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The double-bound analog of the double-continuum three-body Coulomb (C3) wave function, recently intro-
duced by the authors, allows us to propose two different basis sets of correlated functions which can be used
for describing double-bound states. The components of the two basis diagonalize the Coulomb interactions but
differ in the definition of the distortion factor which depends only on the interelectronic coordinate. In the first
set, this factor includes a nonlinear parameter, while the second set contains parameter-free functions. Through
an angular correlated configuration interaction method it is possible to generate highly correlated wave func-
tions for S bound states of heliumlike systems. By construction, these states form an orthogonal set, satisfy all
two-body cusp conditions, and retain the C3 double-continuum character. Even when a limited number of
configurations is included, rather good energy values for the ground and excited states are obtained. A system-
atic improvement by inclusion of more configurations can be easily achieved, in particular with the computa-

tionally efficient, parameter-free basis.

DOLI: 10.1103/PhysRevA.77.012705

I. INTRODUCTION

Understanding the quantum dynamics of a strongly corre-
lated atomic system in collision with charged particles (elec-
trons or ions) and radiation is a fundamental problem in
atomic physics. In particular, the double ionization of two-
electron atomic systems allows one to gain some knowledge
on electron-electron correlations, at the same time, in the
initial (bound) and final (continuum) states. Since the three-
body quantum problem has no known solution, approxi-
mated wave functions are used when calculating double ion-
ization cross sections. A balanced description of the initial
and final two-electron states should avoid spurious contribu-
tions in collision calculations and seems to play a key role in
reproducing experimental data (see more details below). The
purpose of this contribution is to investigate this issue in the
case of the widely used double-continuum three-body Cou-
lomb (C3) wave function [1] [also called the 3C or Brauner-
Briggs-Klar (BBK) model]. A first step toward this aim was
achieved in Ref. [2] where the doubly bound analog of the
C3 wave function was presented. However, since in that ref-
erence the focus was on the ground state, no radial and only
a limited amount of angular correlation was included. Here,
we pursue the investigation by proposing basis sets of C3-
like function. These can be used to construct highly corre-
lated two-electron wave functions for bound § states which
are of the same family as that describing the double-
continuum C3 wave function.

The motivation behind this investigation comes from
a series of recent theoretical results, for both double-
photoionization (DPI) and (e,3e¢) processes on helium,
which need further clarification. The theoretical description
of the DPI process with wave functions, initial and final,
which do not satisfy exactly the same Schrédinger equation
yield gauge-dependent results. Thus, even when approxi-
mated wave functions for the two-electron initial and final
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channels are used, they should be solutions of the same
Hamiltonian, or at least treated with the same level of ap-
proximation; otherwise, discrepancies between gauges are
observed [3,4]. A similar pattern is observed in the case of
double ionization by electron impact. When describing
(e,3e) processes, for example, on helium, unbalanced ap-
proximated wave functions for the initial and final channels
lead to disagreement between the calculated [5-8] and the
experimental absolute cross sections measured at high inci-
dent energy [9]. When the double continuum is described by
the C3 wave function [1], magnitude disagreements are ob-
served if angularly and radially correlated initial wave func-
tions are used [6-8,10,11]. On the other hand, agreement is
found if the initial state is described by simpler functions
which have only angular correlation, defined here as the de-
pendence on the relative interelectronic distance only. Simi-
larly to the C3 double continuum, these functions consist of
the product of two bound Coulomb wave functions for the
electron-nucleus interactions and a distortion function for the
electron-electron interaction; examples used are the Pluvi-
nage [12,13] and C3-like bound wave functions [6-8], or
others [6,7]. However, if more advanced final states are used
in combination with these simple initial states, magnitude
agreement is lost [5,14] (more details can be found in the
Introduction in Ref. [2]).

From these studies, it can be concluded that symmetrical
or quasisymmetrical wave functions for the initial and final
channels (i.e., those which treat correlation with the same
level of approximation) lead to a satisfactory theoretical de-
scription of (e,3e) processes, at least in the high incident
energy regime. However, this conclusion does not apply to
the DPI case [7]. Thus, those functions seem to be balanced
only when applied to the (e,3e) process. It is clearly inter-
esting to investigate the possibility of improving the descrip-
tion of both the bound and continuum two-electron states,
maintaining a similar treatment, and see the effect on double
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ionization cross sections. As concerns the double continuum,
improvements of the original C3 wave function can be
achieved through the introduction of coordinate- or velocity-
dependent effective charges, thus including dynamical
screening. However, the choice of effective charges is arbi-
trary, and the improvement is highly dependent on the kine-
matical conditions of the double ionization process under
scrutiny (see Ref. [2] for a more detailed discussion).

