou and Lin �14� Toyota and Watanabe �23�

2s2s Er=−0.0760303 Er=−0.07603040 Er=−0.07603044 Er=−0.07595 Er=−0.07604 Er=−0.076029875

105�=4.30 105�=4.3 105�=4.30345 105�=4.25 105�=4.35 105�=4.3094461

2s3s Er=−0.0636431 Er=−0.06365 Er=−0.06364918 Er=−0.06365 Er=−0.063675 Er=−0.0636482263

105�=1.13 105�=1.0 105�=0.867850 105�=0.85 105�=0.875 105�=0.873396269

FIG. 1. Stabilization plot E versus L for the S wave in Ps−, in
atomic units.

(b)

(a)

FIG. 2. The fitting of the density of resonance states �solid
circles� to the Lorentzian form for the S wave in Ps−. The full curve
is the fitting. �a� The resonance parameters are determined to be
Er=−0.076 030 3 a.u. and �=0.000 043 0 a.u. �b� The resonance
parameters are determined to be Er=−0.063 643 1 a.u. and �
=0.000 011 3 a.u.
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Wn�r� = 1 − e−rn
�17�

is the cutoff function used to assure the correct behavior at
the origin. The second term in Eq. �16� describes the
polarization of the core, where ac=0.9457 is the Na+ polar-
izability �27�. Also in Eq. �16�, the nuclear charge is Z=11
and the charge of the Na+ core is Zc=1. The remaining pa-
rameters, which are a1=3.324 424 52, a2=0.713 727 98, a3
=1.832 818 15, and rc=0.524 506 38, are fitted by �28� using
the least-squares method to reproduce the experimentally
measured energy levels of the Na atom.

Using the model potential given in Eq. �16�, we have
calculated the energies of the ground and excited states of Na
by diagonalizing the Hamiltonian using B-splines as basis
sets. The calculated energies are nicely comparable with the
experimental results, as shown in Table II. In the table we
also contain the results of Kar and Ho �13� who used a simi-
lar model potential without the core polarization term. Our
results agree with the experimental values, as well as with
the values of Kar and Ho �13�.

For the positron-core potential V+�rp�, the sign of the
static potential in Eq. �16� is changed but the polarization
term remains the same. The rationality of such an approxi-
mation has been discussed in �13,30�. Previous calculations
�13,18,30� indicate that the inclusion of the exchangelike po-
tential would not introduce a significant error into the final
results. Finally, the electron-positron interaction is given by

V�rep� = −
1

�r�p − r�e�
+

�d

re
2rp

2 cos � W3� rp

rc
�W3� re

rc
� , �18�

where the second term is analogous to the dielectronic cor-
rection which ensures that there is no core polarization when
the positron and electron coalesce.

For the e+-Na system, efforts have been made in optimiz-
ing the knot distribution of B-splines to overcome the prob-
lem of slow convergence of the binding energy � and the
satisfying results have been obtained �18�. Table III is the
comparison of our calculations for e+-Na with the other
available results. The values in column three are obtained by
the FCSVM method with the core polarization term included
in the model potential; and the values in column four are
without the core polarization term. In our calculation, since
the polarization term has been included in the model poten-
tial, our results are close to the results of �19�. The value in
column five is given by Le et al. �32� who used the hyper-
spherical method but with much larger sizes of basis sets.

Since the binding energy is more rapidly converged than
the expectation values, smaller basis sets are usually enough
in calculating resonances. We have computed the energy ei-
genvalues for 841 different L values within the range of L
=80–101 a.u., in intervals of 0.025 a.u. The parameters used
are N�=20, N�=63, NDVR=65, and N�=30, keeping the hy-
perspherical potentials to have at least six significant digits
for the lowest 30 curves. The calculated ground state energy
is converged to −0.250 443 a.u. using these parameters. Fig-
ure 3�a� shows the stabilization character near the energy
Er=−0.1105 a.u. Figure 3�b� shows the stabilization charac-
ter near the energies Er=−0.076 −0.070, −0.066, and
−0.063 a.u., respectively. These resonances lie below the
Ps�n=2� threshold −0.0625 a.u. Figure 4 shows the density
of resonance states �n�E� for the lowest resonance. From the
figure, we have located a shape resonance just above the
Na�3p� threshold of −0.111 538 a.u. A fit to the formula of
Eq. �14� has yielded the resonance position of Er=
−0.110 833 0 a.u. and the width of �=0.000 041 a.u. The
reason for its formation can be understood by examining the
hyperspherical potential curves.

In the adiabatic hyperspherical approach, the Schrödinger
equation for the system can be written as �16�

�−
1

2

d2

dR2 +
U��R�

R2 + W���R� − E�F��R� = 0, �19�

where

W���R� = −
1

2
����R,�,��
 d2

dR2
���R,�,��� �20�

is the diagonal coupling term. It can be shown �33,34� that
the ground state energy obtained by solving Eq. �19� is an

TABLE II. Comparison of the calculated bound state energies of
Na with the experiment values, in atomic units.