In this contribution, we shall concentrate on improving
the initial double-bound state: our aim is to build highly
correlated two-electron wave functions (including both radial
and angular correlation), which are constructed in a similar
fashion to the continuum C3 wave function. The doubly
bound analog for S states of the C3 continuum wave function
is given by the product of two Coulomb functions associated
to the electron-nucleus dynamics by a distortion factor de-
scribing the electron-electron interaction (thus containing an-
gular correlation only) [2]. The result was obtained by
double analytic continuation of the relative electron-nucleus
momenta to the complex plane [2], leading to a set of two
quantum numbers associated to bound states for each elec-
tron. The relative momentum appearing in the continuum
distortion factor is also analytically continued, and may be
considered either as a nonlinear variational parameter, or as a
source of a new quantum number associated to the interelec-
tronic distance. According to this selection, the correspond-
ing double-bound C3 analog functions can be used to build
basis sets of correlated functions which either depend on
variational parameters or contain parameter-free functions.
These basis sets allow us to construct approximate two-
electron wave functions for § states through an angular cor-
related configuration interaction (ACCI) method imple-
mented along the lines of Refs. [15,16]. The approach of
configuration interaction has been used many times in the
past with various basis functions. Here, differently from what
was previously proposed, each component of the basis sets
preserves the properties of the original C3 bound analog, i.e.,
(i) it satisfies Kato’s cusp conditions [17] at all of the two-
body coalescence points and (ii) it includes an angular cor-
relation which diagonalizes the electron-electron Coulomb
interaction. With both basis sets, the Schrodinger equation is
transformed into a set of linear algebraic equations which
can be easily solved by standard matrix methods. The appli-
cation to the construction of approximate two-electron wave
functions for S states with different degrees of radial and
angular correlation is presented, not only for the ground state
(Z=1-3 of the helium isoelectronic sequence) but also for
excited states (Z=2). It should be mentioned that, though it
is feasible, there is no intention here to obtain highly sophis-
ticated two-electron wave functions.

The rest of this paper is structured as follows. In Sec. II,
we present the double-bound C3-like functions and introduce
the two C3-like basis sets. In Sec. III a configuration inter-
action approach for bound § states is presented, and numeri-
cal results for ground and excited states of two-electron at-
oms are given in Sec. IV. A summary and some perspectives
are given in Sec. V. Atomic units are used throughout.
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II. C3-LIKE FUNCTIONS
A. Double-bound C3-like functions

We first recall that the C3 double-continuum wave func-
tion is defined by [1] the product of two continuum Coulomb
wave functions C(a,k,r) (for electrons 1 and 2 of, respec-
tively, coordinates r; and r, relative to the infinitely heavy
nucleus) and by a distortion factor (for the electron-electron
relative vector rj,=r;—r, part). Using the same notation as
in [2], it is given by

W3 =NesClag, k1) Clas, Ky, 1) D(agn. K .r5) (1)

(we refer to [2] for the differential equation satisfied by this
wave function). k; and Kk, represent the two electron mo-
menta relative to the nucleus, while the relative momentum
k,, is given by

kpp=(k; —ky)/2. ()

The Sommerfeld parameters a; (j=1,2) and a,, defined by

aj=—‘ (j=1,2) and a,= 2k are directly related to the cor-
respondlng Coulomb potennals Here we shall consider the
case of two electrons (z;=z,=-1) in the field of a nucleus of
charge Z.

Consider now the negative energy case (bound case, la-
beled hereafter by a superscript B). To study the double-
bound analog of the C3 continuum wave function it is con-

venient to start from its partial wave expansion [2]

V= ([2 Ry, 4, ()P (cos e.))(li Ri,y(r2)Py (cos @))

><<E Ay (ro) Py, (cos 612)), 3)
!

where P/(cos ) are Legendre polynomials, 6, (respectively,
0,, 0),) is the angle between k; and r; (respectively, k, and
r,, and kK, and ry,). R, K (r;) are the [; radial Coulomb partial
waves (j=1,2),

I'ii+1-ia;)
) = —72a; . S\ TR l;
Ry 4 (rj) = e 2L+ 1) T2l +2) (2ik;r;)

Xe M Fi(l+ 1 - ia;, 21+ 2,2ik;r),

and the Allz’klz are given by

F(1 —iap)l(p+iay,)
Plia;p) 2l =1) 1 !
X Fi(lp+iap, 215+ 2,= 2ikyory)).

—7/2a;,

- !
Apa(ri) = (= ikyarip)™2

We can now perform the analytic continuation by replacing
k; by iZz;/n;, so that ia;=n;, where n;=1,2,3,. .. (j=1,2)
[18]. The two continuum Coulomb partial waves in r; and r,
get transformed into the product @, ; (r1)¢,,.,(r2) of two
radial hydrogenic bound functions of principal quantum

numbers n; and n,, and orbital numbers /; and [,,

27
@u(r) =N, 4" | F, (1 +1-n21+2, —r> ,

n

where the normalization is given by
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N [(2_2)3 (n+1)! ]1/2
T+ )|\ n ) 2n(n-1-1)

and we have explicitly set z;=z,=—1. The bound energy E of

the system becomes E? ——Z _Z The corresponding I" fac-

2nt 2n§°
tors, I'(1+1;—n;), present a plole fé)r zero or negative value of
L+/;—n;. As in the case of the two-body Coulomb problem
(see Ref. [18]), these poles (zeros of the S matrix) remove
the exponentially divergent part of the continuum wave func-
tion leading, thus, to the bound states ¢, ,(r). Since k; and k,
become imaginary by analytic continuation, it is reasonable
to expect the modulus k, to become imaginary as well, so
that ky, can be replaced by a single value ix. However, this
assumption ignores the mathematical link between k|, and
ki, ky [see Eq. (2)]. Indeed, the modulus k12=%(k%+k§
-2k, -k,)""? depends on k,, k, and the angle between k, and
k,.
In terms of the hydrogenic quantum number n,, n,, [;, and
1, and the numbers « and /;,, the doubly bound analog ‘If&
of the continuum W5 is thus given as a triple sum of indi-
vidual terms

Wy =Wes(nyng, k11, 10,1,)

= [‘Pnl,ll(rl)Pll(COS 91)][%2,12(”2)1012(005 92)]

1
X |: 1F1<112 + 2_,2112 + 2,2Kr12)P[12(COS 012):| .

K
(4)

B. C3-like basis sets

In this paper we are interested in generating a basis set
based on the C3 model that can be used to solve the two-
electron Hylleraas equation [see Egs. (14) and (15) below]
for S bound states. For this reason we restrict the function
given by Eq. (4) to the case [,=1,=1,,=0, so that

\Pg3(n17n2’ K) = \I’g:ﬁ(nl’nz, K’O,O’O)

= Ngfi(nl’nbK)(Pnl(rl)(Pnz(rZ)

1
X1F1<Z(,2,2K712>, (5)

where we drop the I’s, and Ng3(nl,n2,/<) is the bound nor-
malization factor.

Two alternative basis sets for S states can be defined with
the bound functions \1'23(111 ,n,,k). The first one,
{WE (n,,n,, Kn,.n,)INL, Named nonlinear and abbreviated NL
hereafter, is constructed in terms of the \1’53(11 1,1y, k) them-
selves. Different nonlinear parameters «, ,, are used for
each pair of n; and n, values, with Knyny=Knyn, by symmetry
constraints. The inclusion of variational nonlinear parameters
in a basis implies the use of optimization techniques which
adds an additional degree of numerical difficulty when solv-
ing the Hylleraas equation (see Sec. III).

A second basis set, named parameter free and abbrevi-
ated PF hereafter, can be constructed by considering  as
a source for a new quantum number. Indeed, by setting
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k==1/(2ny,) (n;,=1,2,...), the correlation function of Eq.