Na

State Present Experiment �29� Kar and Ho �13�

3s −0.188855 −0.18886 −0.18886

3p −0.111538 −0.11154 −0.11152

4s −0.071581 −0.07158 −0.07158

3d −0.055941 −0.05594

4p −0.050939 −0.05094 −0.05102

TABLE III. Energies and various expectation values �in atomic units� for e+-Na. The parameters used are
L=250, N�=123, N�=20, NDVR=70, and N�=20.

e+Na

Quantity Present
FCSVM with

polarization �19�
FCSVM without
polarization �31�

Hyperspherical
�32�

E −0.250447 −0.250473 −0.250177

� 0.000447 0.000473 0.000177 0.000453


re� 17.12 16.818 23.73


rp� 17.52 17.231 24.00


rep� 3.159 3.162 3.09
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upper bound to the true ground state energy. If we solve Eq.
�19� without W���R�, the ground state energy obtained in
this way is a lower bound to the ground state energy. Equa-
tion �19� is similar to the single-particle radial Schrödinger
equation with the potential V��R�= �U��R� /R2�+W���R�.
The positron-sodium scattering is thereby reduced to the po-
tential scattering problem with the potential V��R� for each
channel �, and the properties of bound states or scattering
states for each channel � are related directly to the shape of
the potential V��R�.

The calculated S-wave hyperspherical potential curves
V��R� for the e+-Na system are shown in Fig. 5. The solid
horizontal lines indicate the different dissociation thresholds
and the dotted lines are the positions of the resonances. The
potential curve V��R� converging to the Na�3p� threshold
has a potential barrier which supports the shape resonance as
seen in Fig. 5.

Figure 6 shows the density of resonance states �n�E� for
the second and third resonances, respectively. The fitting of
Fig. 6�a� gives rise to a Feshbach resonance below the
Na�4s� threshold with the resonance position of Er=
−0.076 801 0 a.u. and the width of �=0.000 140 a.u. Simi-
larly, the fitting of Fig. 6�b� gives rise to a shape resonance
just above the Na�4s� threshold with the resonance position
of Er=−0.070 940 1 a.u. and the width of �=0.000 047 a.u.
To analyze the origin of these resonances, it is useful to
examine the hyperspherical potential curves V��R� near this
energy region in Fig. 5. These two resonances are related to
the potential curve V��R� converging to the Na�4s� threshold
−0.071 581 a.u., which has an attractive well at small R and
a potential barrier at large R. More importantly, Fig. 5 indi-
cates that the lowest curve from the Na�4s� and the Ps�n
=2�+Na+ threshold interacts with each other strongly, show-
ing a pronounced avoided crossing at R�40 a.u. Such an
avoided crossing may modify the spectral behavior of those
obtained using a single isolated potential curve. For example,
the resonance without considering the coupling would yield
the energy E=−0.0762 a.u.

Figure 7 is the density of resonance states �n�E� for the
fourth and fifth resonances, respectively, which are believed
to be associated with the Ps�n=2� threshold. Figure 7�a�
shows the resonance parameter of Er=−0.066 560 6 a.u. and
�=0.000 061 a.u. Figure 7�b� shows the resonance param-
eters of Er=−0.063 530 1 a.u. and �=0.000 041 a.u.

It should be mentioned that the last two resonances asso-
ciated with the Ps�n=2� threshold were not obtained by the

(b)

(a)

FIG. 3. Stabilization plot E versus L for the S wave in e+-Na, in
atomic units.

FIG. 4. The fitting of the density of resonance states �solid
circles� to the Lorentzian form for the S-wave e+-Na system. The
full curve is the fitting. The resonance parameters are determined to
be Er=−0.110 833 0 a.u. and �=0.000 041 a.u.

FIG. 5. The hyperspherical potential curves V��R�=
U��R�

R2

+W���R� �dashed line� and
U��R�

R2 �solid line� for the e+-Na system
are shown as functions of the hyperspherical radius. These are the
only curves which support resonances in our calculation. The solid
horizontal lines indicate the different thresholds and the dotted lines
represent the resonance positions. The inset is the magnification of
a part of the lowest curve.
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previous two calculations �11,13�. We may give a convincing
argument that the resonances indeed occur near the Ps�n
=2� threshold by examining the hyperspherical potentials in
Fig. 5. One of the potential curves converging to the Ps�n
=2� threshold has an asymptotic attractive dipole potential
due to the degenerate Ps�n=2� states. This adiabatic potential
curve supports an infinite series of bound states just below
the Ps�n=2� threshold. The two lowest of which are found to
be located at −0.0675 and −0.0639 a.u. by solving Eq. �19�

without the coupling term W���R�. They shift slightly into
−0.0658 and −0.0634 a.u., respectively, after the coupling
term W���R� is included. These bound states turn into Fesh-
bach resonances when coupled with open channels. There-
fore we believe that these two higher-lying resonances in-
deed exist.