"2

(5) reduces to a Laguerre polynomial L(l)(——) of order
guerre poly P

ny,. With these parameter-free functions, the PF basis set
{Wé(nl ,nz,—ﬁz)}PF can be defined. It is interesting to men-
tion here that n;, might be considered, in addition to n; and
n,, as a third quantum number (one associated to each of the
three relative coordinates ry, r,, and ry,, similarly to the Stur-

mian functions used by Li and Shakeshaft [19]). All La-
guerre polynomials Lilll(—%) have in common the first-order

polynomial L(I])(—rlz):l+% which indicates that all basis
set elements satisfy the correct electron-electron cusp condi-
tion. To avoid repetitions, from a numerical point of view, it
is convenient to use a slightly modified—but equivalent—
basis {®24(n;,n5,115)}pr, Where

1
Ds(ng,ng,nyy) = Ngs(”l’”z’— s )QDnl(rl)GDnz(’”z)anz(rlz)
12

(6)
and
L?)(— ), np=1,
. (rpp) = r
12 Ll(lll)z(_ n_12> —L{(=rp), np> 1
12

Both the PF and NL basis functions are eigenfunctions of
the C3-bound Hamiltonian

17
Hgy=Dy—2k—, (7
(9]"12

with D, given by
1(,92 2 a) uZ
Dy=|-~|—5+———|+—
2\9r; rydr T
1(&2 2 a) 2wZ
t| -\t |+
2 (91"2 r2(‘7r2 72
#2049
+[—<—2+—— +ﬂ, (8)
ari,

r12drp 12
and k=—1/(2n,,) in the PF case. By construction, they diag-
onalize the Coulomb potentials and thus satisfy Kato’s cusp
conditions [17] at the two-body coalescence points.
For the ground state the double-bound C3 model wave

- B 1
function ‘I’C3(n1 ,nz,—anz) reduces to

1 1 r
et o).
2ny, 2nyy 2\ ny,

)

\If§3<1,1,

In particular, when n;,=1, the first-order polynomial leads
exactly to the correlation function suggested by Patil [20]
and the ground-state wave function of our model coincides
with Patil’s proposal,
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1 1
q’é(l,l,— 5) =N(1,1,— E)e-zfﬂrz(l + %) (10)

On the other hand, when n;,— o [or alternatively k— 0 in
Eq. (5)], we obtain the wave function [2]

—
1, (2N\r
\If&(l,l,o)=N€3(1,1,0)e-2”-2’21(—h“), (11)

N2

where I,(z) represents a Bessel function [21]. The use of
these wave functions, as well as the optimized NL one of Eq.
(5), as approximated solutions for the He ground state (Z
=2) have been discussed in more details in Ref. [2].

Since the basis sets {‘I’&(nl,nz,K,,l,,,z)}NL and
{\I'C3(nl ny,— 2,1]2)}])]: include only double-bound functions,
they cannot be considered as complete. For the purpose of
writing the S-state solutions of the Hylleraas equation, one
should complete the basis set with C3-like functions having
(a) one bound (n,) and one continuum (p;) electron states
(labeled B-C)

Ve (p1nap12) = Roy (1)@, (r)Ag,y (ria),  (12)

or a symmetrized version; and (b) double-continuum states
(p1,p2) (labeled C-C), i.e., the zero angular momentum ra-
dial functions of Eq. (3),

\I’g_sc(Pl’Pz’Plz) = R(),pl(r])RO,pz(rZ)AO,plz(rIZ)' (13)

We have defined the basis functions W2."(p;,n,,p1,) and
WES(py,pasp1o) in terms of general momenta py, p,, and py,
to have the chance to associate a momentum to each coordi-
nate as in the case of the double-bound wave functions
‘I’&(nl ,nz,—j&). By including the functions defined by
Egs. (12) and (13) the two complete basis sets become non-
linear {‘1’23(”1 21, Knl,nz) ,‘I’f}’f(m M2.P12) s q’(cjéc(l?l P2,
Pi)INL and parameter free {\Ifgg(nl Ny,

2,1 2) (Pl,nz’Plz) \I’c3 (Pl,Pz,Plz)} . As discussed in
Ref. [2] the double-bound analog of the double continuum
C3 wave functions are not orthogonal with each other; the
same applies with the continuum functions.

Before proceeding, in the next section, with the construc-
tion of approximate two-electron S bound states, it is worth
adding a comment on the basis set built on Pluvinage-type
functions [12]. In Ref. [2] we have underlined the fact that
these are not the correct analog of the C3 double-continuum
wave function contrary to a common belief (see, e.g.,
[1() 13,22]). Indeed, a Coulomb function e 12 F, (1

52,2 21Kr]2) is used to represent the electron- electron cor-
relanon [instead of |F 1(2K,2 2KI‘12) as in Eq (5)] and cor-
respond to a bound energy EPLU 2 by 22 >+ 2. A nonlinear
basis set {Wh (1,15, k)}pLune has nevertheless been sug-
gested, whether with a constant variational parameter « [10]
or with variational parameters K, . [11,14]. Moreover, by
setting k=75~ 21v ,N;,=1,2,... (negative energy contribution to
Ep ;) one gets parameter—free functions [6] and one may
construct a parameter-free basis set {Wp; (11,72, N12)}pLu.pp-
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II1. SUPERPOSITION OF CONFIGURATIONS
FOR TWO-ELECTRON BOUND S STATES
WAVE FUNCTIONS

In this section we want to use the basis discussed above to
construct double-bound approximated solutions W for the S
bound states. We thus use the Hylleraas equation

HgWE = ESWE, (14)
where we label El; the energy, and Hy is given by
P PP SO AT B
=Dg+|—F - Flp—+F - Fp— | —.
s=Lo 1 12(9r1 2 12(9r2 s

The last term in Hg involves mixed partial derivatives and
introduces the nonseparability character of the three-body
system.

In the numerical calculations which shall be presented in
the next section, we shall restrict the use of the basis sets to
double-bound functions; the (more delicate) inclusion of the
bound-continuum and the double-continuum functions will
be considered in a separated contribution. With the PF and
NL basis sets, we define the angular correlated configuration
interaction solutions of Eq. (14) as either

1
B
\I,PF_ 2 Cnl,nz,nlz\PC3(nl’n2’_ 2_> (16)
RLROP) n
or
B
NL - E bn] 5, Knl,nzq,C3(n1’n2’ Kn],nz) . (17)

npny

In either case, the approximated wave functions W? satisfy
Kato’s cusp conditions [17] since each basis set function
does.

The coefficients ¢, ,, , , in Eq. (16) are obtained by solv-

ing the generalized elgenvalue problem

E (HS_EgS)Ctll,nz,n]2=O’ (18)

G REOV)

where § is the overlap matrix of elements

S
Lo R R bR R RO )

_{ s EalLEN | -b
= c3\ My,Mmp, c3\ 11,12, >
2m12 27’112

and Hy is the Hamiltonian matrix of elements
HS,ml,mz,mlz,nl,nz,nlz

_ q,B m __l ’\Ij‘ -1
= c3\ mMy,My, 3\ ) /.
2m]2 2”12

Standard matrix methods (diagonalization) are used. The task
of evaluating the Hamiltonian matrix elements is consider-
ably reduced because the basis elements q’é(m,m,—jﬂ)
are eigenfunctions (diagonal functions) of the Hamiltonian
Hg, [Eq. (7)]. Hence, only the matrix elements of the mixed
partial derivatives appearing in the definition of the full
Hamiltonian Hg [Eq. (15)] must be evaluated. Besides,

Hy
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TABLE 1. Mean energy for the ground state of the He atom
obtained with Wgy(1,1,-5,-) for np=1,2, ...

n ni _<E> _Eexact
1 1 2.87658

1 2 2.87854

1 3 2.87816

1 o0 2.87462 2.9037 *

Drake [23].

analytical ~ expressions  for Sml,,,,z,mlz,nl,,127,112 and
H m\ mymyyny iy, CN be derived. Note also that the fact of
having a parameter-free basis set implies that the diagonal-
ization of Eq. (18) leads directly to the energies E5 and the
coefficients (linear parameters) Cn,, corresponding to a
given number of basis functions.

If the NL basis functions W2(n;,n,, Kn,.n,) are used, a set
of equations similar to (18) is obtained for coefficients (lin-
ear parameters) b 2; again, only the matrix elements of

ROV

1Ky
the mixed partial derivlatives must be evaluated. The differ-
ence with the PF case is that the energies Eg obtained by
diagonalization will depend on the nonlinear parameters
Kn .y Thus, an optimization procedure should be imple-
mented, implying that a large number of diagonalization
must be performed in the minimization process. In addition,
both the Hamiltonian and the overlap matrix elements must
be evaluated numerically, clearly increasing the numerical
difficulties in comparison to the PF basis.