The convergence studies of the resonance parameters Er
and � have been done by using different sizes of basis sets as
shown in Table IV. One can see that the results are quite

TABLE IV. Convergence study of the resonance energy Er and width � for the e+-Na system below the Ps�n=2� threshold, in atomic
units.

s�1� s�2� s�3� s�4� s�5�

N�=63, N�=20 Er=−0.1108334 Er=−0.0768072 Er=−0.0709459 Er=−0.0665665 Er=−0.0635305

NDVR=60, N�=20 �=0.000046 �=0.000143 �=0.000048 �=0.000059 �=0.000045

N�=83, N�=20 Er=−0.1108336 Er=−0.0768072 Er=−0.0709467 Er=−0.0665666 Er=−0.0635305

NDVR=60, N�=20 �=0.000046 �=0.000142 �=0.000048 �=0.000059 �=0.000045

N�=83, N�=30 Er=−0.1108336 Er=−0.0768102 Er=−0.0709467 Er=−0.0665666 Er=−0.0635305

NDVR=60, N�=30 �=0.000046 �=0.000142 �=0.000048 �=0.000059 �=0.000045

N�=83, N�=30 Er=−0.1108330 Er=−0.0768010 Er=−0.0709401 Er=−0.0665606 Er=−0.0635301

NDVR=65, N�=30 �=0.000041 �=0.000140 �=0.000047 �=0.000061 �=0.000041

(b)

(a)

FIG. 6. The fitting of the density of resonance states �solid
circles� to the Lorentzian form for the S-wave e+-Na system. The
full curve is the fitting. �a� The resonance parameters are Er=
−0.076 801 0 a.u. and �=0.000 140 a.u. �b� The resonance param-
eters are Er=−0.070 940 1 a.u. and �=0.000 047 a.u.

(b)

(a)

FIG. 7. The fitting of the density of resonance states �solid
circles� to the Lorentzian form for the S-wave e+-Na system.
The full curve is the fitting. �a� The resonance parameters are
determined to be Er=−0.066 560 6 a.u. and �=0.000 061 a.u. �b�
The resonance parameters are Er=−0.063 530 1 a.u. and �
=0.000 041 a.u.
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stable as the sizes of basis sets increase. The resonance po-
sition Er and width � are converged to at least 10−5. Table V
presents a comparison of our results with other theoretical
calculations. The lowest three resonances have also been ob-
tained by Kar and Ho �13�, as well as by Ward et al. �11�.
Our results for the resonance energy Er are in reasonable
agreement with theirs. However, our values for the resonance
widths differ considerably from that of Ward et al. �11� and
Kar and Ho �13�, which in turn also disagree with each other.
We should mention that the positronium channels were not
included in the Ward et al. work �11�. The discrepancies in
width with Ward et al. may be due to the omission of the
positronium channel in their calculations. There are also
large discrepancies between our widths and those given by
Kar and Ho �13�, which is presumably due to the use of
different model potentials in their calculations. More impor-
tantly, the core polarization term was not included in their
model potentials. It has been demonstrated that the core po-
larization plays an important role in positron-alkali-metal
systems. The work by Ward and Shertzer �35� for the e+-Li
system shows that the inclusion of the core polarization term
in the model potential results in an increase in the positro-
nium formation cross section. As for the e+-Na system,

changes in the core polarization potential can lead to greater
changes in the binding energy and expectation values �18,36�
as seen in Table III.

For the last two higher-lying resonances, no other theoret-
ical and experimental investigations have been reported. Al-
though Kar and Ho �13� have observed higher-lying reso-
nances converging to the Ps�n=2� threshold using
stabilization plots, they have failed to extract the resonance
parameters. The present method combined with more con-
verged basis sets has enabled us to determine the positions
and widths for the two higher-lying resonances. We believe
that our results are reasonably accurate, as the convergence
for the resonance parameters Er and � is very well and the
model potential between the electron and the core is capable
of producing energy levels which nearly match the experi-
mental values.

IV. CONCLUSION

The stabilization method in hyperspherical coordinates
has been used for the first time to study resonance. In order
to check the validity of the method, we have first investi-
gated the S-wave resonances below the Ps�n=2� threshold in
the Ps− system. The good agreement of our results with other
calculations has indicated that our method may be capable of
producing accurate results of resonance parameters for some
atomic systems involving positron.

Using this method, we have also performed the calcula-
tions of S-wave resonances in the e+-Na system below
the Ps�n=2� threshold. The five resonances located
at −0.110 833 0, −0.076 801 0, −0.070 940 1, −0.066 560 6,
and −0.063 530 1 a.u. have been determined, together with
the corresponding resonance widths shown in Table IV. With
the help of the adiabatic potential curves, we have also ana-
lyzed the nature of resonances. Our results have been com-
pared with other calculations available in the literature.
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