IV. NUMERICAL RESULTS

The basis sets and the method described in the preceding
sections are now applied to the study of approximated
ground and excited states of two-electron atoms (helium iso-
electronic sequence). Different classes of approximated
double-bound states can be generated with the proposal of
Egs. (16) and (17). We shall denote by n the total number of
functions included in the series. In each case, the mean en-
ergies (E) are calculated with the full three-body Hamil-
tonian Hg, and are compared to the numerically exact value
taken from Ref. [23].

A first class is obtained with functions which have the
same structure as the double-continuum C3 wave function
(i.e., functions with angular but no radial correlation), built
with one of the functions (n=1) belonging to either the PF or
the NL basis set [2]. For example, with the PF basis set, we
can vary the degree of angular correlation of the ground-state
function \1’33(1 ,1 ,—iz) [Eq. (9)]. For the He atom (Z=2),
the differences observed in the mean energies for ni,
=1,2,3, ..., (Table I) are directly associated to their angu-
lar correlation factors. Within this class the best energy of
functions is obtained for n;,=2, while a mean energy of
—2.874 62 a.u. is found for the limit n;,— . The NL basis
set, on the other hand, does not offer the chance of including
different degrees of angular correlation without including ra-
dial correlation (see below). The function ‘I’&(l LKy y) s
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the only one associated to the ground state and only one
parameter can be adjusted. The optimization of Eq. (18)
yields x;;=-0.255, and a mean energy of —2.878 54 a.u.
[2], a result which is almost identical to that obtained with
\Iflé3(1 .1 ,—i) (second row of Table I, n;,=2) because of the
value «; ;=-0.255.

In the next step, we consider the function Eq. (16) keep-
ing n;=n,=1 but including more angular correlation to the
trial wave function by adding—up to saturation—several 7,
terms (n of them). This leads to functions with the structure
©1(r1)@1(r2) x(r12), where x(r),) represents the global angu-
lar correlation factor. No radial correlation is included. Using
the numerically convenient basis elements ®2;(1,n,,n1,)
[see Eq. (6)], the mean energies are found by solving Eq.
(18). Saturation in energy is reached with n=>5, for both the
He atom (E)=-2.879 35 a.u. (2.9037 a.u. [23]) and the H~
ion (E)=-0.498 44 a.u. (0.5277 a.u. [23]). For illustration,
when including up to three n;, terms, the normalized two-
electron wave function for the He ground state reads

WP, =0.62096[®24(1,1,1) - 19.0708DE4(1,1,2)
+14.010602,(1,1,3)] (19)

[although the coefficients look large, one should keep in
mind that the powers in ry; in the x, (ry;) functions are
multiplied by small numbers]. The result for the H™ ion
shows that it is not possible to get a bound state for this
system without adding radial correlation. This fact has im-
portant consequences in collision problems. If symmetrical
theories are going to be used to evaluate cross sections of,
e.g., (e,3e) processes, there is no way to treat the double
ionization of H™ with the C3 double continuum and an
equivalent wave function for the initial channel. Some de-
gree of radial correlation must be included in the initial,
double-bound state, and thus an equivalent step beyond the
C3 approach is necessary.

Note that the functions so far considered are said to in-
clude angular correlation only, a terminology which we now
briefly discuss. When compared to those of the independent
particle model (IPM), these functions differ by the correla-
tion factor x(r;,) which depends purely on the rj, coordi-
nate, and not (explicitly) on the r; and/or r, coordinates (the
only dependence on r; and r, is indirect, through r;,). Thus,
we define correlation with respect to the IPM, and define
angular correlation as the amount of correlation included by
factors which depend only on the interparticle distance r,.
Moreover, since the basis functions, and the functions built
in terms of them, diagonalize all the Coulomb potentials, the
correlation is mathematically related to the cross derivatives
of the three-body Hamiltonian, and hence to the coupling
that they produce between the two-body problems (which are
exactly solved by the basis functions).

A more advanced and more interesting class of approxi-
mated two-electron bound wave functions can be constructed
with the PF basis by including multiple configurations. It is
obtained by summing several n; and n, terms in the series of
Eq. (16), thus including both radial and angular correlation.
In Table II we present the optimized ground state energies
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TABLE II. Mean energies for the ground state of H™ (Z=1), He (Z=2), and Li* (Z=3) obtained with the
PF and NL functions, Egs. (16) and (17), with n; and n, up to 2, and including up to n;,=5 angular

correlation factors in the PF case.

n ny n _<E>PF _<E>NL _Eexact
Z=1 4 1,2 1,2 0.5226 0.5231
8 1.2 1,2 0.5255
12 1.2 1,2 1,23 0.5265
16 1.2 1,2 1.2,3.4 0.5269
20 1.2 1,2 1,2,3.4,5 0.5270 0.5277%
zZ=2 4 1.2 1,2 2.8882 2.8897
8 1.2 1,2 2.8952
12 1.2 1,2 1,23 2.8986
16 1,2 1,2 1,2,3.4 2.9002
20 1,2 1,2 1,2,3.4,5 2.9009 2.9037°
Z=3 4 1,2 1,2 7.2621 7.2649
8 1,2 1,2 7.2698
12 1,2 1,2 1,2,3 7.2736
16 1,2 1,2 1,2,3,4 7.2756
20 1,2 1,2 1,2,3,4,5 7.2764 7.2799*

“Drake [23].

obtained for the He atom, the H™ and the Li* ions, by solving
Eq. (18) when including the configurations Isls, 1s2s, 2sls,
and 2s2s (i.e., n; and n, up to 2), and with n;, up to 5. By
increasing the total number n of basis functions, the mean
energies are improved, and a bound state is predicted for the
H~ ion. The comparison of the mean energies with the nu-
merically exact values [23] shows that relative accuracies of
1.33X 1073, 1.14 X 1073, and 4.80 X 10~* are obtained for the
H™, He, and Li* systems, respectively. Our energy values are
much better than those obtained with the Hartree-Fock
method and even better than those obtained with the
transcorrelated variational Monte Carlo method [24]. A result
obtained with the NL proposal, Eq. (17), is also shown in
Table II. Two observations can be done: (i) there is no way of
improving the value obtained without including other con-
figurations; (ii) the optimization procedure of the nonlinear
parameters is computationally much more expensive than the
procedure required for the PF basis set.

For comparison we have also performed calculations with
the parameter-free basis set {Wp (n;,n5,Ni2)}prupr- The
convergence rate observed with these functions is smaller

than that with the C3-like PF basis set. As an example, the
energies resulting for the He atom with the same 1sls, 1s2s,
2sls, and 2s2s configurations are —2.8555 a.u. with n,=1
(n=4), —2.8859 a.u. with n;,=1,2 (n=38), and —2.8906 a.u.
with n;,=1,2,3 (n=12). A few calculations with the nonlin-
ear basis set {Wp (n;,n,,K)}pLun. have been performed
whether with a constant variational parameter « [10] or with
variational parameters &, ,, [11,14]. Similarly to what was
observed with the NL basis set {‘I’&(nl,nz,lcnl’nz)}NL, con-
vergence toward good energy values is rather slow and the
calculations are computationally expensive, as a delicate op-
timization of the nonlinear parameters Kn .y is required.
The calculation performed to obtain the results of Table II
provide us also with wave functions and energies of excited
states. In Table ITT we show the results for excited states 2 1S,
238,31, and 3 3S, obtained when including the configura-
tions Isls, 1s2s, 2sls, 153s, 3sls, and 2s2s (i.e., n; and n,
up to 3) and with n;, up to 5. We can see how the energies of
the 2 1S, 235, 3 1S, and 3 3S states are improved when the
terms with either n; or n,=3 are included. On the other hand,
the quality of the energies is not improved by including the

TABLE III. Mean energies for the ground state and the first excited states for the He atom (Z=2) obtained
with wave functions, Eq. (16), with n; and n, up to 3 as indicated, and including up to n;,=5 angular

correlation factors.

Configurations included n —(E)12  —(E)yig  —(E)y3s —(E)31ig  —(E)33g
Isls+(1s2s+2sls) 15 2.9003 2.1136 2.1549 1.7905 1.8107
Isls+(1s2s+2s1s)+2s2s 20 2.9009 2.1137 2.1549 1.7905 1.8155
Isls+(152s+2s1s)+(1s3s5+3s1s) 25 2.9009 2.1454 2.1748 2.0468 2.0597
Isls+(152s+2s1s)+(1s3s+3s1s)+2s52s 30 29014 2.1453 2.1748 2.0486 2.0598
Exact 2.9037° 2.1459° 2.1752% 2.0612° 2.0687*

“Drake [23].
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252s configuration in the calculations except for the 11S
level for which a non-negligible contribution is observed.
Also the doubly excited state 25> 'S can be obtained. For
example, with a wave function generated with the lsls,
1s2s, 2sls, 1535, 3s1s, and 2525 configurations, and with up
to n,=>5 angular functions (n=20), one finds a mean energy
of —0.7659 a.u. which is in good agreement with the value
—0.7685 a.u. reported by Lipsky er al. [25] and the value
—0.7776 a.u. reported by Dulieu and Le Sech [26].

It is interesting to underline the fact that the constructed
functions for ground and excited states form an orthogonal
set of wave functions because all of them are obtained in the
same diagonalization process of an approximated Hermitian
Hamiltonian. Moreover, the energies for all of these states
can be systematically further improved by increasing the
number of configurations and/or angular correlation func-
tions. While this is quite computationally expensive for the
NL basis, it is rather easy and efficient with the PF basis set.
As mentioned in the Introduction, we should remind the
reader, however, that the two-electron wave functions pro-
posed here cannot compete with advanced variational wave
functions. The aim here is to build approximated wave func-
tions of a certain class, i.e., C3-like.

V. SUMMARY AND PERSPECTIVES

In this paper we have addressed three different but closely
related issues.

First, two alternative C3-like basis sets of angular corre-
lated functions for S states are defined. The basis sets include
both double-bound, bound-continuum, and double-
continuum functions. Due to the fact that they diagonalize all
the Coulomb interactions, they satisfy all the two-body Kato
cusp conditions at the divergence of the Coulomb potentials.
They are defined as the product of two two-body Coulomb
functions (for the electron-nucleus parts) multiplied by a dis-
tortion function for the electron-electron interaction. One of
the basis sets, named NL, includes nonlinear parameters in
the double-bound part of the distortion factor. On the other
hand, the second basis set, named PF, is parameter free.

Second, we implement an ACCI method where a linear
combination of the double-bound basis functions is used to
write the solution of the Hylleraas equation for heliumlike S
states. The use of both the NL and the PF basis sets trans-
forms the Hylleraas equation into an algebraic set of equa-
tions that can be solved by standard matrix methods. A single
diagonalization provides the linear coefficients and the level
energies; an orthogonal set of wave functions for ground and
excited states is obtained. With the PF basis set, the Hamil-
tonian and overlapping matrix elements can be derived ana-
lytically, and the energy values are directly obtained. With

PHYSICAL REVIEW A 77, 012705 (2008)

the NL basis, on the other hand, the algebraic equations must
be solved many times in the optimization process of the non-
linear parameters. This, together with the fact that the matrix
elements are not analytical, increases considerably the nu-
merical difficulty.

Finally, the ACCI method with the proposed basis sets is
applied to construct correlated bound wave functions for he-
liumlike systems. For both the ground and excited states we
have obtained quite good results with just a few terms; sys-
tematic improvement can be easily achieved by including
more configurations (and hence more correlation) in the trial
wave function, retaining the same C3-like properties. While
the proposed wave functions cannot compete with sophisti-
cated variational wave functions, our energy values are quite
good when compared, for example, to Hartree-Fock results.

The present study of the C3-like correlated wave func-
tions could be extended along several lines. First, bound
states other than S states could be investigated. This would
require defining a basis set including nonzero angular mo-
mentum values. Second, the inclusion of bound-continuum
and continuum-continuum functions to complete the basis set
should be investigated. Third, a systematical procedure to
improve the two-electron trial wave functions, without
breaking the cusp conditions, has been recently explored in
Refs. [15,16]. A preliminary investigation has shown that the
approximated wave functions discussed above can be easily
and effectively improved. This approach, however, destroys
the C3-like character of the present study.

In this paper we have addressed the two-electron problem
case. The generalization to the case of N-electron systems is
straightforward as indicated in [2]. The PF basis set for S
states can be defined as the product of N Coulomb wave
functions multiplied by M=N(N-1)/2 Coulomb distortion
factors, see Eq. (6),

N
rm
W= T1 e -],

n
1
m>1,j=1 " im

The combination with bound-continuum and continuum-
continuum functions allows one to define a complete basis
set for N electrons as shown in this paper for the N=2 case.
These functions diagonalize all the Coulomb potentials, thus
satisfying all the two-body cusp conditions. The extension to
general masses and charges is straightforward.
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